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Wheat accounts for 19% of the total production of major cereal crops in the world.
In view of ever increasing population and demand for global food production, there is
an imperative need of 40–60% increase in wheat production to meet the requirement
of developing world in coming 40 years. However, both biotic and abiotic stresses are
major hurdles for attaining the goal. Among the most important diseases in wheat, fungal
diseases pose serious threat for widening the gap between actual and attainable yield.
Fungal disease management, mainly, depends on the pathogen detection, genetic and
pathological variability in population, development of resistant cultivars and deployment
of effective resistant genes in different epidemiological regions. Wheat protection and
breeding of resistant cultivars using conventional methods are time-consuming, intricate
and slow processes. Molecular markers offer an excellent alternative in development
of improved disease resistant cultivars that would lead to increase in crop yield. They
are employed for tagging the important disease resistance genes and provide valuable
assistance in increasing selection efficiency for valuable traits via marker assisted
selection (MAS). Plant breeding strategies with known molecular markers for resistance
and functional genomics enable a breeder for developing resistant cultivars of wheat
against different fungal diseases.

Keywords: MAS, molecular markers, R genes, wheat, wheat rust

Introduction

Wheat is a major staple food for mankind in many parts of the world with 714 million tons
produced during 2013 (http://www.agri-outlook.org). It is cultivated on 15.4% of the arable land in
the world in almost all countries, except the humid and high-temperature areas in the tropics and
high-latitude environments. Accounting for a fifth of humanity’s food, wheat is the second only to
rice which provides 21% of the food calories and 20% of the protein for more than 4.5 billion people
in 94 developing countries (Braun et al., 2010). It contributes 30% of the world’s edible dry matter
and 60% of the daily calorie intake in several developing countries (FAOSTAT, 2015). Wheat is
produced for a wide range of end-users and it is a critical staple food for a large proportion of the
world’s poor farmers and consumers. Due to consistent increase in the world population, there is
a need of 60% increase in wheat production to meet the requirement of developing world till 2050
(Singh and Trethowan, 2007; Singh et al., 2007; Rosegrant and Agcaoili, 2010).
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Increasing wheat yield potential in the developing world is a
primary aim for food security concern (Duveiller et al., 2007).
Today, the most challenging task for wheat breeders is to increase
grain yield as well as to improve the grain quality of crop for
end products (Goutam et al., 2013). These two aspects must be
cope up with the strategies employed for enhancing the tolerance
against biotic (Keller et al., 2008; Todorovska et al., 2009) and
abiotic stresses (Kamal et al., 2010) in addition to the enhanced
capability to adapt to various climate changes (Olmstead and
Rhode, 2011). Amongst the most important diseases in wheat
(derived from fungi, virus, and bacteria), rust diseases (leaf,
stem, and stripe) caused by fungus, powdery mildew and Karnal
bunt have been reported to produce devastating consequences
on wheat quality and production (Keller et al., 2008; Goyal and
Prasad, 2010). Cereal rust fungi are highly variable for virulence
and molecular polymorphism. Leaf rust, caused by Puccinia
triticina is the most common rust of wheat on a worldwide
basis (Kolmer, 2013). Leaf rust has potential to cause losses of
up to 50% and because of its more frequent and widespread
occurrence, leaf rust probably results in greater total annual
losses worldwide than stem and stripe rusts (Huerta-Espino
et al., 2011). However, management of fungal diseases using
conventional plant protection and breeding strategies is quite
easy and effective tool, but, it results into different types of
environmental pollutions as it involves the use of various eco-
hazardous chemicals. Identification and selection of resistant
genes through breeding practices is also time-consuming and
slow process. Moreover, disease management by host resistance,
employment of stable diseases resistance and development of
homozygous and resistant cultivars are also time consuming
methods (Sharma, 2003; Keller et al., 2008).

