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Simple Summary: Recently, Chlorops oryzae has become one of the major pests of rice in some regions,
which has caused serious economic losses. To understand the genetic mechanisms of frequent local
outbreaks and population expansion of C. oryzae, we analyzed the population genetic structure using
two molecular markers, COI and ITS1 sequences. The results indicated that the C. oryzae populations
experienced rapid expansion after a “Bottleneck effect” and the local outbreaks were probably caused
by frequent gene flow among populations.

Abstract: Frequent outbreaks have made Chlorops oryzae one of the major pests of rice in some
regions. In order to understand the ecological adaptation of C. oryzae at the molecular level, and
provide a scientific basis for formulating management strategies, we used two molecular markers,
COI and ITS1 sequences, to systematically analyze the genetic structure of 31 populations. The
higher haplotype diversity and lower nucleotide diversity indicated that the C. oryzae populations
experienced rapid expansion after a “Bottleneck effect”. The results of the mismatch distribution,
neutrality test (Fu’s Fs < 0, p < 0.001), and haplotype network analysis suggested that the population
has recently undergone an expansion. Although genetic differentiation among C. oryzae populations
was found to have existed at low/medium levels (Fst: 0.183 for COI, 0.065 for ITS1), the frequent
gene flow presented as well (Nm: 2.23 for COI, 3.60 for ITS1) was supposed to be responsible for
frequent local outbreaks.

Keywords: C. oryzae; COI; ITS1; genetic differentiation; genetic diversity

1. Introduction

Population genetic structure, the most basic genetic information of a species, represents
the amount and distribution of genetic variation within and among populations. Moreover,
it is the accumulation of the evolutionary history and the basis for the development of
future evolutionary adaptations of a species [1,2]. Population genetic structure is usually
indicated with genetic diversity, genetic differentiation, and genetic distance [3]. Analysis
of population genetic structure is conducive to revealing the extent and pattern of gene flow
and establishing phylogenetic relationships among populations, thereby contributing to
understanding population dynamics, occurrence trends, and genetic relationships among
populations [4,5].

Molecular markers are a direct reflection of genetic diversity, which is a very effective
tool to study the genetic structure of species [6]. Presently, molecular markers, such as
mitochondrial DNA (mtDNA) [7], ribosomal DNA (rDNA) [8], and microsatellites [9], have
been widely used in the analysis of the genetic structure of insect populations. As one of
the classical molecular markers, mtDNA supports a better understanding of the process of
population dispersal and evolution because of its small size, high level of mutations, strict
adherence to matrilineal inheritance, lack of introns, and recombination characteristics [10].
Particularly, the mtDNA cytochrome oxidase I (COI) gene has been widely used owing
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to its moderate evolutionary rate and readily available advantages [11–14]. However, the
genetic diversity and evolutionary history of mtDNA are not necessarily identical to, or
representative of, the organism due to potential introgression, lower effective population
size, and potential selection. In light of this, combining mtDNA and other markers can
greatly improve the reliability of results [15]. For example, the population dispersal path-
ways and timing of Meromyza saltatrix were studied in connection with the COI gene and
morphological features [16,17]. Moreover, nuclear genes (nDNA) which have genetic infor-
mation that mtDNA lacks are able to play a complementary role to mtDNA. The rDNA
internal transcribed spacer 1 (ITS1), a non-coding sequence located between 18S and 5.8S
rDNA with high nucleotide polymorphism in most eukaryotes, has also been widely used
as markers to study population genetic structure [18]. For example, the genetic structure of
13 geographic populations of Melipona subnitida in northeastern Brazil was analyzed using
ITS1 sequences [19,20]. The analysis of genetic diversity of invasive species Halyomorpha
halys in North America and Europe using ITS1 and COI markers suggested that the joint
use of ITS1 and COI could improve the accuracy of detection of the source areas of an
invasion [21].

Chlorops oryzae (Diptera, Chloropidae), an important rice pest, is widely distributed
in Asia, such as China, Japan, and Korea [22]. The larvae of C. oryzae bore into the stem
and move to the growing point, where they feed on the developing leaves and young
panicles, inhibiting the effectiveness of chemical insecticide [23,24]. In recent years, with
changes in agroecology, cultivation and farming system, climate, and control agents, the
C. oryzae occurrence areas have been expanding, and the damage levels are geographically
different [25]. The frequent outbreaks have made C. oryzae one of the major pests of
rice in some areas [26], causing yield losses of 20–50% [27]. In China, C. oryzae occurs
2–5 generations per year in different regions, mainly dependent on diapause induction and
duration [23]. Presently, studies on C. oryzae are still limited and have mainly focused on
physiology and ecology [28,29]. Till recently, Zhou et al. [30] used COI and ISSR markers to
analyze its genetic structure and speculated that frequent gene flow in C. oryzae populations
was responsible for outbreaks. However, the genetic mechanisms underlying different
occurrence levels and gradual geographic expansions are still unknown.

In this study, we used two molecular markers, COI and ITS1 sequences, to systemati-
cally analyze the genetic structure of 31 geographic populations collected from the main
distribution areas of C. oryzae in China. The results of this study will contribute to under-
standing the ecological adaptation of C. oryzae at the molecular level, thereby providing a
scientific basis for formulating management strategies.

