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SUMMARY

The aberrant expression of squamous lineage markers in pancreatic ductal adenocarcinoma (PDA) 

has been correlated with poor clinical outcomes. However, the functional role of this putative 

transdifferentiation event in PDA pathogenesis remains unclear. Here, we show that expression of 

the transcription factor TP63 (∆Np63) is sufficient to install and sustain the enhancer landscape 

and transcriptional signature of the squamous lineage in human PDA cells. We also demonstrate 

that TP63-driven enhancer reprogramming promotes aggressive tumor phenotypes, including 

enhanced cell motility and invasion, and an accelerated growth of primary PDA tumors and 

metastases in vivo. This process ultimately leads to a powerful addiction of squamous PDA cells 

to continuous TP63 expression. Our study demonstrates the functional significance of squamous 

transdifferentiation in PDA and reveals TP63-based reprogramming as an experimental tool for 

investigating mechanisms and vulnerabilities linked to this aberrant cell fate transition.
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In Brief

Somerville et al. report that the transcription factor TP63 is a master regulator of squamous-

subtype pancreatic cancer as it reprograms the enhancer landscape to drive squamous 

transdifferentiation, promoting invasion, migration, in vivo tumor growth, and poor prognosis.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy that typically presents 

at an advanced stage and is refractory to most available treatments, with a median 5-year 

survival rate of <8% (Siegel et al., 2018). This malignancy is typically initiated by an 

activating mutation in KRAS in a ductal or an acinar cell of the pancreas, which collaborates 

with the loss of tumor suppressor genes to drive PDA progression (Aguirre et al., 2003; 

Hingorani et al., 2003, 2005). Despite our deep understanding of the genetic drivers and the 

molecular pathogenesis of PDA, pathway-specific targeted therapies have yet to be 

implemented in the management of disease. Among the numerous challenges in advancing 

targeted therapies in PDA is the profound heterogeneity of tumor cell phenotypes within the 

current histology-based definition of this disease, which limits our ability to predict 

responses to targeted agents.

Dynamic transitions in cell fate are one important source of inter- and intra-tumoral 

heterogeneity in PDA. For example, experiments in mouse models have shown that PDA can 

originate in a pancreatic acinar cell, which transdifferentiates into a ductal cell following the 

introduction of mutant Kras (Ferreira et al., 2017; Guerra et al., 2007). In later stages of 

disease progression, it is known that PDA can transiently lose the expression of epithelial 

cell markers and gain mesenchymal features, in association with metastatic spread 

(Genovese et al., 2017; Krebs et al., 2017; McDonald et al., 2017; Rhim et al., 2012). 

Moreover, a subset of PDA tumors exhibit epigenetic silencing of endodermal cell fate 

determinants, including hepatocyte nuclear factor 1 homeobox A (HNF1A), HNF1B, 
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HNF4A, and Kruppel-like factor 5 (KLF5), in association with a stable epithelial-to-

mesenchymal fate transition (David et al., 2016; Diaferia et al., 2016). We have recently 

shown that mouse and human PDA tumors can upregulate the pioneer factor Forkhead box 

A1 (FOXA1), which leads to the activation of an embryonic foregut endoderm enhancer 

landscape to endow tumor cells with metastatic potential (Roe et al., 2017). Collectively, 

these studies highlight aberrant cell fate transitions as a hallmark property of PDA, which 

can be understood mechanistically by epigenomic mapping of the global enhancer 

configuration.

It has long been recognized that a subset of PDA tumors acquire features of the squamous 

epithelial lineage (Morohoshi et al., 1983), although the clinical relevance of this aberrant 

cell fate transition is not well understood. Squamous epithelial cells are a specialized cell 

type found in the epidermis, oropharynx, and other anatomical locations, but this cell type 

does not exist in the normal pancreas (Basturk et al., 2005). Nonetheless, histological 

analyses have revealed that a subset of human PDAs possess an adenosquamous cell 

morphology, which is invariably associated with the expression of TP63, a master regulator 

of the normal squamous lineage (Mills et al., 1999; Soares and Zhou, 2018). Recent 

transcriptome profiling of human tumor specimens revealed that squamous lineage markers 

are expressed in as much as 25% of PDA tumors, which includes the adenosquamous tumors 

as well as specimens that lack clear evidence of this cell morphology (Bailey et al., 2016). 

These squamous-like PDAs are associated with an inferior prognosis when compared to 

tumors lacking this transcriptional signature. While the origin of a squamous identity in this 

disease is poorly understood, it has been recognized that squamous-like PDAs are enriched 

for loss-of-function mutations in the tumor-suppressor genes TP53, KDM6A, KMT2C, and 

KMT2D (Andricovich et al., 2018; Bailey et al., 2016).

A recent study used genetically engineered mice to show that inactivation of the histone 

demethylase gene Kdm6a, in conjunction with a KrasG12D mutation, led to the emergence of 

aggressive PDAs that express squamous lineage markers (Andricovich et al., 2018). In 

addition, it was shown that Kdm6a loss led to the aberrant activation of enhancers at the 

Trp63 (the mouse ortholog of TP63), Runx3, and Myc loci. While this important study 

validates Kdm6a as a genetic driver of PDA progression and establishes a model system for 

interrogating this disease subtype, it did not address whether squamous transdifferentiation 

was a cause or a consequence of the aggressive tumor phenotype. This is particularly 

relevant because KDM6A is a general chromatin regulator, which may perform tumor-

suppressor functions irrespective of cell lineage (Ezponda et al., 2017).

In this study, we show that the ∆N isoform of the transcription factor TP63 (∆Np63) is a 

master regulator that specifies squamous cell identity in PDA through dynamic regulation of 

the enhancer landscape. Based on this observation, we use ∆Np63 to introduce squamous 

lineage characteristics into otherwise isogenic PDA cell lines, which we use to interrogate 

the functional consequences of this cell fate transition in vitro and in vivo. These 

experiments implicate ∆Np63-driven enhancer reprogramming as a mechanism that 

promotes PDA progression by endowing tumors with enhanced growth and invasive 

potential. In addition, we identify a network of oncogenic target genes sustained by ∆Np63 

that operate in the squamous subtype of PDA. In addition to validating the functional 
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significance of squamous transdifferentiation in PDA, our study suggests that targeting the 

∆Np63 transcriptional network may have therapeutic potential in this aggressive disease 

subtype.

RESULTS

TP63 Is Expressed in a Subset of Pancreatic Tumors that Display a Squamous-like 
Transcriptional Signature and Inferior Overall Survival

Prior studies have noted the expression of squamous lineage markers in a poor-prognosis 

subtype of PDA (Bailey et al., 2016). To investigate the functional importance of this cell 

fate transition, we first sought to identify the master regulator transcription factor (TF), 

whose presence is sufficient to confer squamous cell identity in PDA. To this end, we 

evaluated existing transcriptome analyses of PDA tumors in search of TFs that are 

selectively expressed in the squamous-like subtype of this disease (Bailey et al., 2016; The 

Cancer Genome Atlas Research Network, 2017). Among all of the TFs expressed in PDA, 

we recovered TP63 expression as the most highly enriched in squamous-subtype tumors, 

which is in accordance with prior observations and the known role of this TF in normal and 

neoplastic squamous lineage contexts (Figures 1A, 1B, S1A, and S1B) (Andricovich et al., 

2018; Bailey et al., 2016). In addition, we found that endodermal TFs GATA6, HNF1A, 

HNF1B, and HNF4A are often silenced in TP63-expressing tumors, which is consistent with 

the mutually exclusive classification of PDA into progenitor and squamous subtypes (Bailey 

et al., 2016). Notably, TP63 is expressed at low levels in normal human and mouse 

pancreatic epithelial cells, but it is aberrantly upregulated in 15%–26% of primary human 

PDA tumors and metastatic lesions (Figures S1C–S1F) (Boj et al., 2015; GTEx Consortium, 

2015). To further corroborate this finding, we turned to our recently established collection of 

56 human organoid cultures derived from normal pancreatic tissue or PDA tumors (Tiriac et 

al., 2018). Using RNA sequencing (RNA-seq) analysis, we verified that ~20% of PDA 

organoids express TP63, which increases in a stage-dependent manner (Figure 1C; Table 

S1). Using RT-PCR analysis, we determined that the ∆N isoform of TP63 (∆Np63) is 

specifically expressed in these samples, which is known to be the oncogenic form of this TF 

(Figure S1G) (Rocco et al., 2006). TP63 expression in PDA tumors was associated with an 

inferior overall survival across each study analyzed (Figures 1D, S1H, and S1I). Considering 

the known link between ∆Np63 and squamous cell carcinoma (Keyes et al., 2011), we 

investigated whether manipulating this TF would allow us to understand the importance of 

squamous lineage characteristics in PDA.

Ectopic Expression of ∆Np63 Is Sufficient to Drive Squamous Transcriptional 
Reprogramming in PDA Cell Lines

To evaluate lineage reprogramming in PDA, we used transcriptome analysis of PDA tumors 

from Bailey et al. (2016) to define gene expression signatures that discriminate squamous 

from progenitor cell identity in this disease (Figure 1E; Tables S2 and S3). The squamous-

PDA identity signature includes known markers of the squamous cell lineage, including 

TP63, KRT5, KRT6A, S100A2, and PTHLH (Kaufmann et al., 2001; Shrestha et al., 1998; 

Kitazawa et al., 1991). We interrogated these signatures in RNA-seq data obtained from 

eight human PDA cell lines, which allowed us to rank each line based on its degree of 
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resemblance to progenitor or squamous cell fates (Figure 1F). In accordance with the 

observations above in human tumors, TP63 mRNA and protein were only detected in the 

most squamous like PDA cell lines MIAPaca2 and BxPC3 (Figure 1F). We focused our 

subsequent analysis of endogenous TP63 in BxPC3 cells as they express the relevant ∆N 

isoforms, which is in contrast to MIAPaca2 cells, which instead express the tumor-

suppressive transactivation domain (TA) isoform of TP63 (TAp63) (Figure S1J) (Yang et al., 

1998). Using CRISPR-Cas9, we targeted TP63 in BxPC3 cells with two independent single 

guide RNAs (sgRNAs) and performed RNA-seq analysis. Gene set enrichment analysis 

(GSEA) (Subramanian et al., 2005) revealed that the loss of TP63 led to diminished 

expression of the squamous-PDA identity signature, which was further supported by an 

independent Gene Ontology analysis (Figures 1G and S1K). These gene expression changes 

were not limited to mRNA levels, as loss of KRT5/6 and S100A2 protein was also verified 

by western blotting (Figure 1H). In addition, inactivating TP63 also led to a paradoxical 

induction of the progenitor-PDA identity signature, suggesting an antagonistic relation 

between these two cell fates in PDA. These experiments suggest that the squamous 

transcriptional signature in PDA is enforced by the presence of TP63.

Having validated the causal relation between TP63 and the human PDA tumor-derived 

squamous transcriptional signature, we next evaluated whether ectopic expression of TP63 

would be sufficient to endow PDA cell lines with the transcriptional profile of the squamous 

cell lineage. To this end, we initially lentivirally transduced the ∆Np63 cDNA into two 

progenitor-like PDA cell lines, SUIT2 and PATU8988S (Figure 1F; Table S4). RNA-seq 

analysis of these cells revealed that ∆Np63 enhanced the expression of squamous-PDA 

identity gene signatures in both settings (Figures 1I, S1L, and S1M), which we also verified 

by western blotting for squamous markers KRT5/6 and S100A2 (Figure 1J). Consistent with 

the findings above, ∆Np63 diminished the progenitor-PDA identity signature in both settings 

(Figures 1I and S1M). To investigate the sufficiency of ∆Np63 to install squamous 

transcriptional features across a broader panel of PDA cells in a more acute manner, we 

generated cell lines in which ∆Np63 expression was under the control of doxycycline (dox). 