To overcome these problems, molecular marker technology
is the novel genetic tool for developing high yielding disease
resistant cultivars (Landjeva et al., 2007; Varshney et al., 2007).
Molecular markers could tag the presence of important resistance
genes and allow breeders to identify the resistance genes rapidly
and accurately. They also provide significant assistance for
increasing selection efficiency through indirect selection for
valuable traits via marker assisted selection (MAS). Thus, MAS
offers a potential tool for assisting conventional plant breeding
approaches to select phenotypic traits for screening disease
resistant crop plants (Todorovska et al., 2009). Therefore, existing
plant breeding techniques along with availablemolecular markers
(Gupta et al., 2010) and functional genomic tools (Gupta et al.,
2008) can help a breeder for developing superior wheat cultivars
resistant against fungal diseases in order to minimize yield losses
(Goyal and Prasad, 2010). Different types of markers such as
randomDNAmarkers, gene targetedmarkers (Gupta et al., 2010)
and functional markers (Liu et al., 2012) have been reported for
facilitating identification of genes responsible for individual traits
and for improving potential of using MAS in wheat breeding
programs (Gupta et al., 2008). DNA-based molecular markers
like RFLP (Hartl et al., 1993; Ma et al., 1993, 1994; Autrique
et al., 1995; Paull et al., 1995; Nelson et al., 1997), RAPD
(Penner et al., 1995; Procunier et al., 1995; Demeke et al., 1996;
Qi et al., 1996; Dweikat et al., 1997; Dubcovsky et al., 1998;
Shi et al., 1998), STS (Schachermayr et al., 1994, 1995, 1997;

Key concepts

(1) DNA marker
It is a gene or DNA sequence with a known location on a chromosome that
can be used to identify individuals or species. A genetic marker may be a short
DNA sequence, such as a sequence surrounding a single base-pair change
(single nucleotide polymorphism, SNP), or a long one, like minisatellites.

(2) Fungal disease
An abnormal growth and/or dysfunction of a plant caused by fungi, which
disturbs the normal life process of the plant.

(3) Marker assisted selection (MAS)
MAS is a process whereby a marker (morphological, biochemical or one based
on DNA/RNA variation) is used for indirect selection of a genetic determinant or
determinants of a trait of interest (e.g., productivity, disease resistance, abiotic
stress tolerance, and quality).

(4) Wheat rust
Wheat rust is a destructive disease of wheat caused by fungus genus Puccinia,
especially a destructive stem rust characterized by reddish blisters that turn
black at the end of the growing season.

Feuillet et al., 1995; Dedryver et al., 1996; Naik et al., 1998;
Prins et al., 2001), SSR (Peng et al., 2000; Raupp et al., 2001;
Wang et al., 2002), CAPS (Helguera et al., 2000, 2003), AFLP
(Hartl et al., 1998), and SCAR (Gold et al., 1999; Liu et al., 1999)
have been commonly used for the molecular characterization
of plant pathogen and mapping of disease resistance genes in
wheat. The development of plant gene transfer systems enable
us for the introgression of foreign genes into plant genomes for
novel disease control strategies, thus providing a mechanism for
broadening the genetic resources available to plant breeders (Zhu
et al., 2012).

Fungal Diseases of Wheat

Worldwide, wheat diseases caused by fungal pathogens are more
threatening for crop yields and grain quality than those caused
by bacteria and viruses. Since, the fungal pathogens are very
adaptable and can rapidly evolve into new strains that can
infect earlier disease resistant plants. Infection of wheat fungal
diseases are influenced by various factors viz., nature of pathogen,
susceptibility of host, diversity of virulence, density of inoculums
and temperature (Rajaram and Van Ginkel, 1996; McIntosh et al.,
1998). The most important fungal diseases in wheat include
different types of rust, powdery mildew and Karnal bunt.

Wheat Rust

Wheat rust pathogens belong to genus Puccinia, family
Pucciniaceae, order Uredinales and class Basidiomycetes. The
rust diseases of wheat such as leaf rust, stem rust, and stripe
rust have historically been among the major biotic constraints
in the world (Saari and Prescott, 1985; Todorovska et al.,
2009). The rusts of wheat is caused by fungal pathogens that
can be disseminated thousands of kilometers by wind and are
capable of causing considerable economic loss throughout the
world (Kolmer, 2005; Goyal and Prasad, 2010). The importance
of genetic resistance for the control of rust diseases was
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demonstrated by Biffen (1905). A prerequisite for developing
cultivars with long term rust resistance is the availability of
diverse resistance genes.