2. Methods
2.1. Sample Collection and DNA Extraction

Samples of 26 C. oryzae populations were collected from Guizhou, Chongqing, and
Sichuan Provinces, China, from May 2020–August 2021 (Figure 1 and Table S1). All
samples were soaked in 75% ethanol and stored at −20 ◦C until total DNA extraction.
Genomic DNA was extracted according to the method of DeBarro and Driver with minor
modification [31]. Briefly, samples were soaked in deionized water to remove alcohol prior
to extraction. Individual samples were grounded thoroughly in centrifuge tubes with 30 µL
of the lysis buffer (50 mM KCl, 10 mM Tris pH 8.4, 0.45% Tween 20, 0.2% gelatin, 0.45%
NP40, 60 µg/mL proteinase K) to form a homogenate, which was incubated at 65 ◦C for
30 min and then boiled for 10 min to inactivate the proteinase K. Total DNA extraction
were stored at −20 ◦C for subsequent analysis.
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Figure 1. Collection sites of populations. Populations data for TY, ZZ, LH, XT, HX, and ZJ were
obtained from Zhou et al. [30] and not marked in the figure.

2.2. PCR Amplification and Sequencing

The genomic DNA extracted from C. oryzae was used as a template for COI and ITS1
amplification. The COI fragments were amplified with specific primers COI F (5′-CTA GGT
GCT CCA GAT ATA GCA TTT C-3′) and COI R (5′-GGC TAA AAC AAC TCC TGT TAA
TCC-3′) [30]. The ITS1 fragments were amplified with primers ITS1 F (5′-CGC ATT ATG
TGT TAC GGA TGT T-3′) and ITS1 R (5′-GGT TGC GAA TGT CTC TAA TTC-3′). PCR was
performed in 30 µL volumes comprised of 15 µL 2 × Taq PCR MasterMix (Biomed, Beijing,
China), 1 µL of each primer (10 mmol/L), 1 µL of template DNA solution, and 12 µL double
distilled water. Amplifications were conducted as follows: 34 cycles of denaturation at 94 ◦C
for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 1 min. All PCR products were
checked by electrophoresis on a 1% agarose gel and bi-directionally sequenced by Sangon
Biotech (Shanghai, China). Sequences were deposited in the GenBank under accession
numbers OM490688-OM491162 for COI and OM540945-OM541304 for ITS1. COI sequence
data of six populations (Hunan: TY, ZZ, LH, XT; Guizhou: HX; Zhejiang: ZJ) were kindly
provided by Zhou et al. [30].

2.3. Data Analysis

The sequencing data were edited using SnapGene v.4.2 [32]. All data processing,
including basic statistics and calculation of inter- and intraspecific genetic distances (Kimura
2-parameter model for COI and Tamura 3-parameter model for ITS1) and transition/
transversion (ts/tv) ratio, were performed using MEGA v.7.0 [33].

The number of haplotypes (h), haplotype diversity (Hd), average number of nu-
cleotide differences (k), nucleotide diversity (Pi), and haplotype analysis were calculated
by DnaSP v.5.10 [34]. Neutrality tests (Fu’s Fs [35] and Tajima’s D [36]), F-Statistics (Fst)
(Bonferroni correction for significance), gene flow (Nm) (COI: Nm = (1 - Fst)/2Fst; ITS1:
Nm = (1 - Fst)/4Fst), and analysis of molecular variance (AMOVA) were performed using
Arlequin v.3.15 [37]. The distribution of pairwise differences between individual sequences
was analyzed by mismatch distribution analysis using DnaSP. In addition, the statistics
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of the raggedness (rg) index of the observed distribution and the sum of square devia-
tions (SSD) between the observed and the expected mismatch were also calculated using
Arlequin based on the spatial expansion model. The statistical significance of variance
components in Arlequin was tested with 1000 permutations.

Geographical distances among populations were calculated using MapInfo Profes-
sional v.8.5 (Table S2) [38]. Mantel test was conducted by NTsyspc v.2.1 for the natural
logarithm of interspecific genetic distance (Fst/(1 - Fst)) and geographic distance [39].
The haplotype networks were constructed using the median-joining method in software
Network v.10.2 [40]. Compared with traditional phylogenetic trees, haplotype network
diagrams can better reveal the genealogical relationships between conspecifics.

3. Result
3.1. Base Composition and Gene Mutation

A total of 598 COI sequences (475 obtained in this study and 123 from Zhou et al. [30])
representing 31 populations and 360 ITS1 sequences representing 26 populations were
used for subsequent analysis (Table S1). The final aligned COI sequence fragments were
720 bp and all alignments were unambiguous, with no insertions or deletions. The average
nucleotide composition was T = 36.4%, C = 17.4%, A = 29.6%, and G = 16.6%, showing an
obvious AT bias (66.0%). In total, 57 polymorphic sites (7.92%) were detected in all COI
sequences, including 34 singleton variable sites and 23 parsimony informative sites. There
were 47 transitions and 10 transversions, and the overall ts/tv bias was 6.934. The ts/tv
rate ratio was observed to be higher with purines (20.78) than pyrimidines (11.08).

The final aligned ITS1 sequence fragments were 607 bp. The average nucleotide
composition was T = 31.2%, C = 14.8%, A = 36.5%, G = 17.5% and A + T = 67.7%. All
sequences had a total of 20 polymorphic sites (3.29%), including 10 single variable sites
and 10 parsimony informative sites. There were 8 transitions and 12 transversions, and the
overall ts/tv bias was 0.639. The ts/tv rate ratio was observed to be higher with purines
(2.402) than pyrimidines (0.116).