The addition of dox led to robust activation of ∆Np63 expression (Figures 1K and S1N), and 

this was accompanied by potent activation of the squamous-PDA identity gene signature in 

all of the human cell lines tested, as well as PDA cells derived from KPC (Kras+/LSL-

G12D; Trp53+/LSL-R172H; Pdx1-Cre) mice (Figure 1L). These results demonstrate the 

necessity and sufficiency of ∆Np63 to produce squamous-like features in PDA.

A Unique Enhancer Configuration Linked to ∆Np63 Genomic Occupancy in PDA

Prior work has shown that lineage transitions in PDA are mediated through alterations of the 

chromatin state and the associated landscape of active enhancer elements (Diaferia et al., 

2016; McDonald et al., 2017; Roe et al., 2017). However, it has yet to be determined 

whether a distinct enhancer-chromatin configuration exists in squamous versus progenitor 

subtypes of PDA. To address this, we performed chromatin immunoprecipitation sequencing 

(ChIP-seq) analysis in 10 human cell lines or organoids representing PDA or normal 

pancreatic ducts to map the genome-wide pattern of histone H3 lysine 27 acetylation 

(H3K27ac), which is a covalent modification that demarcates active cis-regulatory elements 

(Rada-Iglesias et al., 2011). These cultures include PDAs that express TP63 and other 
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squamous lineage markers, including the TAp63-expressing MIAPaca2 cells and two 

∆Np63-expressing PDAs (BxPC3 cells and the hF3 organoid), whereas the other cultures 

express the progenitor-PDA identity signature (Figures 1F and S2A). An unsupervised 

clustering analysis of the global pattern of H3K27ac enrichment across the 10 cultures 

revealed three major groups (Figures 2A and S2B). The most progenitor-like samples 

formed two distinct clusters: one containing PATU8988S, hT85, and the two normal ductal 

organoids, and the other containing AsPC1, HPAFII, and SUIT2 cells. We found that the two 

∆Np63-expressing squamous-like cultures (BxPC3 and hF3) formed a distinct cluster, 

suggesting a unique enhancer-chromatin configuration linked to this cell fate (Figure 2A). 

Of note, the TAp63-expressing MIAPaca2 cell line did not cluster together with the two 

∆Np63-expressing cultures, indicating that this cell line is epigenetically distinct (Figure 

S2B).

We next extracted the subset of H3K27ac-enriched regions that correlated with the BxPC3 

and hF3 cell cluster, which identified 1,336 regions that we termed ‘‘squamous elements’’ 

(Figures 2B and 2C; Table S5). Squamous elements were almost entirely found at distal 

(non-promoter) sites and were located near genes that were preferentially expressed in the 

squamous subtype of PDA, suggesting that they represent enhancer elements (Figures 2D 

and 2E). In addition, an unbiased ontology analysis of genes located near these elements 

confirmed their association with the normal and neoplastic squamous lineage (e.g., 

epidermis development, squamous cell carcinoma) (Figure 2F). KRT5/6, TRIM29, and 

PTHLH are examples of squamous lineage genes located in proximity to squamous elements 

(Figure 2C). These data complement prior transcriptional observations (Bailey et al., 2016) 

by suggesting that a subset of PDA tumors display an enhancer landscape resembling the 

squamous cell lineage.

We next investigated the causal role of TP63 in activating squamous elements in the context 

of PDA. Using a TF affinity prediction (TRAP) motif enrichment analysis (Thomas-Chollier 

et al., 2011), we identified a motif recognized by TP63 as the most enriched sequence within 

the entire group of squamous elements (Figure 2G) (Yang et al., 1998). This finding led us to 

perform ChIP-seq analysis of endogenous TP63 in BxPC3 cells, which revealed pervasive 

TP63 occupancy at squamous elements. In contrast, we observed much lower levels of TP63 

occupancy at a control set of H3K27ac-enriched locations (Figures 2B, 2C, S2C, and S2D). 

These findings indicate that squamous elements are linked to the occupancy of TP63 in the 

squamous-like subtype of PDA.

Having established a link between TP63 and squamous elements in PDA, we next evaluated 

the functional requirement of TP63 to activate these cis-regulatory elements. We used ChIP-

seq to profile H3K27ac in BxPC3-Cas9 cells following acute transduction with TP63 

sgRNAs (Figure S3A). This analysis revealed a selective reduction in H3K27ac at squamous 

elements, whereas the levels of this histone mark were unchanged at control locations 

(Figures 3A and 3B). To complement this loss-of-function experiment, we next evaluated 

whether expression of TP63 would be sufficient to activate squamous elements. To this end, 

we performed ChIP-seq analysis in control or ∆Np63-expressing SUIT2 cells to profile the 

impact on the enhancer landscape. While parental SUIT2 cells possess background levels of 

H3K27ac enrichment at squamous elements, introducing ∆Np63 led to a selective induction 
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of H3K27ac at these locations, which now resembled the enhancer configuration observed in 

hF3 and BxPC-3 cells that possess endogenous ∆Np63 expression (Figures 3C, 3D, and 

S3B). To further investigate the sufficiency of ∆Np63 to install squamous enhancers across a 

broader panel of PDA cells, we performed ChIP-seq analysis of H3K27ac enrichment 

following dox-inducible expression of ∆Np63 in the four most progenitor-like human PDA 

cell lines. In each cell line tested, acute induction of ∆Np63 produced potent and selective 

acetylation of squamous elements (Figures 3E and S3C). Together with the transcriptional 

profiling results above, these findings indicate that toggling the function of ∆Np63 allows 

for the experimental manipulation of the enhancer landscape that underlies the squamous 

subtype of PDA.

Phenotypic Consequences of ∆Np63-Mediated Enhancer Reprogramming

We reasoned that the phenotypic characterization of SUIT2 cell lines transduced with 

∆Np63 provided an ideal system for probing the functional significance of this enhancer 

reprogramming event in this disease. Under tissue culture monolayer conditions, we found 

that expression of ∆Np63 led to a reduced rate of SUIT2 cell proliferation, but enhanced cell 

motility in a scratch-wound assay (Figures 4A and 4B). In three-dimensional growth assay 

conditions in media supplemented with Matrigel (Corning Life Sciences), ∆Np63-

expressing SUIT2 cells formed fewer colonies than control cells; however, the colonies that 

formed were significantly larger and possessed more invasive projections (Figures 4C and 

S4A). These findings suggested that ∆Np63 expression alters the growth and invasive 

characteristics of PDA cells in vitro.

To extend these findings into the more relevant in vivo environment, we transplanted the 

∆Np63-reprogrammed or control SUIT2 cells harboring a luciferase transgene into the 

pancreas of immunodeficient mice and monitored tumor progression using bioluminescent 

imaging. Following transplantation of equal numbers of cells, we found at initial time points 

that ∆Np63-expressing SUIT2 cells displayed less efficient engraftment levels in comparison 

to their control counterparts, which is in accordance with experiments performed in vitro 
(Figures 4D and S4B). However, the ∆Np63-expressing cells proceeded to expand more 

rapidly compared to controls and gave rise to significantly larger tumors at the endpoint of 

the experiment (Figures 4D and 4E). When injected into the tail vein of mice, ∆Np63-

expressing cells colonized the lung parenchyma with similar kinetics to control mice, but 

formed larger metastatic lesions at the terminal endpoint of the experiment (Figures 4F and 

S4C). Histological examination of the primary tumors revealed that ∆Np63 expression gave 

rise to poorly differentiated tumors, and immunohistochemical staining confirmed the 

upregulation of squamous lineage markers (Figure 4G). These data suggest that enhancer 

reprogramming imposed by ∆Np63 confers enhanced growth characteristics to PDA cells in 
vivo in both primary and metastatic tissue contexts.

Squamous PDA Cells Become Addicted to ∆Np63

The findings above led us to investigate whether squamous PDA cells become addicted to 

∆Np63 to sustain their growth potential. Using CRISPR-Cas9 competition-based 

proliferation assays evaluating the effects of individual sgRNAs, we validated that TP63 is 

essential for the growth of BxPC3 cells, but dispensable in other PDA contexts (Figures 5A, 
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S5A, and S5B). To rule out any CRISPR-induced artifacts, we also targeted TP63 in BxPC3 

cells using small hairpin RNAs (shRNAs) and observed a similar loss of proliferative 

potential and highly concordant gene expression changes to those seen following TP63 

inactivation with sgRNAs (Figures S5C–S5F). Moreover, knock down of TP63 in the hF3 

PDA organoid sample also resulted in a growth arrest and suppression of the squamous-PDA 

identity signature (Figures 5B, 5C, and S5G). The growth arrest phenotype in BxPC3 cells 

could be rescued by expressing a CRISPR-resistant cDNA encoding ∆Np63, with the degree 

of rescue correlating with the levels of reconstituted ∆Np63 protein (Figures 5D, 5E, and 

S5H). We next evaluated the impact of ∆Np63 inactivation on PDA growth in vivo by 

transducing BxPC3-Cas9-luciferase cells with TP63 sgRNAs before transplantation into the 

pancreas or the tail vein of immunodeficient mice. By monitoring tumor progression using 

bioluminescent imaging, we found that TP63 inactivation resulted in complete arrest of 

tumor growth when compared to control cells, both at the primary site and in the lung 

parenchyma (Figures 5F–5I and S5I). These results are complementary to our experiments 

in reprogrammed SUIT2 cells and suggest that squamous-like PDA tumors become addicted 

to ∆Np63 to sustain tumor growth in vivo.

We next investigated which target genes within the ∆Np63-reprogrammed enhancer 

landscape may be relevant to the progression of PDA. For this purpose, we analyzed our 

collective RNA-seq and ChIP-seq datasets in search of high-confidence ∆Np63 target genes. 

By intersecting the genes downregulated following TP63 ablation in BxPC3 cells with the 

genes upregulated following ∆Np63 expression in SUIT2 cells, we recovered 63 candidate 

∆Np63 targets. We reduced this list to 58 genes by requiring that a target gene be located 

near a peak of TP63 occupancy detected by ChIP-seq (Figure 6A; Table S6). As expected, 

these 58 genes were preferentially expressed in the squamous subtype of PDA and included 

the previously described squamous lineage genes KRT5, PTHLH, and S100A2 (Figure 

S6A). From a literature search, we note that many of the ∆Np63 target genes encode 

proteins that have been causally implicated in promoting tumor cell growth and cancer 

progression in prior studies, such as HRAS and CXCL8 (Grabocka et al., 2014; Young et al., 

2013) (Figures 6B–6D; Table 1). Consistent with these observations, these genes are 

concordantly downregulated following TP63 knockdown in the hF3 PDA organoid (Figures 

S6B and S6C). We additionally found that MYC mRNA and protein were significantly 

downregulated following TP63 inactivation, which is in accord with the elevated level of the 

MYC transcriptional network in squamous-subtype PDA tumors (Bailey et al., 2016) 

(Figures S5E, S6D, and S6E). Our ChIP-seq analysis identified several TP63-occupied 

squamous elements at the MYC locus, which may account for TP63-mediated MYC 

regulation (Figure S6F). This analysis reveals a network of cancer-promoting ∆Np63 targets 

that are activated during enhancer reprogramming in squamous-subtype PDA.