Leaf Rust

Leaf rust, also known as brown rust, is caused by fungus
P. triticina Rob. Ex Desm. f. sp. tritici Eriks (syn. P. recondita). It
is a wheat disease of major historical and economic importance.
Leaf rust is the most prevalent amongst all the wheat rust diseases
occurring around nearly in all wheat grown areas (Kolmer, 2005;
Huerta-Espino et al., 2011; Vanzetti et al., 2011). Therefore, it
is considered as a widespread and commonly occurring rust
disease of wheat. The disease has caused serious epidemics
in wheat growing regions of USA (Appel et al., 2009), North
Western Mexico (Dubin and Torres, 1981; Singh, 1991; Singh
et al., 2004), South America (German et al., 2004), Northern
Africa (Abdel-Hak et al., 1980; Deghais et al., 1999), Russia
(Volkova et al., 2009), India (Joshi et al., 1975; Nagarajan and
Joshi, 1978), Pakistan (Hassan et al., 1973; Hussain et al., 1980),
Australia (Watson and Luig, 1961; Keed and White, 1971; Rees
and Platz, 1975; Murray and Brennan, 2009), South Africa
(Terefe et al., 2009) and other parts of the world. Leaf rust
is generally localized on the leaves, but occasionally affects the
glumes and awns. Symptoms include circular or oval, orange
pustules (urediniospores) on the upper surface of infected leaves.
Later on, these pustules become darker due to the formation of
black telliospores (Roberson and Luttrell, 1987). The loss in yield
depends on several factors such as time of initial infection, crop
development stages and relative resistance or susceptibility of
the wheat cultivars. Higher yield losses materialized if the initial
infection occurs early in the growing season before tillering.
However, infection occurred after heading when grain filling is
in progress, will cause lesser crop loss (Agrios, 1997). Wheat yield
losses are caused due reduction in number of kernels per spike,
and kernel weight. Depending on the severity and duration of
infection, the losses can vary up to 50% in susceptible wheat
cultivars (Knott, 1989; McIntosh et al., 1995).

More than 60 leaf rust-resistance (Lr) genes have been
identified in common wheat, durum wheat and diploid wheat
species (McIntosh et al., 1995, 2008; Bansal et al., 2008; Chhuneja
et al., 2008; Vida et al., 2009). Majority of the genes have been
identified in the wild wheat relative Aegilops tauschii (Rowland
and Kerber, 1974; Kerber, 1987; Gill et al., 1991; Cox et al., 1994;
Huang and Gill, 2001; Raupp et al., 2001; Huang et al., 2003;
Hiebert et al., 2007). Breeding for leaf rust resistance in wheat
is the most challenging task for a breeder because resistance
can be completely defeated by a shift in predominant pathogen
race in a rust population. Therefore, use of genetic resistance is
the comparatively promising option to combat rust epidemics
in crop plants. Genetic resistance has two dimensions; one is
monitoring dynamic changes of rust pathogen populations to
identify new virulent races, and second is deploying resistance
genes to defeat the new pathogen race. Molecular markers viz.,
RFLP, RAPD, STS, SCAR, CAPS, and SSR proves to be the best
alternative for screening against leaf rust resistance (William