3.2. Genetic Diversity

For COI analysis, the 31 C. oryzae populations had a total of 55 haplotypes, with an
overall Hd of 0.346, k of 0.854, and Pi of 0.0012. The Hd, k, and Pi of each population ranged
from 0.000–0.638, 0.000–3.985, and 0.0000–0.0052, respectively. LZ and NC populations had
higher levels of genetic diversity (Hd > 0.5, Pi > 0.005) (Table 1).

Table 1. Genetic diversity of 31 C. oryzae populations based on COI sequences.

n h k Hd Pi Tajima’s D Fu’ Fs

TY 24 4 0.250 0.239 ± 0.113 0.0004 ± 0.0002 −1.7325 ** −3.0208 ***
ZZ 24 4 0.250 0.239 ± 0.113 0.0004 ± 0.0002 −1.7325 −3.0208 ***
XT 24 3 0.243 0.236 ± 0.109 0.0003 ± 0.0002 −1.2023 * −1.4074 **
LH 23 6 0.435 0.395 ± 0.128 0.0006 ± 0.0002 −1.9921 *** −4.8874 ***
BG 20 3 0.637 0.353 ± 0.123 0.0009 ± 0.0003 −0.6594 0.2535
DT 20 3 0.200 0.195 ± 0.115 0.0003 ± 0.0002 −1.5128 ** −1.8631 **
HX 8 2 0.250 0.250 ± 0.180 0.0004 ± 0.0003 −1.0548 −0.1820
JC 20 5 0.400 0.368 ± 0.135 0.0006 ± 0.0002 −1.8679 ** −3.6541 ***
LQ 20 4 1.058 0.432 ± 0.126 0.0015 ± 0.0008 −1.7892 ** 0.1219
MG 20 4 0.579 0.363 ± 0.131 0.0008 ± 0.0003 −1.4084 * −1.2369 *
PJ 20 4 0.300 0.284 ± 0.128 0.0004 ± 0.0002 −1.7233 ** −2.7493 ***
TJ 20 2 0.100 0.100 ± 0.088 0.0001 ± 0.0001 −1.1644 −0.8793 *
TL 20 2 0.300 0.100 ± 0.088 0.0004 ± 0.0004 −1.7233 ** 0.5439

WQ 20 4 0.389 0.363 ± 0.131 0.0005 ± 0.0002 −1.4407 * −2.1353 ***
YW 20 3 0.200 0.195 ± 0.115 0.0003 ± 0.0002 −1.5128 ** −1.8631 **
BZ 20 2 0.100 0.100 ± 0.088 0.0001 ± 0.0001 −1.1644 −0.8793 *
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Table 1. Cont.

n h k Hd Pi Tajima’s D Fu’ Fs

DJY 20 6 0.589 0.447 ± 0.137 0.0008 ± 0.0003 −1.7800 ** −4.0149 ***
DZ 20 2 0.189 0.189 ± 0.108 0.0003 ± 0.0002 −0.5916 −0.0966
GY 20 3 0.400 0.195 ± 0.115 0.0006 ± 0.0004 −1.8679 *** −0.6256
LS 17 4 1.118 0.596 ± 0.099 0.0016 ± 0.0003 −0.1695 0.0627
LZ 21 3 3.724 0.638 ± 0.058 0.0052 ± 0.0006 2.2431 6.1273
QL 20 5 0.779 0.368 ± 0.135 0.0011 ± 0.0005 −1.7190 ** −1.7642 **
YA 20 5 0.837 0.368 ± 0.135 0.0012 ± 0.0005 −1.2429 −1.5755 *
ZJ 20 4 0.389 0.363 ± 0.131 0.0005 ± 0.0002 −1.4407 * −2.1353 ***
FL 20 4 2.963 0.489 ± 0.117 0.0041 ± 0.0010 0.5779 3.1379
NC 12 3 3.985 0.621 ± 0.087 0.0055 ± 0.0006 2.0135 4.6229
PS 21 4 0.467 0.348 ± 0.128 0.0007 ± 0.0003 −1.6536 ** −1.6755 **
QJ 17 4 0.471 0.331 ± 0.143 0.0007 ± 0.0003 −1.8431 ** −1.8636 **
WZ 7 1 0.000 0.000 ± 0.000 0.0000 ± 0.0000 N N
XS 20 4 0.389 0.363 ± 0.131 0.0005 ± 0.0002 −1.4407 * −2.1353 **
YY 20 7 0.600 0.521 ± 0.135 0.0008 ± 0.0003 −2.0562 *** −5.6554 ***

Total 598 55 0.854 0.346 ± 0.026 0.0012 ± 0.0001 −2.4784 *** −3.40 × 1038 ***

(n) Number of individuals; (h) number of haplotypes; (Hd) haplotype diversity; (k) average number of nucleotide
differences; (Pi) nucleotide diversity; * p < 0.10; ** p < 0.05; *** p < 0.01.

For ITS1 analysis, the 26 C. oryzae populations had a total of 26 haplotypes, with an
overall Hd of 0.750, k of 1.551, and Pi of 0.0026. The Hd, k, and Pi of each population
ranged from 0.400–0.956, 0.400–2.911, and 0.0007–0.0048, respectively. Except for the YW
and SZ populations, all populations had higher levels of Hd (Hd < 0.5) and lower levels of
Pi (Pi < 0.005) (Table 2).