DISCUSSION

Prior studies have shown that squamous lineage markers become aberrantly expressed in a 

subset of aggressive PDAs (Andricovich et al., 2018; Bailey et al., 2016; Morohoshi et al., 

1983). Here, we have pursued the causal role of squamous transdifferentiation in PDA 

progression using an experimental approach that exploits the master regulator concept, 

which is classically defined by the ability of certain TFs to drive cell fate transitions by 

Somerville et al. Page 8

Cell Rep. Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functioning at the apex of a gene regulatory network (Davis et al., 1987). The gain- and loss-

of-function epigenomic analysis presented in this study validates ∆Np63 as a master 

regulator of the squamous identity in PDA, which is consistent with the known role of this 

TF in normal squamous epithelial tissues and in squamous cell carcinomas (Soares and 

Zhou, 2018). We have used the master regulator property of ∆Np63 to endow PDA cells 

with the enhancer landscape and transcriptional signature associated with squamous identity 

without the confounding effect of altering the tumor genotype. This approach leverages 

recent transcriptome analyses of human PDA to validate that ∆Np63-mediated 

reprogramming produced in cell lines faithfully recapitulates the transcriptional profile seen 

in human tumors (Bailey et al., 2016; The Cancer Genome Atlas Research Network, 2017). 

This approach allowed us to demonstrate that a ∆Np63-driven enhancer landscape promotes 

PDA progression in vivo.

Our study highlights the utility of enhancer profiling as a strategy for mapping cell fate 

transitions in cancer and for the validation of lineage reprogramming by master regulators in 

an experimental setting. In specific cancers, enhancer profiling has revealed novel tumor 

subtypes that reflect an alternative cell of origin (Lin et al., 2016). In pancreatic cancer, 

enhancer profiling has been used to provide insight into transdifferentiation mechanisms of 

cellular lineage. For example, prior work in cancer cell lines revealed an enhancer 

configuration established by endodermal lineage TFs (e.g., KLF5), which becomes 

extinguished in cell lines with mesenchymal features (Diaferia et al., 2016). We previously 

used a mouse organoid progression model of PDA to reveal the activation of an embryonic 

foregut enhancer landscape by FOXA1, which promotes disease progression and metastatic 

spread (Roe et al., 2017). However, neither of these prior studies focused on the squamous 

subtype of PDA, which has only recently been recognized as a common form of PDA with 

an exceptionally poor prognosis (Bailey et al., 2016). A major finding in our study is that 

massive alterations of the enhancer landscape occur upon acquiring a squamous identity, 

which strongly suggests that the previously described squamous transcriptional signature in 

PDA reflects a bona fide cell fate transition in this disease.

Our prior studies highlighted the role of TFs in driving the reorganization of enhancers and 

promoting disease progression and metastatic spread in PDA, identifying FOXA1 as a driver 

of this process (Roe et al., 2017). However, in contrast to FOXA1, which requires 

cooperating TFs to achieve effective enhancer activation in PDA, here, we demonstrate that 

∆Np63 expression alone is sufficient to install squamous enhancer elements and promote 

aggressive disease characteristics in this disease. The powerful effects of ∆Np63 on the 

enhancer landscape of PDA cells are also reflected in their ensuing addiction to the 

continued expression of this TF, as well as an exceptionally poor prognosis in this group of 

PDA patients, which we did not observe to be the case for FOXA1 (Roe et al., 2017). Thus, 

although these studies highlight a common theme of enhancer reprogramming in driving 

disease progression in PDA, they also highlight that the functional and clinical outputs of 

this reprogramming event can be distinct and are determined by the master regulator TFs 

deregulated in this disease.

One unexpected result in our study is that ∆Np63 expression augments PDA tumor cell 

growth under in vivo conditions and in three-dimensional cultures, but not in two-
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dimensional monolayer conditions. This finding can be explained, as many of the ∆Np63 

target genes identified in this study have been previously shown to drive migratory and 

invasive properties of tumor cells, such as HAS3 and S100A2 (Bulk et al., 2009; Itano et al., 

2002). Moreover, a number of ∆Np63 target genes encode proteins that can modulate the 

tumor microenvironment. This includes the genes CXCL1, CXCL8, and CCL20, which 

encode pro-inflammatory cytokines that can drive tumor progression through non-cell-

autonomous mechanisms, such as promoting angiogenesis and the recruitment of tumor-

propagating myeloid cells (Acharyya et al., 2012; Waugh and Wilson, 2008; Ye et al., 2016). 

It is also noteworthy that some ∆Np63 target genes may have effects that reach beyond the 

local microenvironment. For example, the gene PTHLH encodes a secreted hormone that is 

implicated in hypercalcemia of malignancy and cachexia (Burtis et al., 1987; Iguchi et al., 

1996; Kir et al., 2014; Urosevic et al., 2014). We hypothesize that ∆Np63-driven enhancer 

reprogramming and hijacking of the squamous lineage program provide an efficient means 

for PDA cells to acquire capabilities for sustained invasive growth into the tissue 

parenchyma of the pancreas and at distal sites. It may also play a systemic role during the 

course of disease progression.

Prior studies have implicated a role for ∆Np63 as an oncogene, such as in squamous cell 

carcinoma (Rocco et al., 2006). Diverse mechanisms have been proposed to explain the 

tumor-promoting function of ∆Np63, which include antagonism of p53, modulation of 

microRNAs, bypass of senescence, and enhanced cancer stem cell activity (Keyes et al., 

2011; Memmi et al., 2015; Su et al., 2010; Yang et al., 1998). To our knowledge, our study is 

the first to demonstrate that ∆Np63 is sufficient to reprogram the enhancer landscape of 

PDA cells and confer properties of the squamous cell lineage, thus implicating squamous 

transdifferentiation in tumor progression. Of note, in vitro experiments performed using our 

dox-regulated system in SUIT2 cells, whereby ∆Np63 was transiently introduced and 

subsequently removed, suggest that the addiction to ∆Np63 does not occur immediately 

following its expression, but instead requires a longer period of transdifferentiation before 

the addiction ensues (data not shown). It is important to consider that the aberrant 

acquisition of a squamous identity in PDA occurs in the context of a highly mutated cancer 

genome, which includes oncogenic KRAS and inactivation of several tumor-suppressor 

genes, as well as within the complexity of the tumor microenvironment. Thus, it is likely 

that the genes activated through the mechanism of TP63-mediated enhancer reprogramming 

collaborate with the milieu of established genetic mutations within the context of a PDA cell 

to promote this disease.

The observation that squamous-like PDAs are enriched for mutations in specific tumor 

suppressors suggests that certain genotypes may be more permissive for the acquisition of a 

squamous-like identity in PDA (Andricovich et al., 2018; Bailey et al., 2016). A recent study 

described a KrasG12D/Kdm6a−/− mouse model of PDA that forms tumors that express TP63 

(Andricovich et al., 2018). Because KDM6A mutations are enriched in squamous-like 

human PDAs, the Andricovich et al. (2018) study establishes how specific genotypes can 

predispose tumor cells to acquire squamous attributes. However, mutations in KDM6A (and 

other related chromatin regulators) only account for less than half of the squamous PDA 

tumors (Bailey et al., 2016). This suggests the existence of additional mechanisms that 

activate TP63 expression in PDA. Prior work has implicated genotoxic stress, hypoxia, 
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Notch ligands, and Hedgehog signals as regulating TP63 expression, suggesting a possibility 

that non-genetic mechanisms in the pancreas microenvironment may also contribute to the 

squamous lineage transition in PDA (Li et al., 2008; Petitjean et al., 2008; Tadeu and 

Horsley, 2013; Xi et al., 2017). Moreover, it also possible that other TFs participate in the 

acquisition of squamous cell characteristics in PDA. For example, SOX2 can function as a 

lineage oncogene in squamous cell carcinomas (Bass et al., 2009), and MYC amplifications 

have been correlated with adenosquamous variants of pancreatic cancer (Witkiewicz et al., 

2015). While our findings suggest a functional link between MYC and ∆Np63, we did not 

find evidence for a role for SOX2 in squamous transdifferentiation in PDA (data not shown). 

Nevertheless, our findings and the work of Andricovich et al. (2018) provide complementary 

evidence in human and murine systems, respectively, to implicate the acquisition of a 

squamous-like identity as a contributor to PDA progression.

A major challenge in implementing cancer therapy is in identifying tumor biomarkers that 

predict exceptional responses. In this study, we have shown that introducing ∆Np63 into a 

PDA cell line is sufficient to reprogram the epigenome and cell identity to one that 

resembles human squamous-like PDA tumors. This approach provides a powerful isogenic 

cell system for investigating unique vulnerabilities linked with the squamous subtype of 

PDA. For example, domain-focused CRISPR screening could be applied to control and 

∆Np63-expressing SUIT2 cells to discover actionable targets that are linked with this cell 

fate transition (Shi et al., 2015). More broadly, our study calls attention to the use of master 

regulator TFs as predictive biomarkers for targeted therapies, thus implicating isogenic-

reprogrammed cell lines as a powerful tool for revealing dependencies linked with specific 

cellular states.

STAR★METHODS

KEY RESOURCES TABLE
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-TP63 (for WB, IHC and ChIP) Cell Signaling Cat# 39692; RRID: N/A

Rabbit polyclonal anti-KRT5/6 (for WB) Millipore Cat# MAB1620; RRID: 
AB_94292

Rabbit polyclonal anti-S100A2 (for WB and HIC) Abcam Cat# ab109494; RRID: 
AB_10859000

ImmPRESS Horse-Anti-Rabbit Ig Reagent
antibody (IHC)

Vector Cat# MP-7401; RRID: 
AB_2336529

ImmPRESS Horse-Anti-Mouse Ig Reagent
antibody (IHC)

Vector Cat# MP-7402; RRID: 
AB_2336528

Mouse monoclonal anti-HSC70 (for WB) Santa Cruz Biotechnology Cat# sc-7298; RRID: 
AB_627761

Rabbit polyclonal anti-H3K27ac (for ChIP) Abcam Cat# ab4729; RRID: 
AB_2118291

Rabbit polyclonal anti-MYC (for ChIP) Abcam Cat# ab32072; RRID: 
AB_731658

Mouse monoclonal anti-FLAG (for ChIP) Sigma-Aldrich Cat# F1804; RRID: AB_262044

Chemicals, Peptides, and Recombinant Proteins

10% Neutral Buffered Formalin Thermal Fisher Scientific Cat# 22–110-869

2-Mercaptoethanol Sigma-Aldrich Cat# M6250

Isopropanol Sigma-Aldrich Cat# 190674

2× Laemmli Sample Buffer BIO-RAD Cat# 1610737

Chloroform Sigma-Aldrich Cat# 288306

DNase I (RNase-free) New England Biolabs Cat# M0303S

Formaldehyde, 37% solution Avantor Cat# 2106–01

Glycine Thermal Fisher Scientific Cat# BP381–1

Penicillin/Streptomycin Thermal Fisher Scientific Cat# 15140122

Polybrene EMD Millipore Cat# TR-1003-G

Polyethylenimine, Linear, MW 25,000 (PEI 25000) Polysciences Cat# 23966–1

TRIzol Reagent Thermo Fisher Cat# 15596018

D-Luciferin Goldbio Cat# 115144–35-9

Geneticin Selective Antibiotic (G-418 Sulfate) Thermal Fisher Scientific Cat# 10131035