et al., 2008). A wide range of markers are reported to be associated
with Lr genes (Table 1). RFLP (Lr13-Seyfarth et al., 2000; Lr20-
Neu et al., 2002; Lr21-Huang and Gill, 2001; Lr23, Lr27-Nelson
et al., 1997; Lr24, Lr32-Autrique et al., 1995) and RAPD (Lr25,
Lr29-Procunier et al., 1995) have been used to tag a variety of Lr
genes in wheat. Moreover, the conversion of RFLPs and RAPDs
into STS (Schachermayr et al., 1994, 1995, 1997; Feuillet et al.,
1995; Helguera et al., 2005) or SCARs (Dedryver et al., 1996)
provided a range of useful markers for Lr genes. STS or SCARs
are the preferred DNA markers over RFLP, RAPD and AFLP.
Lr1 (Feuillet et al., 1995), Lr9, Lr10 (Schachermayr et al., 1994,
1995, 1997), Lr19 (Prins et al., 2001; Cherukuri et al., 2003), Lr24
(Schachermayr et al., 1995; Dedryver et al., 1996), Lr28 (Naik
et al., 1998), Lr35 (Gold et al., 1999; Seyfarth et al., 1999), LrX
(Obert et al., 2005), Lr51 (Helguera et al., 2005) and Lr 26 (Zhou
et al., 2014) are the different STS or SCAR markers associated to
Lr genes. Lr67 (Hiebert et al., 2010) and Lr68 (Herrera-Foessel
et al., 2012) are SSR linked Lr genes. A gene TaHIR3 has been
characterized which encodes a hypersensitive-induced reaction
(HIR) protein in response to pathogen attacks. Its expression
profile at the DNA and protein levels suggested that TaHIR3 and
its deduced protein play a significant role in wheat hypersensitive
response caused by leaf rust pathogen (Yu et al., 2013). Validation
of markers linked to resistance genes was done successfully
in wheat germplasm worldwide. The 287 BC2F4 population of
Hungarian wheat genotypes ‘Mv Emma’∗3/‘R.L.6010’ was tested
for the presence of Lr (Lr9, Lr24, Lr 25, Lr 29, Lr35, and Lr37)
genes. SCAR markers were used for screening of Lr24, Lr 25,
and Lr 37 genes (Robert et al., 1999), whereas, STS and RAPD
markers were used to validate the presence of Lr 9, Lr 35, and
Lr 29, respectively (Vida et al., 2009). Prabhu et al. (2003) used
RAPD and SSR marker to study presence of Lr 32 and Lr 28,
respectively, in 10 elite near-isogenic lines (NILs) of Indian bread
wheat genotypes. To identify the resistance genes in 23 hexaploid
Russian spring wheat, STS markers linked to the known leaf
rust resistance genes Lr1, Lr9, Lr10, Lr21, Lr24, Lr28, Lr35,
Lr37, and Lr39 were used (Gajnullin et al., 2007). Gene-specific
markers to the seedling resistance genes (Lr1, Lr10, and Lr21)
and Adult plant resistance gene (Lr34) were utilized for molecular
screening of 275 wheat accessions from 42 countries (Dakouri
et al., 2013). Imbaby et al. (2014) conducted study to identify
Lr13, Lr19, Lr24, Lr26, Lr34, Lr35, Lr36, Lr37, Lr39, and Lr46
in 15 Egyptian wheat cultivars using various types of molecular
markers.

Cloning of resistance genes is an important approach for
providing molecular insights and increasing resistance durability
against rust resistance (Ellis et al., 2014; Jonathan et al., 2014).
Lawrence et al. (1995) cloned first rust resistance gene L6 from
flax (linseed). In case of cereal, Rp1-d was the first rust resistance
gene to be cloned by Collins et al. (1999) from corn. More than
30 resistance genes have been cloned in common wheat including
Lr10, Lr1, Lr21 for leaf rust (Huang et al., 2003; Cloutier et al.,
2007; Loutre et al., 2009; Liu et al., 2012). The resistance genes
are ineffective individually to the upcoming pathotypes of rusts
in the world, thus pyramiding different resistance genes to breed
multiline cultivars may increase the durability of resistance (Wen
et al., 2008). Two highly effective genes for leaf rust resistance
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TABLE 1 | List of Molecular markers linked to major fungal disease resistance genes.

Trait Locus Marker Source Donor Reference

Leaf
rust

Lr1 RFLP/STS Triticum aestivum ThatcherLr1 Feuillet et al. (1995), Qiu et al. (2007)

Lr3 RFLP T. aestivum Sinvalocho MA Sacco et al. (1998)

Lr3a T. aestivum Schomburgk and Yarralinka Khan et al. (2005)

Lr9 RAPD/STS, RFLP Aegilops umbellulata RL6010 Schachermayr et al. (1994), Autrique
et al. (1995), Gupta et al. (2005)