Table 2. Genetic diversity of 26 C. oryzae populations based on ITS1 sequences.

n h k Hd Pi Tajima’s D Fu’ Fs

BG 23 9 1.375 0.838 ± 0.056 0.0023 ± 0.0004 −0.8686 −4.5472 ***
DT 20 5 1.068 0.558 ± 0.114 0.0018 ± 0.0006 −1.1736 −0.9454
JC 24 6 1.145 0.500 ± 0.121 0.0019 ± 0.0006 −0.8693 −1.5615
LQ 19 8 1.298 0.649 ± 0.108 0.0021 ± 0.0005 −0.2877 −0.5202
MG 22 8 1.576 0.818 ± 0.059 0.0026 ± 0.0004 −0.1321 −2.8304 **
PJ 15 6 1.562 0.848 ± 0.054 0.0026 ± 0.0003 0.0531 −1.4952
TJ 21 5 1.267 0.595 ± 0.108 0.0021 ± 0.0007 −0.7553 −0.4465
TL 17 3 1.250 0.588 ± 0.093 0.0021 ± 0.0003 1.1573 1.5858

WQ 10 5 2.356 0.800 ± 0.100 0.0039 ± 0.0009 −0.2034 −0.2303
YW 14 4 1.077 0.495 ± 0.151 0.0018 ± 0.0009 −1.5407 ** −0.2586
BZ 9 4 1.944 0.806 ± 0.089 0.0032 ± 0.0004 1.3055 0.3315

DJY 13 7 1.346 0.795 ± 0.109 0.0022 ± 0.0005 −0.5866 −3.6278 ***
DZ 12 6 1.636 0.848 ± 0.074 0.0027 ± 0.0004 −0.0430 −1.8724 *
GY 10 7 2.911 0.933 ± 0.062 0.0048 ± 0.0006 0.7476 −2.1342 *
LS 10 5 1.022 0.756 ± 0.130 0.0017 ± 0.0004 −0.1297 −2.2036 **
LZ 11 3 1.055 0.618 ± 0.104 0.0017 ± 0.0003 1.6648 0.6938
QL 10 8 2.733 0.956 ± 0.059 0.0045 ± 0.0006 −0.6167 −3.8821 ***
YA 10 6 2.244 0.889 ± 0.075 0.0037 ± 0.0006 0.2410 −1.5332
FL 17 7 1.779 0.868 ± 0.045 0.0029 ± 0.0005 −0.4858 −1.9303 *
NC 13 4 1.385 0.603 ± 0.131 0.0023 ± 0.0010 −1.4646 * 0.1989
PS 10 5 1.022 0.667 ± 0.163 0.0017 ± 0.0005 −0.1297 −2.2036 **
QJ 7 5 1.619 0.905 ± 0.103 0.0027 ± 0.0005 −0.0398 −2.0192 **
SZ 5 2 0.400 0.400 ± 0.237 0.0007 ± 0.0004 −0.8165 0.0902
WZ 10 4 0.933 0.533 ± 0.180 0.0015 ± 0.0006 −0.4313 −1.0204
XS 17 7 1.360 0.809 ± 0.079 0.0022 ± 0.0004 0.4581 −2.8195 **
YY 11 5 1.382 0.618 ± 0.164 0.0023 ± 0.0008 −0.7301 −1.2656 *

Total 360 26 1.551 0.750 ± 0.021 0.0026 ± 0.0001 −1.2621 * −16.0072 ***

(n) Number of individuals; (h) number of haplotypes; (Hd) haplotype diversity; (k) average number of nucleotide
differences; (Pi) nucleotide diversity; * p < 0.10; ** p < 0.05; *** p < 0.01.
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3.3. Population Demographic History

When all samples were taken as one population, the neutrality test and mismatch
analysis of the C. oryzae population were performed based on COI and ITS1 sequences.
The Tajima’s D and Fu’s Fs values of the total population were all negative, and all Fu’s
Fs values were significant (p < 0.01) (Tables 1 and 2). Besides, the mismatch distribution
of both markers in the total populations showed a single-peaked form, indicating that the
population experienced expansion events. In addition, both the statistical reference SSD
and rg values did not reach significant level, supporting the spatial expansion model (COI:
SSD = 0.0020, p = 0.7000, rg = 0.2316, p = 0.8000; ITS1: SSD = 0.0006, p = 0.8730, rg = 0.0248,
p = 0.9050) (Figure 2).
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3.4. Genetic Differentiation

Genetic distances within and between populations were estimated based on COI
and ITS1 sequences. For COI analysis, the inter- and intra-population genetic distance
ranged from 0.0001–0.0060 and 0.0000–0.0056, respectively (Figure 3A), indicating that
genetic distances between populations were higher than those within populations. For
ITS1 analysis, the two values ranged from 0.0010–0.0047 and 0.0007–0.0048, respectively
(Figure 3B).

The results of AMOVA suggested that the genetic variation in C. oryzae popula-
tions was mainly from within populations, while less from among populations (Va < Vb,
p < 0.001). Moreover, there was some degree of genetic variation within the overall popula-
tions (Fst > 0.05, p < 0.001) (Table 3).

Table 3. Analysis of molecular variance (AMOVA) of COI and ITS1 sequences from the C. oryzae
populations.