Puromycin dihydrochloride Sigma-Aldrich Cat# P8833

Blasticidin S HCl Thermal Fisher Scientific Cat# A1113903

DMEM with 4.5 g/L glucose, L-glutamine &
sodium pyruvate

Cellgro Cat# 10–013-CV

Advanced DMEM/F12 Life Technologies Cat# 12634–028

RPMI 1640 w/L-glutamine Fisher Scientific Cat# MT10040CV

HEPES Life Technologies Cat# 15630–130

Glutamax Life Technologies Cat# 35050–079

AB3–01 Tocris Bioscience Cat# 2939

hEGF PeproTech Cat# AF-100–15
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REAGENT or RESOURCE SOURCE IDENTIFIER

mNoggin PeproTech Cat# 250–38

hFGF10 PeproTech Cat# 100–26

hGastrin Tocris Bioscience Cat# 3006

N-acetylcysteine Sigma-Aldrich Cat# A9165–5G

Nicotinamide Sigma-Aldrich Cat# N0636–100G

PGE2 Tocris Bioscience Cat# 2296

B27 supplement Life Technologies Cat# 17504044

R-Spondin 1 Cells Trevigen Cat# 3710–001-K

Afamin/Wnt3A conditioned media Osaka University N/A

T4 DNA Polymerase New England Biolabs Cat# M0203L

DNA Polymerase I, Large (Klenow) Fragment New England Biolabs Cat# M0201L

T4 polynucleotide kinase New England Biolabs Cat# M0201L

Klenow Fragment (30-50 exo-) New England Biolabs Cat# M0212L

ImmPACT DAB peroxidase (HRP) substrate Vector Cat# SK-4105

Doxycycline hyclate Sigma-Aldrich Cat# D9891

Critical Commercial Assays

TruSeq RNA Sample Prep Kit v2 Illumina Cat# RS-122–2001

TruSeq ChIP Sample Prep Kit Illumina Cat# IP-202–1012

Power SYBR Green Master Mix Thermo Fisher Scientific Cat# 4368577

qScript cDNA SuperMix Quanta bio Cat# 95048–500

SuperScript II Reverse Transcriptase Thermo Fisher Cat# 18064014

Agencourt AMPure XP Beckman Coulter Cat# A63880

Dynabeads Protein A Thermal Fisher Scientific Cat# 10002D

Dynabeads Protein G Thermal Fisher Scientific Cat# 10003D

MiniElute PCR Purification Kit QIAGEN Cat# 28004

QIAquick Gel Extraction Kit QIAGEN Cat# 28704

Agilent High Sensitivity DNA Kit Agilent Genomics Cat# 5067–4626

CellTiter-Glo Luminescent Cell Viability Assay Promega G7570

Corning Matrigel Growth Factor Reduced (GFR)
Basement Membrane Matrix, *LDEV-free

Life Sciences Cat# 354230

Deposited Data

ChIP-seq and RNA-seq data This paper GEO: GSE115463

PDAC patients microarray data (Moffitt et al., 2015) GEO: GSE71729

Experimental Models: Cell Lines/Organoids

Human PDA cell line PATU8988S DSMZ Cat# ACC 204

Human PDA cell line HPAFII ATCC Cat# CRL-1997

Human PDA cell line AsPC1 ATCC Cat# CRL-1682

Human PDA cell line SUIT2 JCRB JCRB1094

Human PDA cell line CFPAC1 ATCC Cat# CRL-1918

Human PDA cell line PANC1 ATCC Cat# CRL-1469
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human PDA cell line MIAPaca2 ATCC Cat# CRL-1420

Human PDA cell line BxPC3 ATCC Cat# CRL-1687

Human HEK293T CSHL N/A

Human normal pancreas organoid hN30 (Tiriac et al., 2018) N/A

Human normal pancreas organoid hN34 (Tiriac et al., 2018) N/A

Human normal pancreas organoid hN35 (Tiriac et al., 2018) N/A

Human PDA organoid hF3 (Tiriac et al., 2018) N/A

Human PDA organoid hT85 (Tiriac et al., 2018) N/A

Human PDA organoid hF2 (Tiriac et al., 2018) N/A

Human PDA organoid hT3 (Tiriac et al., 2018) N/A

Murine PDA cell line FC1199 David Tuveson N/A

Murine PDA cell line FC1242 David Tuveson N/A

Murine PDA cell line FC1245 David Tuveson N/A

Experimental Models: Organisms/Strains

Mouse: NSG The Jackson Laboratory Stock # 005557

Oligonucleotides

sgRNA/shRNA/RT-PCR sequences see Table S7 This paper N/A

Recombinant DNA

deltaNp63alpha-FLAG (Chatterjee et al., 2008) Addgene plasmid #26979

LentiV-∆Np63-FLAG-neo This paper N/A

Lenti-luciferase-blast This paper N/A

LentiV-Cas9-puro (Tarumoto et al., 2018) Addgene plasmid #108100

LRNG (Lenti_sgRNA_EFS_Neo-IRES-GFP) (Roe et al., 2017) N/A

LRG2.1 (Tarumoto et al., 2018) Addgene plasmid #108098

LEPG (LTR-miRE-shRNA-PGK-puro-IRES-GFP) (Fellmann et al., 2013) Addgene plasmid #111160

psPAX2 N/A Addgene plasmid #12260

TREtight-∆Np63-EFS-rtTA-P2A-Puro This paper N/A

TREtight-GFP-EFS-rtTA-P2A-Puro This paper N/A

Software and Algorithms

MACS 1.4.2 (Feng et al., 2012) http://liulab.dfci.harvard.edu/MACS/00README.html

SAMtools 1.4 (Li et al., 2009) http://samtools.sourceforge.net

BEDTools 2.22.1 (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

TRAP (Thomas-Chollier et al., 
2011)

http://trap.molgen.mpg.de/cgi-bin/home.cgi/home.cgi

HOMER v4.9 (Heinz et al., 2010) http://homer.ucsd.edu/homer/

HISAT2 (Kim et al., 2015) http://ccb.jhu.edu/software/hisat2/index.shtml

Cufflinks (Trapnell et al., 2010) http://cole-trapnell-lab.github.io/cufflinks/

Morpheus Broad Institute https://software.broadinstitute.org/morpheus/

UCSC Genome Browser UCSC http://genome.ucsc.edu

Somerville et al. Page 14

Cell Rep. Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://liulab.dfci.harvard.edu/MACS/00README.html
http://samtools.sourceforge.net
https://bedtools.readthedocs.io/en/latest/
http://trap.molgen.mpg.de/cgi-bin/home.cgi/home.cgi
http://homer.ucsd.edu/homer/
http://ccb.jhu.edu/software/hisat2/index.shtml
http://cole-trapnell-lab.github.io/cufflinks/
https://software.broadinstitute.org/morpheus/
http://genome.ucsc.edu


REAGENT or RESOURCE SOURCE IDENTIFIER

GSEA (Subramanian et al., 
2005)

http://software.broadinstitute.org/gsea/index.jsp

Bowtie2 (Langmead and Salzberg, 
2012)

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

GREAT (McLean et al., 2010) http://bejerano.stanford.edu/great/public/html/

ImageJ NIH https://imagej.nih.gov/ij/

GraphPad PRISM 6 GraphPad Software https://www.graphpad.com/scientific-software/prism/

Living Image Software PerkinElmer http://www.perkinelmer.com/lab-products-and-services/resources/in-vivo-imaging-software-downloads.html#LivingImage

TreeView (Saldanha, 2004) http://jtreeview.sourceforge.net

CBioPortal (Cerami et al., 2012) http://www.cbioportal.org

The International Cancer Genome Consortium ICGC https://dcc.icgc.org

GTExPortal (GTEx Consortium, 2015) http://gtexportal.org/home/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Christopher Vakoc (vakoc@cshl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—All animal procedures and studies were approved by the Cold Spring Harbor 

Laboratory Animal Care and Use Committee in accordance to IACUC. Six- to ten-week old 

female NSG mice used for transplant studies were purchased from the Jackson Laboratory.

Cell Lines—PATU8988S, HPAFII, AsPC1, SUIT2, CFPAC1, PANC1, MIAPaca2 and 

BxPC3 cells were cultured in RPMI supplemented with 10% FBS (R10). FC1199, FC1242 

and FC245 were derived from KPC (Kras+/LSL-G12D; Trp53+/LSL-R172H; Pdx1-Cre) 

mice and cultured in DMEM with 10% FBS. hN30, N34, hN35, hT85, hF2 and hF3 (human 

organoid samples) were established and cultured as described in detail elsewhere (Tiriac et 

al., 2018). Briefly, cells were plated with Matrigel and grown in Human complete Feeding 

Medium (hCPLT): advanced DMEM/F12, HEPES 10mM, Glutamax 1X, A83–01 500nM, 

hEGF 50ng/mL, mNoggin 100ng/mL, hFGF10 100ng/mL, hGastrin I 0.01 mM, N-

acetylcysteine 1.25mM, Nicotinamide 10mM, PGE2 1 μM, B27 supplement 1X final, R-

spondin1 conditioned media 10% final, Afamin/Wnt3A conditioned media 50% final. 

HEK293T cells were cultured in DMEM with 10% FBS. Penicillin/streptomycin were added 

to all cell culture. HEK293T cells were used for packaging lentivirus using 

polyethylenimine (PEI)-mediated transfection.

METHOD DETAILS

Plasmid Construction—For generation of the LentiV-∆Np63-neo vector, ∆Np63 cDNA 

from the detlaNp63-FLAG vector (addgene #26979) (Chatterjee et al., 2008) was subcloned 

to LentiV-Cas9-puro vector (addgene #108100) (Tarumoto et al., 2018) in place of Cas9 and 

the puromycin resistance cassette was replaced with a neomycin resistance cassette. For the 

LentiV-neo empty vector, Cas9 was replaced with a 3*FLAG sequence (Xu et al., 2018). For 
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generation of the LentiV-∆Np63-FLAG-neo vector, a 3*FLAG sequence was added to the C 

terminus of ∆Np63 cDNA in the LentiV-∆Np63-neo vector. To generate Lenti-luciferase-

blast vector the luciferase transgene from Lenti-luciferase-P2A-Neo vector (addgene 

#105621) to a vector with blasticidin resistance. For experiments involving dox-regulated 

expression, cells were infected with ∆Np63 or GFP cDNA in the dox-regulated vector YXP 

(TREtight-cDNA-EFS-rtTA-P2A-Puro) and selected with puromycin (3 μg/ml).

Lentiviral Production and Infection—Lentivirus was produced in HEK293T cells by 

transfecting plasmids and packaging plasmids (VSVG and psPAX2) using PEI. Media was 

replaced with R10 media 6–8 hours following transfection and lentivirus-containing 

supernatant was subsequently collected every 12 hours for 48 hours prior to filtration 

through a 0.45 mm filter. For infection of cells, cell suspensions were mixed with lentiviral-

containing supernatant supplemented with polybreane to a final concentration of 4 μg/ml. 

Cells were plated in tissue culture plates of the appropriate size and lentiviral-containing 

supernatant was replaced with fresh media after an incubation period of 6–8 hours.