Lr10 RFLP/STS, STS T. aestivum Thatcher Lr10 Schachermayr et al. (1997), Feuillet
et al. (2003), Stepien et al. (2003)

Lr12 SSR T. aestivum TcLr12 Singh and Bowden (2011)

Lr13 RFLP, SSR T. aestivum Thatcher∗Frontana Seyfarth et al. (1998, 1999), Bansal
et al. (2008)

Lr14 SSR T. aestivum Herrera-Foessel et al. (2007)

Lr14a SNP T. durum Colosseo Terracciano et al. (2013)

Lr15 SSR T. aestivum Tc-Lr15 Dholakia et al. (2013)

Lr16 SSR T. aestivum BW278 Mccartney et al. (2005)

Lr19 STS, RAPD/SSR Agropyron Elongatum Prins et al. (2001), Gupta et al. (2006)

Lr20 RFLP T. aestivum Axminster Neu et al. (2002)

Lr21 RFLP; KASPar T. tauschii Huang and Gill (2001), Neelam et al.
(2013)

Lr22a SSR T. tauschii RL5404 Hiebert et al. (2007)

Lr23 RFLP T. turgidum Nelson et al. (1997)

Lr24 RFLP, RAPD/STS,
RAPD/SCAR, SCAR

Agropyron elongatum Agent Autrique et al. (1995), Schachermayr
et al. (1995), Dedryver et al. (1996),
Prabhu et al. (2004)

Lr25 RAPD/SSR S. cereale TcLr25 Procunier et al. (1995), Singh et al.
(2012)

Lr26 SCAR, SSR Secale cereale Pavon Mago et al. (2002), Zhou et al. (2014)

Lr27 RFLP, SSR T. aestivum Nelson et al. (1997), Spielmeyer et al.
(2003)

Lr28 STS, SCAR T. aestivum HD2285 Naik et al. (1998), Cherukuri et al.
(2003)

Lr29 RAPD Agropyron elongatum Procunier et al. (1995)

Lr31 RFLP, SSR T. aestivum Nelson et al. (1997)

Lr32 RFLP T. tauschii RL57 1 3 Autrique et al. (1995)

Lr34 STS T. aestivum Parula7D Lagudah et al. (2006, 2009), Bossolini
et al. (2007)

Lr35 SCAR, STS A. Speltoides,
T. speltoides

R.L.6082 Gold et al. (1999), Seyfarth et al. (1999)

Lr37 STS/CAPS, ISSR A. Ventricosa Helguera et al. (2003)

Lr38 SSR Thinopyrum
intermedium

RL6097 Mebrate et al. (2008)

Lr39 SSR T. Tauschii TA4186 Raupp et al. (2001)

Lr41 T. Tauschii Century Sun et al. (2009)

Lr45 AFLP,SSR T. aestivum TcLr45, Thatcher Zhang et al. (2005), Naik et al. (2015)

Lr46 STS T. aestivum Pavon Mateos-Hernandez et al. (2006)

Lr47 RFLP, CAPS T.speltoides Tausch, T7AS-7S#1S-7AS·7AL Dubcovsky et al. (1998), Helguera et al.
(2000)

Lr48 SSR T. aestivum CSP44/WL711
VL404/WL711

Bansal et al. (2008)

Lr49 SSR T. aestivum CSP44/WL711
VL404/WL711

Bansal et al. (2008)

Lr50 SSR T. timopheevii Brown-Guedira et al. (2003)

Lr51 STS T. speltoides Helguera et al. (2005)

Lr52 STS T. aestivum RL6107 Tar et al. (2008)

Lr 58 SSR T. aestivum TA5605 Kuraparthy et al. (2007b)

Lr60 SSR T. aestivum Hiebert et al. (2008)

(Continued)
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TABLE 1 | Continued

Trait Locus Marker Source Donor Reference

Lr63 SSR T. monococcum RL6137 Kolmer (2008)

Lr64 SSR T. dicoccoides Kolmer (2008)

Lr67 SSR T. aestivum Thatcher /RL6077
RL6058/ RL6077

Hiebert et al. (2010)

Lr68 SSR, CAPS T. aestivum Arula1/Arula2 Herrera-Foessel et al. (2012)