Source of Variation d.f. SS Variance Components % F-Statistic

COI Among populations 30 56.336 0.079 Va ** 18.32
Within populations 567 200.070 0.353 Vb ** 81.68

Total 597 256.406 0.432 100.00 Fst = 0.183 **
ITS1 Among populations 25 35.596 0.050 Va ** 6.47

Within populations 334 243.645 0.727 Vb ** 93.53
Total 359 278.383 0.777 100.00 Fst = 0.065 **

(SS) Sum of squares; (%) percentage of variation; (Va) variance components among populations; (Vb) variance
components within populations; ** p < 0.001.
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The Fst and Nm values between pairwise populations were calculated based on COI
and ITS1 sequences (Tables 4 and 5). The Fst values ranged from 0.000–0.536 and 0.000–0.307
for COI and ITS1 sequences, respectively. For COI analysis, the genetic differentiation was
mainly attributed to individuals in the NC population (Fst > 0.25, Nm < 1). A three-level
AMOVA analysis of the NC population with the rest of the populations based on COI
markers showed the presence of significant genetic differentiation (Fst = 0.69, p < 0.001).

The Mantel tests based on both markers did not support a significant correlation
between geographic distance and genetic distance, thus excluding the effect of distance
segregation on genetic differentiation (Figure 4).
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Table 4. Fst (below diagonal) and Nm (above diagonal) between the 31 C. oryzae populations based on COI sequences.

TY ZZ XT LH BG DT HX JC LQ MG PJ TJ TL WQ YW BZ DJY DZ GY LS LZ QL YA ZJ FL NC PS QJ WZ XS YY

TY hun 33.84 hun 84.97 55.43 inf inf inf 91.75 inf 10.23 hun inf inf 7.53 19.07 1.01 1.96 hun 22.24 inf 30.04 26.64 2.05 0.45 32.27 inf 26.63 hun inf
ZZ 0.00 inf hun 15.20 55.43 hun inf inf inf inf 12.80 hun inf hun 7.53 19.07 1.01 1.96 hun 22.24 inf 30.04 26.64 2.05 0.45 32.27 inf 26.63 hun inf
XT 0.01 0.00 44.14 10.88 12.64 34.56 34.44 29.49 16.21 32.31 7.35 30.81 32.31 36.43 6.75 14.72 0.97 1.90 36.24 12.62 29.49 19.26 16.21 1.92 0.43 19.09 inf 16.21 39.34 29.77
LH 0.00 0.00 0.01 15.60 22.66 inf inf inf hun inf 8.16 inf inf inf 9.38 25.23 1.05 2.37 inf 36.24 inf 43.51 40.25 2.12 0.49 46.32 inf 40.25 hun hun
BG 0.01 0.03 0.04 0.03 hun 56.06 57.78 13.85 22.34 14.99 57.04 inf 14.99 59.38 8.94 14.43 1.84 3.22 17.26 11.92 13.85 15.57 13.73 5.29 0.86 14.20 inf 13.74 19.57 hun
DT 0.01 0.01 0.04 0.02 0.00 20.81 inf 16.16 inf 18.48 inf inf 18.48 43.79 8.35 15.99 1.37 2.57 23.07 12.18 16.16 18.38 15.27 3.17 0.63 16.83 inf 15.28 27.80 inf
HX 0.00 0.00 0.01 0.00 0.01 0.02 hun hun 32.59 hun 7.40 inf hun inf 8.96 hun 1.09 2.23 inf 23.21 hun 42.20 hun 2.21 0.50 42.09 inf 32.59 inf hun
JC 0.00 0.00 0.01 0.00 0.01 0.00 0.00 hun inf hun hun inf hun hun 8.96 25.49 1.19 2.23 hun 23.17 hun 42.09 32.57 2.56 0.53 41.98 inf 32.53 hun inf
LQ 0.00 0.00 0.02 0.00 0.03 0.03 0.00 0.00 23.25 hun 5.83 11.98 hun inf 7.41 20.92 1.04 1.86 hun 13.73 hun 33.01 23.29 2.08 0.46 33.47 inf 23.25 inf inf
MG 0.01 0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.02 hun 37.44 inf 27.93 37.32 8.28 18.40 1.20 2.32 37.18 13.75 23.25 23.17 18.44 2.59 0.55 21.53 inf 18.43 46.85 inf