In Vitro Phenotypic Assays—SUIT2 cells were first infected with ∆Np63 cDNA in 

LentiV-∆Np63-neo vector or the empty vector as a control. Two days post infection, 

transduced cells were selected with 1 mg/ml of G418 and on day seven post infection, cells 

were counted by trypan blue exclusion and used for the assays described below.

For cell growth assays, 200 cells were plated in quadruplicate in 20 μL of media in each well 

of a 384-well plate. Quantification of viable cells was determined every 24 hours post 

seeding for a total of six days using CellTiterGlo Luminescent Cell Viability Assay kit 

(Promega) and a SpectraMax plate reader (Molecular Devices) following the manufacture’s 

protocol.

For 3D Matrigel colony formation assays, 5,000 cells were resuspended in 1ml RPMI 

supplemented with 5% Matrigel and 2% FBS and plated in triplicate in each well of an ultra-

low attachment 24-well plate (Corning). Bright field images were captured on day seven 

post plating and colony size and number were quantified from four 4× images per well using 

ImageJ software (NIH).

For scratch assays, cells were first plated to confluency in triplicate in wells of a standard 

24-well plate. At day 0 of the assay, a wound was applied down the center of the well using 

a pipette tip. Media was subsequently removed and cells washed with PBS before addition 

of 1ml serum-free RPMI. Bright field images were captured using a 4× objective 

immediately (0 hours) and then at 6 hours and 24 hours post plating. Area of the wound was 

quantified using ImageJ software (NIH).

CRISPR-Based Targeting—For GFP-depletion assays, cells stably expressing Cas9 in 

LentiV-Cas9-puro vector were infected with sgRNAs in LRG2.1 vector (addgene #108098). 

GFP% was measured on day three (P0) and then every three days post viral transduction 

until the end of the experiment.
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For RNA-seq experiments of CRISPR based targeting of TP63 in BxPC3 cells, BxPC3 cells 

stably expressing Cas9 were infected with control or TP63 sgRNAs in LRNG vector. Two 

days post infection with sgRNAs, transduced cells were selected with 1mg/ml of G418 and 

on day five post infection cells were used for RNA-seq analysis.

For CRISPR based targeting of TP63 in BxPC3 cells in vivo, please refer to the in vivo 
transplantation experiments section. sgRNA sequences can be found in Table S7.

shRNA targeting in BxPC3 cells and hF3 organoids—shRNAs targeting TP63 or 

control were cloned into the miR-E-based retroviral shRNA expression vector LEPG (LTR-

miRE-shRNA-PGK-puro-IRES-GFP) (addgene #111160) (Fellmann et al., 2013). For GFP 

depletion assays in BxPC3 cells, GFP% was measured on day three (P0) and then every 

three days post viral transduction until the end of the experiment. For cell growth assays in 

hF3 organoids, cells were first infected with the appropriate lentiviral supernatant and at 

three days post infection, transduced cells were selected with 2 μg/ml of puromycin for five 

days. On day eight post infection, cells were counted by trypan blue exclusion and 500 cells 

were plated in triplicate in 30 μL of hCPLT media supplemented with 10% Matrigel in each 

well of a 384-well plate. Quantification of viable cells was determined every 24 hours post 

seeding for a total of seven days using CellTiterGlo Luminescent Cell Viability Assay kit 

(Promega) and a SpectraMax plate reader (Molecular Devices) following the manufacture’s 

protocol.

For RNA-seq experiments of shRNA-mediated targeting of TP63 in BxPC3 cells and hF3 

organoids, cells were infected with control or TP63 shRNAs in MLS-E vector and at two 

days (for BxPC3 cells) or three days (for hF3 organoids) post infection with shRNAs, 

transduced cells were selected with 2 μg/ml of puromycin and on day five (for BxPC3 cells) 

or day eight (for hF3 organoids) post infection cells were used for RNA-seq analysis. 

shRNA sequences can be found in Table S7.

In Vivo Transplantation Experiments—All animal procedures and studies were 

approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee in 

accordance to IACUC.

For CRISPR-mediated targeting of TP63 in BxPC3 cells in vivo, BxPC3 cells stably 

expressing Cas9 were first infected with a luciferase transgene in Lenti-luciferase-blast 

vector and a stable cell line was generated by selection with 10 μg/ml blasticidin. These cells 

were subsequently infected with control or TP63 sgRNA in LRNG vectors. Two days post 

infection with sgRNAs, transduced cells were selected with 1mg/ml of G418 for three days 

and on day five post infection, cells were counted by trypan blue exclusion, resuspended in 

PBS and kept on ice prior to transplantation.

For in vivo experiments using reprogrammed SUIT2 cells, parental SUIT2 cells were first 

infected with a luciferase transgene in Lenti-luciferase-blast vector and a stable cell line was 

generated by selection with 10 μg/ml blasticidin. These cells were subsequently infected 

∆Np63 cDNA in LentiV-∆Np63-neo vector or the empty vector as a control. Two days post 

infection, transduced cells were selected 1 mg/ml of puromycin for three days and on day 
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five post infection, cells were counted by trypan blue exclusion, resuspended in PBS and 

kept on ice prior to transplantation.

For lung colonization assays, 100,000 viable SUIT2 cells or 250,000 viable BxPC3 cells in 

200 μL PBS were injected into the tail vein of NSG mice and bioluminescence imaging was 

initiated on day seven post transplantation.

Orthotopic transplants of cells into the pancreas of mice were performed as previously 

described (Aiello et al., 2016). Briefly, 50,000 viable SUIT2 cells or 100,000 viable BxPC3 

cells in 50 μL of PBS were slowly injected into the body of the pancreas. Following bleb 

formation, the pancreas was carefully put back in place before suturing the peritoneal cavity 

and closing the skin incision using wound clips. Wound clips were removed on day seven 

post transplantation prior to bioluminescence imaging.

For bioluminescence imaging, mice were intraperitoneally (IP) injected with D-Luciferin 

(50mg/kg) and analyzed using an IVIS Spectrum system (Caliper Life Sciences) ten minutes 

post IP injection.

Histology and Immunohistochemistry—For histological and immunohistochemical 

analysis of mouse tissues, tissues were fixed in 10% neutral buffered formalin at room 

temperature for 24 hours and washed with 70% ethanol. Samples were then processed and 

subjected to H&E staining following standard protocol at the CSHL histology core facility. 

For immune histochemical analysis, 6 μm FFPE tissues sections were deparaffinized and 

rehydrated prior to steam based antigen retrieval in citrate buffer (pH 6.0). Sections were 

washed with dH2O prior to 10 minute incubation with 3% H2O2 to block endogenous 

peroxidase activity. Following 5 minutes rinse with dH2O, sections were incubated with 

2.5% normal horse serum (Vector) for 1 hour at room temperature. Sections were 

subsequently incubated with 100 μL of primary antibody at the following dilutions in TBST: 

anti-TP63 (1:500), anti-KRT5/6 (1:200) or anti-S100A2 (1:250). Following washes, sections 

were then incubated for 1 hour at room temperature with HRP-linked horse-anti-mouse (for 

anti-KRT5/6) or horse-anti-rabbit (for anti- TP63 and anti-S100A2) secondary antibodies. 

Following further wash steps antigen labeling was performed using ImmPACT DAB (3,3-

diamionbenzidine) peroxidase substrate kit (Vector) with 1–2 minute incubation. Sections 

were washed thoroughly, hematoxylin counterstained, dehydrated and coverslipped. Images 

were taken on an Axio Imager.A2 (ZEISS) microscope with a 20× objective.

Cell Lysate Preparation for Western Blot Analysis—Cell cultures were collected 

and 1 million cells were counted by trypan blue exclusion and washed with ice cold PBS. 

Cells were then resuspended in 100 μL PBS and lysed with 100 μL of 2× Laemmli Sample 

Buffer supplemented with b-mercaptoethanol by boiling for 30 minutes.

RNA Extraction and RT-PCR—Total RNA was extracted using TRIzol reagent following 

the manufacturer’s instructions. For RNA extraction from organoid samples, organoids were 

lysed by adding TRIzol reagent directly to the Matrigel dome. 1–2 μg of total RNA was 

treated with DNaseI and reverse transcribed to cDNA using qScript cDNA SuperMix, 
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followed by RT-qPCR analysis with SYBR green PCR master mix on an ABI 7900HT fast 

real-time PCR system.

RNA-seq Library Construction—RNA-seq libraries were constructed using the TruSeq 

sample Prep Kit V2 (Illumina) according to the manufacturer’s instructions. Briefly, 2 μg of 

purified RNA was poly-A selected and fragmented with fragmentation enzyme. cDNA was 

synthesized with Super Script II master mix, followed by end repair, A-tailing and PCR 

amplification. RNA-seq libraries were single-end sequenced for 50bp using an Illumina 

HighSeq2500 or NextSeq platform (Cold Spring Harbor Genome Center, Woodbury).

ChIP and ChIP-Seq Library Construction—Cell cultures and organoid cultures were 

collected as single cell suspensions and were crosslinked in 1% formaldehyde at room 

temperature for 20 min and the reaction was then quenched using 0.125M glycine. 5–10 

million cells were incubated with cell lysis buffer (10 mM Tris pH8.0, 10 mM NaCl, 0.2% 

NP-40) and then resuspended and sonicated in 500 μL of nuclei lysis buffer (50 mM Tris 

pH8.0, 10 mM EDTA, 1% SDS) for 15 min using a BioRuptor water bath sonicator 

(medium setting, 30 s ON/OFF cycles). 500 μL of sonicated chromatin from 5–10 million 

cells was diluted with 7.5ml of IP-Dilution buffer (20 mM Tris pH 8.0, 2 mM EDTA, 150 

mM NaCl, 1% Triton X-100, 0.01% SDS) and incubated with 2 μg of the appropriate 

antibody and 25 μL of magnetic beads (protein A beads for rabbit antibody, protein G beads 

for mouse antibody) at 4°C overnight. After washing once with 1ml IP-wash 1 buffer (20 

mM Tris pH8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton X-100, 0.1% SDS), twice with 1ml 

High-salt buffer (20 mM Tris pH 8.0, 2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.01% 

SDS), once with 1ml IP-wash 2 buffer (10 mM Tris pH 8.0, 1 mM EDTA 0.25 M LiCl, 1% 

NP-40, 1% sodium deoxycholate), twice with 1ml TE buffer (10 mM Tris-Cl, 1 mM EDTA, 

pH 8.0), beads bound to chromatin were eluted in 200 μL nuclei lysis buffer by heating at 

65°C for 15 min at 1000rpm. 12 μL of 5M NaCl and 2 μL RNaseA (stock at 1mg/ml) was 

then added to the 200 μL eluted chromatin, followed by incubation at 65°C overnight for 

reverse cross-linking. DNA was subsequently treated with proteinase K for 2 hours at 42°C 

and then purified using a QIAGEN PCR purification kit.

ChIP-seq library was constructed using Illumina TruSeq ChIP Sample Prep kit following 

manufacture’s protocol. Briefly, ChIP DNA was end repaired, followed by A-tailing and size 

selection (300–500bp) by gel electrophoresis using a 2% gel. 15 PCR cycles were used for 

final library amplification which was analyzed on a Bioanalyzer using a high sensitivity 

DNA chip (Agilent). ChIP-seq libraries were single-end sequenced for 50bp using an 

Illumina NextSeq platform (Cold Spring Harbor Genome Center, Woodbury).