Stem
rust

Sr2 STS, CAPS T. turgidum Chinese Spring (Hope 3B) Spielmeyer et al. (2003), Hayden et al.
(2004), Mago et al. (2011)

Sr9a SSR T. aestivum Tsilo et al. (2007)

Sr22 RFLP T. monococcum T. boeoticum Paull et al. (1995)

Sr24 STS Agropyron elongatum Mago et al. (2005)

Sr25 STS Thinopyrum ponticum Liu et al. (2010)

Sr26 STS Agropyron
elongatum,

Datatine Mago et al. (2005)

Sr28 PCR _ Kota,Ceres and Line AD Rouse et al. (2012)

Sr35 SSR T. aestivum CRL-Sr35 Babiker et al. (2009); http://maswheat.
ucdavis.edu/protocols/Sr35/index.htm

Sr38 STS/CAPS A. Ventricosa Helguera et al. (2003)

Sr39 STS A. speltoides Sr39#22r http://maswheat.ucdavis.edu

Sr36 SSR T. timopheevi Sr36/9∗LMPG Tsilo et al. (2008)

Sr47 SSR Aegilops speltoides RWG35, RWG36 and RWG37 http://maswheat.ucdavis.edu/
protocols/Sr47/index.htm

Sr52 STS D. villosum http://maswheat.ucdavis.edu/
protocols/Sr52/

Sr R STS Secale cereale Mago et al. (2002)

Sr32 SSR A. speltoides Chinese Spring Mago et al. (2013)

Sr43 SSR T. aestivum KS10-2, KS24-1 Niu et al. (2014)

Sr45 SSR /AFLP T. aestivum CS1D5406 Periyannan et al. (2014)

Sr54 SSR Ae. tauschii Yu et al. (2015)

Sr56 STS and SSR T. aestivum Yitpi Bansal et al. (2014)

Stripe
rust

Yr5 STS T. spelta Chen et al. (2003), Yan et al. (2003)

Yr10 SSR, STS T. aestivum P.I.178383 Wang et al. (2002), Singh et al. (2009)

Yr15 SSR T. dicoccoides Peng et al. (2000)

Yr17 STS/CAPS, SCAR A. Ventricosa RL 6081 Robert et al. (1999), Helguera et al.
(2003)

Yr26 SSR, EST-STS H. Villosa,
Brachypodium
distachyon

R55, 92R137 Ma et al. (2001), Zhang et al. (2013)

Yr28 RFLP T. aestivum Schmal/ Opata 85’ Singh et al. (2000)

Yr50 5 SSR T. aestivum CH223 Liu et al. (2013)

Yr51 DArT(Marker sun104) T. aestivum AUS27858 Randhawa et al. (2013)

YrH52 SSR T. dicoccoides Hermon H52 Peng et al. (2000)

Yr53 RGAP/SSR T. aestivum PI 480148’ Xu et al. (2013)

Yr59 RGAP and SSR T. aestivum PI 178759’ Zhou et al. (2014c)

Yr61 STS5467 and
STS5765b,

T. aestivum Pindong 34. Zhou et al. (2014a)

Yr64 SSR T. aestivum, T. durum PI 331260 and PI 480016 Cheng et al. (2014)

Yr65 SSR T. aestivum, T. durum PI 331260 and PI 480016 Cheng et al. (2014)

YrSD SSR T. aestivum Strubes Dickkopf Jing et al. (2013)

YrHA SSR T. aestivum H9014-121-5-5-9 Ma et al. (2013)

YrSN104 SSR T. aestivum Shaannong 104 Asad et al. (2012)

viz., Lr24, Lr28 and a stripe rust resistance gene Yr15 were
selected for pyramiding in the susceptible but high yielding
Indian bread wheat variety HD2877 (Revathi et al., 2010). Three
highly effective leaf rust resistance genes, Lr 24, Lr 28, and