PJ 0.00 0.00 0.02 0.00 0.03 0.03 0.00 0.00 0.00 0.00 6.61 54.09 hun hun 8.18 23.20 1.08 2.05 hun 18.48 hun 37.55 27.94 2.14 0.48 37.87 inf 27.93 inf hun
TJ 0.05 0.04 0.06 0.06 0.01 0.00 0.06 0.00 0.08 0.01 0.07 16.06 6.61 8.18 5.80 8.36 1.49 2.36 8.18 5.61 5.83 8.28 6.94 3.60 0.67 7.49 hun 6.94 9.74 inf
TL 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.03 54.09 inf 38.44 inf 1.75 3.64 inf 13.47 11.98 inf inf 4.24 0.84 inf inf inf inf inf
WQ 0.00 0.00 0.02 0.00 0.03 0.03 0.00 0.00 0.00 0.02 0.00 0.07 0.01 hun 9.73 23.20 1.06 2.05 hun 18.48 hun 37.55 27.94 2.14 0.48 37.87 inf 27.93 inf inf
YW 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.00 9.73 27.75 1.11 2.42 hun 28.10 inf hun 37.29 2.27 0.52 46.14 inf 37.32 hun hun
BZ 0.06 0.06 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.08 0.01 0.05 0.05 inf 1.18 hun hun 6.96 8.80 inf 8.28 2.36 0.59 8.75 inf 8.28 13.39 13.83
DJY 0.03 0.03 0.03 0.02 0.03 0.03 0.00 0.02 0.02 0.03 0.02 0.06 0.00 0.02 0.02 0.00 1.20 6.58 inf 15.35 20.92 inf 49.90 2.46 0.59 19.63 inf 18.40 32.35 34.49
DZ 0.33 * 0.33 * 0.34 * 0.32 * 0.21 0.27 0.31 0.30 0.32 0.29 0.32 0.25 0.22 0.32 0.31 0.30 0.29 1.18 1.11 1.06 1.04 1.16 1.11 inf inf 1.10 1.88 1.11 1.16 1.36
GY 0.20 0.20 0.21 0.17 0.13 0.16 0.18 0.18 0.21 0.18 0.20 0.17 0.12 0.20 0.17 0.00 0.07 0.30 * 3.99 1.96 1.86 6.24 2.32 2.08 0.64 2.43 4.16 2.32 2.79 2.70
LS 0.00 0.00 0.01 0.00 0.03 0.02 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.31 0.11 28.02 hun inf hun 2.28 0.52 45.97 inf 37.18 hun hun
LZ 0.02 0.02 0.04 0.01 0.04 0.04 0.02 0.02 0.04 0.04 0.03 0.08 0.04 0.03 0.02 0.07 0.03 0.32 0.20 0.02 13.73 18.58 13.77 2.11 0.48 inf inf 13.75 37.84 24.40
QL 0.00 0.00 0.02 0.00 0.03 0.03 0.00 0.00 0.00 0.02 0.00 0.08 0.04 0.00 0.00 0.05 0.02 0.32 0.21 0.00 0.04 33.01 23.29 2.08 0.46 33.47 inf 23.25 inf 80.93
YA 0.02 0.02 0.03 0.01 0.03 0.03 0.01 0.01 0.01 0.02 0.01 0.06 0.00 0.01 0.00 0.00 0.00 0.30 0.07 0.00 0.03 0.01 23.15 2.37 0.55 25.77 inf 23.17 55.93 55.93
ZJ 0.02 0.02 0.03 0.01 0.04 0.03 0.00 0.02 0.02 0.03 0.02 0.07 0.00 0.02 0.01 0.06 0.01 0.31 0.18 0.00 0.04 0.02 0.02 2.24 0.51 21.54 inf 18.44 46.80 37.58
FL 0.20 0.20 0.21 0.19 0.09 0.14 0.18 0.16 0.19 0.16 0.19 0.12 0.11 0.19 0.18 0.17 0.17 0.00 0.19 0.18 0.19 0.19 0.17 0.18 7.37 2.23 5.00 2.24 2.41 3.05
NC 0.53 0.53 * 0.54 * 0.51 * 0.37 0.44 * 0.50 * 0.48 0.52 0.48 0.51 0.43 * 0.37 0.51 * 0.49 0.46 * 0.46 * 0.00 0.44 * 0.49 * 0.51 * 0.52 0.47 0.49 * 0.06 0.52 0.88 0.51 0.56 0.63
PS 0.02 0.02 0.03 0.01 0.03 0.03 0.01 0.01 0.01 0.02 0.01 0.06 0.00 0.01 0.01 0.05 0.02 0.31 0.17 0.01 0.00 0.01 0.02 0.02 0.18 0.49 inf 21.53 53.73 48.57
QJ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.11 0.00 0.00 0.00 0.00 0.00 0.09 0.36 0.00 inf inf inf
WZ 0.02 0.02 0.03 0.01 0.04 0.03 0.02 0.02 0.02 0.03 0.02 0.07 0.00 0.02 0.01 0.06 0.03 0.31 * 0.18 0.01 0.04 0.02 0.02 0.03 0.18 0.49 0.02 0.00 46.85 37.64
XS 0.00 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.00 0.00 0.04 0.02 0.30 * 0.15 0.00 0.01 0.00 0.01 0.01 0.17 0.47 0.01 0.00 0.01 inf
YY 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.27 0.16 0.00 0.02 0.01 0.01 0.01 0.14 0.44 0.01 0.00 0.01 0.00