RNA-Seq Data Analysis—Single end 50bp sequencing reads were mapped to the hg19 

genome using HISAT2 (Kim et al., 2015). Structural RNA was masked and differentially 

expressed genes were identified using Cuffdiff (Trapnell et al., 2010). All the following 

analysis was performed on genes with an RPKM value no less than 2 in either control or 

experimental samples. For RNA-seq following CRISPR based targeting of TP63 in BxPC3 

cells, fold-change in RPKM was calculated as the ratio of the mean RPKM value of two 

independent TP63 sgRNAs to the RPKM value of the control sgRNA. For RNA-seq 

following ectopic expression of ∆Np63 in PATU8988S or SUIT2 cells, fold-change in 
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RPKM was calculated as ratio of mean RPKM value of samples expressing ∆Np63 from two 

biological repeats to the mean RPKM value of control samples infected with an empty 

vector.

RNA-seq analysis of patient samples was performed using data extracted from Bailey et al. 

(2016). Only protein coding genes with a cpm value greater than 4 in at least 10% of the 96 

patient samples for which RNA-seq data was available were used. The top 500 and bottom 

500 genes passing this expression threshold in Squamous versus Progenitor samples, as 

defined by Bailey et al. (2016), defined the Squamous-PDA and Progenitor-PDA Identity 

signatures, respectively. To generate a ranked gene list for Pre-ranked gene set enrichment 

analysis (GSEA) (Subramanian et al., 2005), genes were ranked by their mean log2 fold 

change in Squamous versus Progenitor PDA patient samples. Heatmaps of standardized 

expression values were generated using Morpheus from the Broad Institute.

ChIP-Seq Analysis—Single end 50bp sequencing reads were mapped to the hg19 

genome using Bowtie2 with default settings (Langmead and Salzberg, 2012). After 

removing duplicated mapped reads using SAM tools (Li et al., 2009), MACS 1.4.2 was used 

to call peaks using input genomic DNA as control (Feng et al., 2012). Only peaks enriched 

greater than or equal to 10-fold over input samples were used for subsequent analyses. 

Annotation of ChIP-seq peaks was performed using HOMER v4.9 with default settings 

(Heinz et al., 2010).

For unsupervised hierarchical clustering of the nine cell cultures representing human PDA 

and normal ducts, H3K27ac peaks from all samples were combined using the mergePeaks 

tool from HOMER v4.9 using default settings (-d given). This yielded a union of all 

H3K27ac peaks (n = 68,043). ChIP-seq tag counts were then recalculated at these intervals 

using MultCovBed from BEDTools (Quinlan and Hall, 2010) and were normalized to a read 

depth of 10 million uniquely mapped reads. Normalized H3K27ac tag counts were then used 

to generate a heatmap of similarity matrix by Pearson correlation, which was subsequently 

clustered by Euclidean distance with average linkage using Morpheus from the Broad 

Institute.

To define ‘Squamous Elements’, regions with greater than 1 tag per million in either hF3 or 

BxPC3 cells were used to calculate the ratio of the H3K27ac tag counts in hF3 or BxPC3 

cells versus the mean tag counts across the other seven cultures. Those regions found to be 

greater than 5-fold increased in both hF3 and BxPC3 cells were defined as Squamous 

Elements (n = 1,336). A randomized set of 1,336 regions from the union of all H3K27ac 

peaks across the nine cultures were used as control regions (Random elements).

Heatmap density plots were made by first generating a density matrix by mapping 

sequencing reads from each ChIP-seq experiment to the 200 100bp bins around the center of 

a defined set of H3K27ac regions, i.e., Squamous elements, Random elements or All 

elements, with the latter defined as all H3K27ac peaks from the parental cell line. Tree View 

software was used to generate the heat-map from the density matrix and the contrast was 

adjusted proportionally to the total uniquely mapped reads for visual comparison across 

samples (Saldanha, 2004).
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For calculating fold-change of H3K27ac tag counts following CRISPR based targeting of 

TP63 in BxPC3 cells, the following analysis was performed. First, H3K27ac peaks from 

cells infected with control and the two independent TP63 sgRNAs were combined using the 

mergePeaks tool to yield a union of all H3K27ac peaks in BxPC3 cells. ChIP-seq tag counts 

were then recalculated and normalized to a read depth of 1million uniquely mapped reads. 

Regions with greater than or equal to 5 tags per million in either control or TP63 knockout 

samples were then used to calculate the fold-change in tags as the ratio of the mean tag 

count of the two independent TP63 sgRNAs to the tag count in the control sample. Regions 

that decreased greater than 3-fold following TP63 knockout were defined as repressed (n = 

741) and those that increased greater than 3-fold were defined as activated (n = 330). The 

same pipeline was used for calculating fold-change of H3K27ac tag counts following 

ectopic ∆Np63 expression in SUIT2 cells compared to those infected with an empty vector 

control. Those H3K27ac regions that increased greater than 3-fold in ∆Np63 cells versus 

controls were defined as activated (n = 1,335) and those that decreased greater than 3-fold 

were defined as repressed (n = 79).

For GSEA analysis, the nearest expressed genes (RPKM R 2) in hF3 or BxPC3 cells to 

Squamous Elements were first identified using Genomic Regions Enrichment of 

Annotations Tool (GREAT) (McLean et al., 2010). If the two nearest genes had an RPKM < 

2 in both hF3 and BxPC3 cells, the peak was abandoned. This yielded 668 genes that were 

used for GSEA using the ranked gene list prepared from the analysis of Squamous versus 

Progenitor PDA patient samples.

Ontology analysis of Squamous elements and Random elements was also performed using 

GREAT with whole genome set as background using the basal plus extension setting.

For TRAP analysis (Thomas-Chollier et al., 2011), DNA sequences flanking 500bp from the 

center of each H3K27ac peak were extracted from the hg19 genome using the UCSC table 

browser. These regions served as the input to find enriched JASPAR vertebrate motifs with 

human promoters as the background using the Benjamini-Hochber correction. Fold 

enrichment was calculated as the ratio +1 of the observed p value (-log10) at Squamous 

versus Random elements.

For TP63 ChIP-seq analysis in BxPC3 cells, motif discovery was performed on all peaks 

using MEME-ChIP from the MEME Suite (Bailey et al., 2009). Annotation of ChIP-seq 

peaks was performed using HOMER v4.9 with default settings (Heinz et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was evaluated by p value from two-tailed Student’s t test or ANOVA 

using Prism software as indicated in the figure legends. Data are presented as mean with 

SEM and statistical significance of p value is indicated in figure legends. Unless otherwise 

stated in the figure legend, n refers to the number of biological repeats. For Kaplan-Meier 

survival curves, the log rank (Mantel-Cox) test was used to estimate median overall survival 

and statistical significance. Survival data were obtained from the CBioPortal (TCGA-PAAD) 

(Cerami et al., 2012), ICGC Data Portal (PACA-AU) (Bailey et al., 2016) or from the study 

by Moffitt et al. (2015). Survival data from the CBioPortal and the ICGC Data Portal data 
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were downloaded in January 2018. For the TCGA-PAAD study, only the 150 confirmed 

PDA cases were used for the analyses in this study (The Cancer Genome Atlas Research 

Network, 2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TP63 reprograms enhancers to drive squamous transdifferentiation in PDA

• TP63 expression promotes migration, invasion, and in vivo tumor growth

• Sustained TP63 expression is essential for the growth of squamous PDA cells

• TP63 regulates an oncogenic network that operates in the squamous subtype 

of PDA
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Figure 1. ∆Np63 Is Necessary and Sufficient to Drive Progenitor-to-Squamous Transcriptional 
Reprogramming in Human PDA Cells
(A and B) Transcription factor expression in squamous and progenitor subtypes of PDA. 

Scatterplots show expressed transcription factors ranked by their mean log2 fold change in 

squamous versus progenitor patient samples from (A) Bailey et al. (2016) and (B) The 

Cancer Genome Atlas Research Network (2017).

(C) TP63 expression in human organoids derived from normal pancreatic tissue or PDA 

tumor samples at the indicated disease stage. Data are from the study by Tiriac et al. (2018). 

*p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t test. See also Table S1.
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(D) Survival curve of patients from the indicated study stratified according to high or low 

TP63 expression and for which survival data were available (Moffitt et al., 2015). Samples 

were designated as TP63high or TP63low based on Z score expression values >0.35 or <0, 

respectively. p value was calculated using the log rank (Mantel-Cox) test.

(E) Squamous-PDA and progenitor-PDA identity signatures defined from patient samples. 

The top 500 protein coding genes in squamous (n = 25) or progenitor (n = 30) patient 

samples from the study by Bailey et al. (2016) were used to define the respective signatures. 

Heatmap shows expression levels of signature genes. Scale bar indicates the standardized 

expression value. See also Table S2.

(F) TP63 expression in human PDA cell lines. Heatmap (top) shows RNA-seq analysis of 

human PDA cell lines ranked according to fold change in the median expression level of 

genes corresponding to the squamous-PDA versus progenitor-PDA identity signatures; scale 

bar indicates log2 fold change. Bar chart (middle) and western blot analysis (bottom) show 

TP63 expression in the indicated human PDA cell lines.

(G and H) TP63 knock out in BxPC3 cells. (G) GSEA plots evaluating the squamous-PDA 

and progenitor-PDA identity signatures upon TP63 knockout.(H) Representative western 

blot analysis for the indicated proteins. RNA was extracted and whole-cell lysates were 

prepared for the respective analyses on day 5 post-infection with sgRNAs, 3 days post-

selection with G418.

(I and J) ∆Np63 expression in SUIT2 cells. (I) GSEA plots evaluating the squamous-PDA 

and progenitor-PDA identity signatures upon ∆Np63 expression.(J) Representative western 

blot analysis in SUIT2 cells for the indicated protiens. RNA was extracted and whole-cell 

lysates were prepared for the respective analyses on day 7 post-infection, 5 days following 

G418 selection.

(K and L) Acute ∆Np63 expression in progenitor-like PDA cells. (K) Representative western 

blot analysis in the indicated cell lines for the indicated proteins.(L) Table summarizing 

RNA-seq data evaluating the squamous-PDA identity signature upon induction of ∆Np63 

expression in the indicated cell lines. RNA was extracted and whole-cell lysates were 

prepared for the respective analyses 48 hr following dox administration.

See also Figure S1.
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Figure 2. A Unique Enhancer Landscape Linked to ∆Np63 Occupancy in PDA
(A) Heatmap representation of unsupervised hierarchical clustering of nine human cell lines 

or organoids representing PDA or normal pancreatic ducts based on H3K27ac occupancy at 

total H3K27ac ChIP-seq peaks. Scale bar indicates Pearson correlation coefficient. Normal 

organoids: hN34, hN35; PDA organoids: hF3, hT85; PATU: PATU8988S.

(B) ChIP-seq density plots of TP63 and H3K27ac enrichments at squamous elements (top) 

or a set of 1,336 control H3K27ac regions (bottom) in the indicated cell lines. Each row 

represents a 10-kb interval centered on the midpoint of each H3K27ac peak.
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(C) ChIP-seq profiles of TP63 (top track) and H3K27ac at representative squamous elements 

close to KRT5 and KRT6A (left), TRIM29 (middle), and PTHLH (right).

(D) GSEA plots evaluating the relative expression of genes proximal to squamous elements 

in squamous or progenitor patient samples from the study by Bailey et al. (2016). See also 

Table S5.