Lr 9 were selected for pyramiding in the bread wheat variety
HD 2329 of India (Charpe et al., 2012). Vanzetti et al. (2011)
reported that combinations of Lr16, Lr47, Lr19, Lr41, Lr21, Lr25,
and Lr29, with Lr34, SV2, Lr46 provide durable and effective
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resistance to leaf rust. An alternative and efficient strategy
to detect quantitative trait loci (QTL) is association mapping
(AM) or linkage disequilibrium (LD)-based mapping, in which
genotype–phenotype relationships are explored in genetically
diverse germplasm (Flint-Garcia et al., 2003; Zhu et al., 2008).
AMhas proved to be an efficient approach for both tetraploid and
hexaploid wheat, by which enhancing previously available QTL
information for MAS (Breseghello and Sorrells, 2006; Maccaferri
et al., 2011). For leaf rust, QTLs were identified in 164 elite durum
wheat accessions from different countries using AM approach
(Maccaferri et al., 2010).

Stem Rust

Stem or black rust is a major disease caused by fungus P. graminis
f. sp. tritici. Wheat, durum wheat, barley, triticale, barley grasses
(Hordeum sp.) and common wheat grass (Agropyron scabrum)
are among the most commonly infected crops by stem rust.
The Italians Fontana and Tozzetti independently provided the
first report on stem rust in wheat in 1767. In large areas of
the world, the life cycle of P. graminis consists of continual
uredinial generations. The disease either spreads via airborne
spores or occasionally from local-wild susceptible barberry
(Berberis sp.) plants (Eversmeyer, 2000). Wheat (primary host)
and barberry (secondary host) are required to complete the
life cycle of fungus (Leonard and Szabo, 2005). Five types of
spores (pycniospores, aeciospores, urediniospores, teliospores,
and basidiospores) occur in the life cycle of fungus at different
developmental stages (Leonard, 2001). Warm temperature (15–
30◦C) and dew are the two important factors favoring the crop
infection by stem rust. Stem rust usually occurs on the stem,
and can also occur on the leaves (both sides), leaf sheaths or in
severe infections on the head. Uredia pustules on stem and leaf
sheaths are the main symptoms of disease spreading (Leonard,
2001). Reddish brown color and oval or spindle-shaped pustules
are seen on the stem and leaf sheath. Pustules would change to
black in color at the end of the season when infection is too old
(Todorovska et al., 2009) and can cause severe crop loss in a short
span of time at the end of the season.

In the early to mid 1950s; stem rust epidemics caused
approximately 50% yield losses of wheat in North America
(Leonard, 2001). During 1950s, Norman Borlaug and other
scientists started developing high-yielding wheat varieties that
were resistant to stem rust and other diseases in North
America and throughout the world (Singh et al., 2006).
Resistant plants exhibit no or less number of uredia surrounded
by chlorosis or necrosis as compared to susceptible plants.
A new race of stem rust (Ug99) causing a high level of
infection on wheat genotypes was found in 1999 in Uganda
(Pretorius et al., 2000). Heavy stem rust infections were observed
in International Center for Wheat and Maize Improvement
(CIMMYT)-derived lines of wheat in Kenya in 2004 (Kolmer,
2005; Todorovska et al., 2009). This race has spread to major
wheat growing regions of the world such as Iran, Afghanistan,
India, Pakistan, Turkmenistan, Uzbekista, Kazakhstan, USA, and
Canada (Todorovska et al., 2009). Therefore it is necessary to

develop a resistant germplasm to overcome the spreading of
infection in these regions.