(inf) Nm is infinite; (hun) Nm > 100; (0.00) Fst ≤ 0.00; * p < 0.02; Nm = (1 - Fst)/2Fst.
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Table 5. Fst (below diagonal) and Nm (above diagonal) between the 26 C. oryzae populations based on ITS1 sequences.

BG DT JC LQ MG PJ TJ TL WQ YW BZ DJY DZ GY LS LZ QL YA FL PS NC QJ SZ WZ XS YY

BG 11.41 inf 6.74 3.29 1.83 inf 7.89 3.58 inf 1.37 0.87 1.80 0.96 12.38 0.75 2.23 1.45 1.72 inf 9.08 5.23 inf inf 6.63 inf
DT 0.02 hun inf 7.09 2.69 49.45 4.64 3.49 inf 1.28 1.25 3.52 1.01 inf 0.99 2.21 1.65 2.28 inf 3.34 76.44 inf inf inf inf
JC 0.00 0.00 7.13 4.94 1.66 23.47 21.04 5.36 inf 1.29 0.84 1.66 1.01 5.09 0.58 2.28 1.48 2.12 61.78 3.58 4.37 inf inf 4.90 inf
LQ 0.04 0.00 0.03 15.24 9.22 8.34 6.28 7.23 17.70 3.35 2.17 hun 1.23 inf 2.25 5.77 3.67 3.57 inf 2.36 inf inf inf inf inf
MG 0.07 0.03 0.05 0.02 inf 2.49 inf inf 2.71 inf 26.09 inf 5.00 2.68 1.11 inf inf inf 5.22 1.32 inf 4.27 3.04 inf inf
PJ 0.12 0.09 0.13 0.03 0.00 1.51 11.42 inf 1.41 inf inf inf 5.20 2.43 2.52 inf inf inf 3.96 0.90 inf 1.60 1.81 inf inf
TJ 0.00 0.01 0.01 0.03 0.09 0.14 2.57 2.56 inf 1.03 0.81 1.76 0.90 inf 0.90 1.52 1.25 1.29 inf inf 3.69 inf inf 8.81 inf
TL 0.03 0.05 0.01 0.04 0.00 0.02 0.09 inf 2.61 10.31 2.35 5.70 2.59 1.90 0.66 inf 10.47 inf 4.11 1.22 inf 3.05 2.96 10.68 inf
WQ 0.07 0.07 0.04 0.03 0.00 0.00 0.09 0.00 2.30 inf 9.79 inf inf 2.20 1.06 inf inf inf 3.79 1.70 inf 3.76 2.82 15.20 inf
YW 0.00 0.00 0.00 0.01 0.08 0.16 0.00 0.09 0.10 0.93 0.76 1.57 0.82 inf 0.71 1.63 1.16 1.39 inf 26.12 3.46 inf inf 7.00 inf
BZ 0.15 0.16 0.16 0.07 0.00 0.00 0.19 0.02 0.00 0.21 inf inf inf 1.21 1.35 inf inf inf 1.72 0.74 inf 1.01 1.13 6.88 2.90
DJY 0.22 0.17 0.23 0.10 0.01 0.00 0.23 0.10 0.02 0.25 0.00 inf 5.61 0.94 1.27 67.32 inf inf 1.17 0.56 inf 0.71 0.79 4.17 2.22
DZ 0.12 0.07 0.13 0.00 0.00 0.00 0.12 0.04 0.00 0.14 0.00 0.00 5.76 3.43 7.33 inf inf inf 6.95 1.04 inf 1.90 2.19 inf 76.44
GY 0.21 0.20 0.20 0.17 0.05 0.05 0.22 0.09 0.00 0.23 0.00 0.04 0.04 0.89 0.87 83.64 inf 27.16 1.13 0.80 9.52 1.01 0.93 1.75 2.26
LS 0.02 0.00 0.05 0.00 0.09 0.09 0.00 0.12 0.10 0.00 0.17 0.21 0.07 0.22 1.81 2.32 1.42 1.42 inf 5.74 8.77 inf inf inf inf
LZ 0.25 * 0.20 0.30 * 0.10 0.18 0.09 0.22 0.27 0.19 0.26 0.16 0.16 0.03 0.22 0.12 1.43 1.42 0.94 1.81 0.67 2.63 0.60 0.93 3.57 1.39
QL 0.10 0.10 0.10 0.04 0.00 0.00 0.14 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.10 0.15 inf inf 3.31 1.11 inf 3.02 2.12 11.24 7.59
YA 0.15 0.13 0.14 0.06 0.00 0.00 0.17 0.02 0.00 0.18 0.00 0.00 0.00 0.00 0.15 0.15 0.00 inf 1.97 0.93 inf 1.41 1.36 8.06 4.11
FL 0.13 0.10 0.11 0.07 0.00 0.00 0.16 0.00 0.00 0.15 0.00 0.00 0.00 0.01 0.15 0.21 0.00 0.00 2.06 0.85 inf 1.71 1.45 5.86 5.78
PS 0.00 0.00 0.00 0.00 0.05 0.06 0.00 0.06 0.06 0.00 0.13 0.18 0.03 0.18 0.00 0.12 0.07 0.11 0.11 8.06 inf inf inf inf inf
NC 0.03 0.07 0.07 0.10 0.16 0.22 0.00 0.17 0.13 0.01 0.25 0.31 0.19 0.24 0.04 0.27 0.18 0.21 0.23 0.03 1.51 inf inf 2.32 5.38
QJ 0.05 0.00 0.05 0.00 0.00 0.00 0.06 0.00 0.00 0.07 0.00 0.00 0.00 0.03 0.03 0.09 0.00 0.00 0.00 0.00 0.14 4.28 5.62 inf inf
SZ 0.00 0.00 0.00 0.00 0.06 0.14 0.00 0.08 0.06 0.00 0.20 0.26 0.12 0.20 0.00 0.29 0.08 0.15 0.13 0.00 0.00 0.06 inf hun inf
WZ 0.00 0.00 0.00 0.00 0.08 0.12 0.00 0.08 0.08 0.00 0.18 0.24 0.10 0.21 0.00 0.21 0.11 0.15 0.15 0.00 0.00 0.04 0.00 inf inf
XS 0.04 0.00 0.05 0.00 0.00 0.00 0.03 0.02 0.02 0.03 0.04 0.06 0.00 0.13 0.00 0.07 0.02 0.03 0.04 0.00 0.10 0.00 0.00 0.00 inf
YY 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.08 0.10 0.00 0.10 0.00 0.15 0.03 0.06 0.04 0.00 0.04 0.00 0.00 0.00 0.00

(inf) Nm is infinite; (hun) Nm > 100; (0.00) Fst ≤ 0.00; * p < 0.02; Nm = (1 - Fst)/4Fst.
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3.5. Haplotype Network Analysis

To understand the relationships of identified haplotypes, the median-joining haplotype
network was constructed (Figure 5). Among the 55 COI haplotypes, H1 occupied the center
of the network and was shared by all populations. H1 was also the most common haplotype,
accounting for 80.6% of all samples. The remaining 54 haplotypes were distributed around
H1 in a star pattern. H21 and H44 were far away from H1 and mainly shared by NC, LZ,
and FL populations (Figure 5A). Among the 26 ITS1 haplotypes, H1 was the ancestral
haplotype shared by all populations and occupied a central position in the network. The
four haplotypes, H3, H6, H9, and H10, were derived from H1 and collectively accounted
for 37.5% of all samples (Figure 5B).
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4. Discussion

Genetic diversity, which refers to the sum of genetic variation among populations
within a species or individuals within a population [1], is a fundamental guarantee for
maintaining species evolution [2]. Genetic diversity is caused by the variation of genetic
material and is influenced by mutation rate, effective population size, gene flow, and other
factors [41]. A population with rich genetic diversity often possesses a strong adaptability
to the environment, thus facilitating population outbreaks and their large-scale spread.