(E) Pie chart showing the genomic distribution of squamous elements according to 

annotation of H3K27ac peaks by HOMER. TTS, transcription termination site; TSS, 

transcription start site.

(F) Ontology analysis of genes located nearest to squamous elements versus control 

elements using GREAT. Gene Ontology (GO) terms related to biological process (left) and 

disease ontology (right) are shown.

(G) Representation of motifs enriched at squamous elements versus control elements using 

TRAP. Human promoters were used as the comparison library. Left: fold change in p value. 

The TP53 position weight matrix is represented as TP53 family motif. Right: enrichment of 

the TP53 motif at squamous elements and control elements as determined by p value.

See also Figure S2.
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Figure 3. ∆Np63 Expression Is Sufficient to Install and Maintain a Squamous Enhancer 
Landscape in PDA
(A and B) TP63 knockout in BxPC3 cells and H3K27ac ChIP-seq analysis. (A) Metagene 

representation of H3K27ac signal in squamous elements (left), random control elements 

(middle), and all of the H3K27ac elements (right) in TP63 knockout and control cells. (B) 

ChIP-seq profiles of TP63 (top track) and H3K27ac at representative squamous elements 

close to KRT5 and KRT6A (top) and PTHLH (bottom). BxPC3-Cas9 cells were cross-linked 

and prepared for ChIP-seq analysis on day 5 post-infection, 3 days following G418 

selection, with two independent TP63 or control sgRNAs (sgNEGs).
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(C and D) ∆Np63 expression in SUIT2 cells and H3K27ac ChIP-seq analysis. (C) Metagene 

representation of H3K27ac signal in squamous elements (left), random control elements 

(middle), and all of the H3K27ac elements (right) in SUIT2 cells expressing ∆Np63 or 

control cells. (D) ChIP-seq profiles of ectopically expressed FLAG-tagged TP63 (top track) 

and H3K27ac at representative squamous elements close to KRT5 and KRT6A (top) and 

PTHLH (bottom). SUIT2 cells were cross-linked and prepared for ChIP-seq analysis on day 

7 post-infection, 5 days post-G418 selection.

(E) Metagene representation of H3K27ac signal in squamous elements (top) and random 

control elements (bottom) in the indicated progenitor-like PDA cells following dox-

inducible expression of ∆Np63 or GFP as a control. Cells were cross-linked and prepared for 

ChIP-seq analysis 48 hr following dox administration.

See also Figure S3.
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Figure 4. Phenotypic Consequences of ∆Np63-mediated Enhancer Reprogramming
(A–C) In vitro consequences of ∆Np63-mediated squamous lineage reprogramming. SUIT2 

cells were infected with ∆Np63 cDNA or an empty vector and assayed on day 7 post-

transduction, day 5 post-G418 selection. (A) Line graph showing in vitro cell growth as 

determined by CellTiter-Glo (Promega) assay. Means ±SEMs are shown. n = 3. (B) Bar 

chart (left) showing quantification of scratch assays at the indicated time points post-

seeding, and representative images are shown (right). Means + SEMs are shown. n = 3. (C) 

Bar chart (left) showing quantification of colony size in three-dimensional (3D) Matrigel 

colony formation assays on day 7 post-plating, day 14 post-viral transduction. Colony size 

was measured using ImageJ software (NIH). Means + SEMs are shown. n = 3. 

Representative images at day 7 are shown (right).

(D–G) In vivo consequences of ∆Np63-mediated squamous lineage reprogramming. SUIT2 

cells harboring a luciferase transgene were infected with ∆Np63 cDNA or an empty vector 
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and transplanted on day 5 post-viral transduction, day 3 post-G418 selection. (D) Line graph 

(left) shows quantification of the bioluminescence signal following orthotopic injection of 

50,000 cells to the pancreas of NSG mice. Means ± SEMs are shown. Mice were imaged on 

days 7, 11, 14, 17, and 20 post-transplantation, and representative images are shown (right). 

n = 4 mice per group. (E) Bright-field images of tumors removed from mice shown in (D) on 

day 21 post-transplantation. (F) Line graph (left) shows quantification of bioluminescence 

signal following injection of 100,000 cells via the tail vein of NSG mice. Means ± SEMs are 

shown. Mice were imaged every 2 days from days 7 to 23 post-transplantation, and 

representative images are shown (right panel). n = 5 mice per group. Scale bar indicates 

luminescence signal. (G) Representative H&E (left) or immunohistochemical staining for 

the indicated proteins of tumor samples from (E). Scale bar indicates 50 μm. *p < 0.001 by 

two-way ANOVA with Sidak’s test for multiple comparisons.

See also Figure S4.
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Figure 5. ∆Np63 Is a Dependency in Squamous PDA Cells
(A) Competition-based proliferation assay in BxPC3 cells following infection with the 

indicated sgRNAs linked to GFP. Means + SEMs are shown. n= 3.

(B and C) TP63 knockdown in hF3 organoids. (B) Representative western blot analysis for 

the indicated proteins in the indicated conditions. Whole-cell lysates were prepared on day 8 

post-infection with shRNAs, 5 days post-selection with puro-mycin. (C) Line graph showing 

in vitro cell growth as determined by CellTiter-Glo assay following infection with the 
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indicated shRNAs. Means ± SEMs are shown. n = 3. *p <0.01 by two-way ANOVA with 

Sidak’s test for multiple comparisons.

(D and E) TP63 sgRNA/cDNA rescue assay in BxPC3 cells. (D) Competition-based 

proliferation assay in BxPC3 cells stably expressing the indicated cDNA following infection 

with the indicated sgRNAs linked to GFP. Means + SEMs are shown. n = 3. (E) 

Representative western blot analysis for the indicated proteins in the indicated conditions. 

Whole-cell lysates were prepared on day 5 post-infection with sgRNAs; the GFP percentage 

was >95% in each condition for western blot analysis. ∆Np63 WT, wild-type ∆Np63; 

∆Np63 Mut#3, ∆Np63 cDNA resistant to sgTP63#3; ∆Np63 Mut#4, ∆Np63 cDNA resistant 

to sgTP63#4.

(F and G) In vivo consequences of TP63 knockout. BxPC3-Cas9 cells expressing a 

luciferase transgene were infected with two independent TP63 or control (sgNEG) sgRNAs 

before transplantation on day 5 post-infection, 3 days post-G418 selection. Line graphs show 

quantification of bioluminescence signal following injection of 100,000 cells to the pancreas 

(F) or 250,000 cells via the tail vein (G) of NSG mice. Means ± SEMs are shown.

(H and I) Representative bioluminescence images at the indicated days post-transplant 

following injection of cells to the pancreas (H) or via the tail vein (I) of NSG mice. Scale bar 

indicates luminescence signal. n = 4–5 mice per group. *p <00.1 by two-way ANOVA with 

Sidak’s test for multiple comparisons.

See also Figure S5.
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Figure 6. The Core Circuitry of ∆Np63-Mediated Enhancer Reprogramming in Squamous PDA 
Cells
(A) Venn diagram showing the overlap of significantly downregulated genes in BxPC3-Cas9 

cells and upregulated genes in SUIT2 cells following infection with sgRNAs targeting TP63 

or expression of ∆Np63 cDNA, respectively (fold change >2, p < 0.01). See also Table S6.

(B) Bar graph showing the mean log2 fold change of example genes from (A). See also 

Table 1. (C and D) ChIP-seq profiles of TP63, FLAG-tagged ∆Np63, and H3K27ac at the 

∆Np63 target genes HRAS (C) and CXCL8 (D) following TP63 knockout in BxPC3-Cas9 

cells or expression of ∆Np63 in SUIT2 cells.

See also Figure S6.

Somerville et al. Page 39

Cell Rep. Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Somerville et al. Page 40

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-TP63 (for WB, IHC and ChIP) Cell Signaling Cat# 39692; RRID: N/A

Rabbit polyclonal anti-KRT5/6 (for WB) Millipore Cat# MAB1620; RRID: AB_94292

Rabbit polyclonal anti-S100A2 (for WB and HIC) Abcam Cat# ab109494; RRID: AB_10859000

ImmPRESS Horse-Anti-Rabbit Ig Reagent
antibody (IHC)

Vector Cat# MP-7401; RRID: AB_2336529

ImmPRESS Horse-Anti-Mouse Ig Reagent
antibody (IHC)

Vector Cat# MP-7402; RRID: AB_2336528

Mouse monoclonal anti-HSC70 (for WB) Santa Cruz Biotechnology Cat# sc-7298; RRID: AB_627761

Rabbit polyclonal anti-H3K27ac (for ChIP) Abcam Cat# ab4729; RRID: AB_2118291

Rabbit polyclonal anti-MYC (for ChIP) Abcam Cat# ab32072; RRID: AB_731658

Mouse monoclonal anti-FLAG (for ChIP) Sigma-Aldrich Cat# F1804; RRID: AB_262044

Chemicals, Peptides, and Recombinant Proteins

10% Neutral Buffered Formalin Thermal Fisher Scientific Cat# 22–110-869

2-Mercaptoethanol Sigma-Aldrich Cat# M6250

Isopropanol Sigma-Aldrich Cat# 190674

2× Laemmli Sample Buffer BIO-RAD Cat# 1610737

Chloroform Sigma-Aldrich Cat# 288306

DNase I (RNase-free) New England Biolabs Cat# M0303S

Formaldehyde, 37% solution Avantor Cat# 2106–01

Glycine Thermal Fisher Scientific Cat# BP381–1

Penicillin/Streptomycin Thermal Fisher Scientific Cat# 15140122

Polybrene EMD Millipore Cat# TR-1003-G

Polyethylenimine, Linear, MW 25,000 (PEI 25000) Polysciences Cat# 23966–1

TRIzol Reagent Thermo Fisher Cat# 15596018

D-Luciferin Goldbio Cat# 115144–35-9

Geneticin Selective Antibiotic (G-418 Sulfate) Thermal Fisher Scientific Cat# 10131035

Puromycin dihydrochloride Sigma-Aldrich Cat# P8833

Blasticidin S HCl Thermal Fisher Scientific Cat# A1113903

DMEM with 4.5 g/L glucose, L-glutamine &
sodium pyruvate

Cellgro Cat# 10–013-CV

Advanced DMEM/F12 Life Technologies Cat# 12634–028

RPMI 1640 w/L-glutamine Fisher Scientific Cat# MT10040CV

HEPES Life Technologies Cat# 15630–130

Glutamax Life Technologies Cat# 35050–079

AB3–01 Tocris Bioscience Cat# 2939

hEGF PeproTech Cat# AF-100–15

mNoggin PeproTech Cat# 250–38

hFGF10 PeproTech Cat# 100–26

hGastrin Tocris Bioscience Cat# 3006
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REAGENT or RESOURCE SOURCE IDENTIFIER

N-acetylcysteine Sigma-Aldrich Cat# A9165–5G

Nicotinamide Sigma-Aldrich Cat# N0636–100G

PGE2 Tocris Bioscience Cat# 2296

B27 supplement Life Technologies Cat# 17504044

R-Spondin 1 Cells Trevigen Cat# 3710–001-K

Afamin/Wnt3A conditioned media Osaka University N/A

T4 DNA Polymerase New England Biolabs Cat# M0203L

DNA Polymerase I, Large (Klenow) Fragment New England Biolabs Cat# M0201L

T4 polynucleotide kinase New England Biolabs Cat# M0201L

Klenow Fragment (30-50 exo-) New England Biolabs Cat# M0212L

ImmPACT DAB peroxidase (HRP) substrate Vector Cat# SK-4105

Doxycycline hyclate Sigma-Aldrich Cat# D9891

Critical Commercial Assays

TruSeq RNA Sample Prep Kit v2 Illumina Cat# RS-122–2001

TruSeq ChIP Sample Prep Kit Illumina Cat# IP-202–1012

Power SYBR Green Master Mix Thermo Fisher Scientific Cat# 4368577

qScript cDNA SuperMix Quanta bio Cat# 95048–500

SuperScript II Reverse Transcriptase Thermo Fisher Cat# 18064014

Agencourt AMPure XP Beckman Coulter Cat# A63880

Dynabeads Protein A Thermal Fisher Scientific Cat# 10002D

Dynabeads Protein G Thermal Fisher Scientific Cat# 10003D

MiniElute PCR Purification Kit QIAGEN Cat# 28004

QIAquick Gel Extraction Kit QIAGEN Cat# 28704

Agilent High Sensitivity DNA Kit Agilent Genomics Cat# 5067–4626

CellTiter-Glo Luminescent Cell Viability Assay Promega G7570

Corning Matrigel Growth Factor Reduced (GFR)
Basement Membrane Matrix, *LDEV-free

Life Sciences Cat# 354230

Deposited Data

ChIP-seq and RNA-seq data This paper GEO: GSE115463

PDAC patients microarray data (Moffitt et al., 2015) GEO: GSE71729

Experimental Models: Cell Lines/Organoids

Human PDA cell line PATU8988S DSMZ Cat# ACC 204

Human PDA cell line HPAFII ATCC Cat# CRL-1997

Human PDA cell line AsPC1 ATCC Cat# CRL-1682

Human PDA cell line SUIT2 JCRB JCRB1094

Human PDA cell line CFPAC1 ATCC Cat# CRL-1918

Human PDA cell line PANC1 ATCC Cat# CRL-1469

Human PDA cell line MIAPaca2 ATCC Cat# CRL-1420

Human PDA cell line BxPC3 ATCC Cat# CRL-1687

Human HEK293T CSHL N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human normal pancreas organoid hN30 (Tiriac et al., 2018) N/A

Human normal pancreas organoid hN34 (Tiriac et al., 2018) N/A

Human normal pancreas organoid hN35 (Tiriac et al., 2018) N/A

Human PDA organoid hF3 (Tiriac et al., 2018) N/A

Human PDA organoid hT85 (Tiriac et al., 2018) N/A

Human PDA organoid hF2 (Tiriac et al., 2018) N/A

Human PDA organoid hT3 (Tiriac et al., 2018) N/A

Murine PDA cell line FC1199 David Tuveson N/A

Murine PDA cell line FC1242 David Tuveson N/A

Murine PDA cell line FC1245 David Tuveson N/A

Experimental Models: Organisms/Strains

Mouse: NSG The Jackson Laboratory Stock # 005557

Oligonucleotides

sgRNA/shRNA/RT-PCR sequences see Table S7 This paper N/A

Recombinant DNA

deltaNp63alpha-FLAG (Chatterjee et al., 2008) Addgene plasmid #26979

LentiV-∆Np63-FLAG-neo This paper N/A

Lenti-luciferase-blast This paper N/A

LentiV-Cas9-puro (Tarumoto et al., 2018) Addgene plasmid #108100

LRNG (Lenti_sgRNA_EFS_Neo-IRES-GFP) (Roe et al., 2017) N/A

LRG2.1 (Tarumoto et al., 2018) Addgene plasmid #108098

LEPG (LTR-miRE-shRNA-PGK-puro-IRES-GFP) (Fellmann et al., 2013) Addgene plasmid #111160

psPAX2 N/A Addgene plasmid #12260

TREtight-∆Np63-EFS-rtTA-P2A-Puro This paper N/A

TREtight-GFP-EFS-rtTA-P2A-Puro This paper N/A

Software and Algorithms

MACS 1.4.2 (Feng et al., 2012) http://liulab.dfci.harvard.edu/MACS/00README.html

SAMtools 1.4 (Li et al., 2009) http://samtools.sourceforge.net

BEDTools 2.22.1 (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

TRAP (Thomas-Chollier et al., 
2011)

http://trap.molgen.mpg.de/cgi-bin/home.cgi/home.cgi

HOMER v4.9 (Heinz et al., 2010) http://homer.ucsd.edu/homer/

HISAT2 (Kim et al., 2015) http://ccb.jhu.edu/software/hisat2/index.shtml

Cufflinks (Trapnell et al., 2010) http://cole-trapnell-lab.github.io/cufflinks/

Morpheus Broad Institute https://software.broadinstitute.org/morpheus/

UCSC Genome Browser UCSC http://genome.ucsc.edu

GSEA (Subramanian et al., 
2005)

http://software.broadinstitute.org/gsea/index.jsp

Bowtie2 (Langmead and Salzberg, 
2012)

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

GREAT (McLean et al., 2010) http://bejerano.stanford.edu/great/public/html/
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REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ NIH https://imagej.nih.gov/ij/

GraphPad PRISM 6 GraphPad Software https://www.graphpad.com/scientific-software/prism/

Living Image Software PerkinElmer http://www.perkinelmer.com/lab-products-and-services/resources/in-vivo-imaging-software-downloads.html#LivingImage

TreeView (Saldanha, 2004) http://jtreeview.sourceforge.net

CBioPortal (Cerami et al., 2012) http://www.cbioportal.org

The International Cancer Genome Consortium ICGC https://dcc.icgc.org

GTExPortal (GTEx Consortium, 2015) http://gtexportal.org/home/

Cell Rep. Author manuscript; available in PMC 2018 December 17.

https://imagej.nih.gov/ij/
https://www.graphpad.com/scientific-software/prism/
http://www.perkinelmer.com/lab-products-and-services/resources/in-vivo-imaging-software-downloads.html#LivingImage
http://jtreeview.sourceforge.net
http://www.cbioportal.org
https://dcc.icgc.org
http://gtexportal.org/home/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Somerville et al. Page 44

Ta
b

le
 1

.

∆
N

p6
3 

Ta
rg

et
 G

en
es

 w
ith

 O
nc

og
en

ic
 P

ot
en

tia
l

P
ut

at
iv

e 
∆

N
p6

3 
Ta

rg
et

 G
en

e
O

nc
og

en
ic

 P
he

no
ty

pe
R

ef
er

en
ce

S1
00

A
2

m
ig

ra
tio

n 
an

d 
m

et
as

ta
si

s
B

ul
k 

et
 a

l.,
 2

00
9

C
X

C
L

1
tu

m
or

 g
ro

w
th

, t
um

or
 c

el
l s

ur
vi

va
l, 

an
gi

og
en

es
is

,
m

ye
lo

id
 c

el
l r

ec
ru

itm
en

t
A

ch
ar

yy
a 

et
 a

l.,
 2

01
2

ST
C

1
tu

m
or

 g
ro

w
th

, t
um

or
 c

el
l s

ur
vi

va
l, 

m
et

as
ta

si
s

Pe
ñ 

a 
et

 a
l.,

 2
01

3

PT
H

L
H

m
et

as
ta

si
s,

 tu
m

or
 g

ro
w

th
, t

um
or

 c
el

l s
ur

vi
va

l
Ig

uc
hi

 e
t a

l.,
 1

99
6;

 U
ro

se
vi

c 
et

 a
l.,

 2
01

4

C
C

L
20

m
et

as
ta

si
s,

 m
ye

lo
id

 c
el

l r
ec

ru
itm

en
t, 

E
M

T
Y

e 
et

 a
l.,

 2
01

6

C
X

C
L

8
an

gi
og

en
es

is
, t

um
or

 g
ro

w
th

 a
nd

 m
ig

ra
tio

n,
 m

et
as

ta
si

s,
m

ye
lo

id
 c

el
l r

ec
ru

itm
en

t
W

au
gh

 a
nd

 W
ils

on
, 2

00
8

N
R

G
1

tu
m

or
 g

ro
w

th
Sh

en
g 

et
 a

l.,
 2

01
0

A
R

L
4D

tu
m

or
 c

el
l m

ig
ra

tio
n

L
i e

t a
l.,

 2
00

7

IL
6R

tu
m

or
 p

ro
gr

es
si

on
 a

nd
 in

fl
am

m
at

io
n

H
od

ge
 e

t a
l.,

 2
00

5

H
A

S3
tu

m
or

 g
ro

w
th

, a
ng

io
ge

ne
si

s,
 E

C
M

 d
ep

os
iti

on
, m

ig
ra

tio
n

It
an

o 
et

 a
l.,

 2
00

2;
 L

iu
 e

t a
l.,

 2
00

1

A
R

E
G

tu
m

or
 g

ro
w

th
, c

el
l m

ig
ra

tio
n,

 c
he

m
or

es
is

ta
nc

e
Pe

te
rs

on
 e

t a
l.,

 2
01

5;
 Z

ha
ng

 e
t a

l.,
 2

00
9

L
PX

N
tu

m
or

 p
ro

gr
es

si
on

K
au

lf
uß

 e
t a

l.,
 2

00
9

A
K

4
tu

m
or

 in
va

si
on

 a
nd

 m
et

as
ta

si
s

Ja
n 

et
 a

l.,
 2

01
2

A
D

O
R

A
2B

in
va

si
on

, m
ig

ra
tio

n 
an

d 
m

et
as

ta
si

s
D

es
m

et
 e

t a
l.,

 2
01

3

H
R

A
S

tu
m

or
 c

el
l g

ro
w

th
, s

ur
vi

va
l, 

an
d 

m
ai

nt
en

an
ce

G
ra

bo
ck

a 
et

 a
l.,

 2
01

4;
 Y

ou
ng

 e
t a

l.,
 2

01
3

E
C

M
, e

xt
ra

ce
llu

la
r 

m
at

ri
x;

 E
M

T,
 e

pi
th

el
ia

l-
to

-m
es

en
ch

ym
al

 tr
an

si
tio

n.

Se
e 

al
so

 F
ig

ur
e 

6.

Cell Rep. Author manuscript; available in PMC 2018 December 17.


	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	TP63 Is Expressed in a Subset of Pancreatic Tumors that Display a Squamous-like Transcriptional Signature and Inferior Overall Survival
	Ectopic Expression of ∆Np63 Is Sufficient to Drive Squamous Transcriptional Reprogramming in PDA Cell Lines
	A Unique Enhancer Configuration Linked to ∆Np63 Genomic Occupancy in PDA
	Phenotypic Consequences of ∆Np63-Mediated Enhancer Reprogramming
	Squamous PDA Cells Become Addicted to ∆Np63

	DISCUSSION
	STAR★METHODS
	KEY RESOURCES TABLE

	Table T2
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Mice
	Cell Lines

	METHOD DETAILS
	Plasmid Construction
	Lentiviral Production and Infection
	In Vitro Phenotypic Assays
	CRISPR-Based Targeting
	shRNA targeting in BxPC3 cells and hF3 organoids
	In Vivo Transplantation Experiments
	Histology and Immunohistochemistry
	Cell Lysate Preparation for Western Blot Analysis
	RNA Extraction and RT-PCR
	RNA-seq Library Construction
	ChIP and ChIP-Seq Library Construction
	RNA-Seq Data Analysis
	ChIP-Seq Analysis

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table T2
	Table 1.