Haplotype diversity and nucleotide diversity are the main indicators of genetic di-
versity. In this study, the ITS1 analysis presented that C. oryzae populations had higher
haplotype diversity (Hd > 0.5) and lower nucleotide diversity (Pi < 0.005), suggesting that
the population experienced a recent “Bottleneck effect” followed by a short period of rapid
population expansion [42]. Meanwhile, the COI analysis revealed low haplotype diversity,
probably due to different genetic patterns of molecular markers [43]. This is consistent with
the finding that ITS1 possesses greater genetic diversity than COI in Halyomorpha halys [21].

Historical population demographics is one of the core elements of molecular phylo-
geography. The analysis of historical population demographics is in favor of understanding
the effects of external environmental factors on population development and distribution,
and also provides a reference for developing pest management strategies [44]. To this
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end, neutrality tests (Tajima’s D and Fu’s Fs values) and mismatch distributions are com-
monly used [45,46]. In this study, when all samples were calculated as a population, the
Tajima’s D and Fu’s Fs values were significantly negative except for Tajima’s D for ITS1
data, indicating the expansion of the population size, which is consistent with the previous
speculation [25]. Additionally, the extremely small Fu’s Fs values (−3.40 × 1038) implied
that the population expansion occurred not so long ago as the Fu’s Fs values are more
sensitive to recent population expansion [35]. Likewise, the mismatch distribution showed
population expansion as well because of the single-peaked curve, insignificant SSD values,
and small rg values [46]. Moreover, the haplotype network for COI with a star-shaped
distribution further supported speculation of population expansion [47].

Genetic distance, AMOVA [48], Fst value [49], and Nm value [50], are important
indicators of the genetic differentiation of populations. The genetic distance between
populations was generally close except for NC and LZ for COI, and the genetic variation was
mainly from within the population revealed by AMOVA. Similarly, the Fst and Nm values
between paired populations indicated that the genetic differentiation between populations
was stemmed from a few populations such as NC. In fact, the population density of NC is
relatively lower than that of other populations. Whether the worse performance of the NC
population is correlated with its genetic background remains unknown and necessitates
further investigation. Factors such as geographic isolation and farming patterns often affect
the adaptation of populations to the environment and initiate genetic differentiation [51].
The Mantel test showed that there was no significant correlation between genetic distances
and geographical distances, indicating that genetic differentiation of these populations
is not caused by geographical isolation, but other factors, such as tillage practices and
farmland landscape patterns [52].

It has been demonstrated that frequent gene flow can improve the population’s adapt-
ability to the environment and cause outbreaks of pests [53]. In this study, gene flow was
found to have existed among C. oryzae populations, which was in line with the previous
study [30]. However, the degree of gene flow varied remarkably with geographic pop-
ulations, and it was probably related to the occurrence level of these populations. For
instance, QJ and YY populations that showed intensive gene flow performed much better
than other populations, while NC and GY populations which showed restricted gene flow
occurred lightly.

The genetic structure of C. oryzae has been analyzed previously by Zhou et al. [30].
Likewise, we analyzed the genetic structure of C. oryzae as well, but using more geographic
populations collected from a larger area, within which the ecological environment is
more diverse and the annual occurrence generation of C. oryzae changes accordingly [27].
Both studies revealed that C. oryzae populations have low or medium levels of genetic
differentiation and experienced recent expansion events. However, disparities in the genetic
diversity and experience of the “Bottleneck effect” were presented between two studies,
probably due to the differences in sample size, molecular markers, and sampling locations.

The “Bottleneck effect” refers to the dramatic variation of genetic structure owing to
the sharp reduction in population size caused by deteriorated environmental conditions,
such as farmland ecology and pesticide application levels [54]. For the past several decades,
C. oryzae has been subjected to highly toxic pesticides, such as furadan, oxamyl, and
triazophos [25]. We, therefore, speculated that the “Bottleneck effect” of C. oryzae might
be caused by the abundant use of these pesticides. In addition, the recent expansion of
C. oryzae may be related to changes in factors such as agroecological environments, tillage
and cultivation systems, winter temperatures, and control agents [27].

In the future, the investigations of the relationship between the population dynamics
of C. oryzae and farmland environments and farming practices may elucidate the causes
of the “Bottleneck effect”, genetic differentiation, population expansion, and frequent
outbreaks, thereby providing a theoretical basis for formulating management strategies.
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5. Conclusions

This study showed that C. oryzae populations suffered from a recent “Bottleneck
effect”, followed by a rapid expansion. We also speculated that genetic differentiation
and gene flow among populations are responsible for the geographical differences in the
occurrence level.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects13040327/s1, Table S1: Information on the C. oryzae samples
used in this study; Table S2. Geographical distance (km) among C. oryzae populations.
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