Since, breeding program in wheat for developing stem
rust resistance is a challenging task for a breeder; therefore,
acquisition of genetic resistance is the best alternative for
controlling rust epidemics. Currently, about fifty stem rust
resistance (Sr) genes have been identified. Moreover, mapping
of few genes and their close relatives on different chromosomes
of wheat has also been achieved (McIntosh et al., 1998). PCR
(STS) and non-hybridization based (RFLP) markers are available
for screening the genotypes which are resistant to stem rust
disease (William et al., 2008). The molecular markers associated
with Sr genes known so far are summarized in (Table 1). RFLP
(Sr22-Paull et al., 1995) and STS (Sr2-Hayden et al., 2004; Sr24,
Sr26- Mago et al., 2005; SrR-Mago et al., 2002; Sr39-Mas wheat
ucdavis), STS/SSR (Sr56-Bansal et al., 2014), SSR/AFLP (Sr45-
Periyannan et al., 2014) STS/CAPS (Sr38-Helguera et al., 2003)
and SSR (Sr32- Mago et al., 2013; Sr43-Niu et al., 2014; Sr54- Yu
et al., 2015) markers have been reported to be associated with
different Sr genes in wheat. Sr2 is one of the non-race specific
genes which have resulted in successful acquisition of durable
rust resistance to slow rusting adult (Singh et al., 2004). It has
been widely used by CIMMYT, Mexico in its wheat program
for improvement of stem rust resistance and also in USA for
hard winter wheat breeding program. Above all, the Sr2 complex
when used in combination with other resistance genes has shown
remarkable protection against Ug99 (Singh, 1993). CIMMYT
and International center for agricultural research in the dry
areas (ICARDA) started the global rust initiative (Later in 2008,
BGRI- Borlaug global rust initiative) to coordinate efforts to
track and study Ug99 and develop resistant varieties of wheat
(Stokstad, 2007). Some genes like Sr33 and Sr35 for stem rust
resistance were cloned with the objective to increase resistance
(Periyannan et al., 2013; Saintenac et al., 2013) Various studies
have been conducted to confirm the presence of Sr genes in
wheat cultivars. A recombinant inbred line (RIL) population of
83 lines (developed from a cross from Indian wheat cultivars
VL404 and WL711) was screened to identify Sr28 gene using
SSR markers (Bansal et al., 2012). Haile et al. (2013) screened
58 tetraploid wheat accessions of Ethiopian wheat cultivars for
the presence of 30 Sr genes using SSR and STS markers. 88
spring soft wheat of Kazakhstan were studied for presence of Sr
genes (Sr2, Sr22, Sr24, Sr36, and Sr46) which are effective against
Ug99 (Kokhmetova and Atishova, 2012). Thirty-seven lines of
American cultivars with known stem rust resistance genes and
five genetic background cultivars were used to further validate the
six co-dominant STS markers for Sr25 and Sr26 (Liu et al., 2010).
Mago et al. (2011) used DNA markers to check the presence of
Sr24, Sr26, SrR, and Sr31 in wheat-rye recombinant T6-1. These
Sr genes provide resistance against all strains of stem rust that
are prevalent in Australia. However, Sr26 and SrR are effective
outside Australia against strain Ug99. 104 F2:3 population of
Gabo 56 with susceptible cultivar Chinese Spring were screened
to check the presence of Sr9h using SSR markers. Minor stem
rust resistance gene Sr2 was pyramided with two major stem rust
resistance genes Sr24 and Sr36 in Indian wheat varieties ‘Lok-1’
and ‘Sonalika’ (Nisha et al., 2015). AM study for response to stem
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rust was conducted on 183 Ethiopian durum wheat accessions
and 276 wheat lines fromKenya (Yu et al., 2011; Letta et al., 2013).

Yellow Rust or Stripe Rust

Stripe or yellow rust, caused by P. striiformis f. sp. tritici, mainly
infects wheat, but can also cause infection in barley, rye, and
triticale. It was first reported in USA (Carleton, 1915) and
outbreaks were reported in the Western states in 1960s (Boyd,
2005). Later on, the infections were also reported from other
parts of the of world including USA, East Asia (China north-
west and southwest), South Asia (India, Pakistan, and Nepal),
Oceania (Australia, New Zealand), East Africa (Ethiopia, Kenya),
the Arabian Peninsula (Yemen) and Western Europe (Wellings,
2011). Presently, more than 35% of area under wheat cultivation
is affected by stripe rust disease (Singh et al., 2004). Cool and wet
weather is favorable for the development of yellow rust. Pustules
are light yellow and occur on leaves in distinct straight-sided
stripes about 1/16 inches wide and of regular length. The spores
are yellow to orange in color. Reduced dry matter production,
root growth, plant height, size and number of flowering spikes,
and the size and number of grains are the parameters affected
by infection. These effects were more pronounced with infection
beginning at the seedling stage, although infections initiated at
anthesis were also associated with reduced root weight and grain
yield (Wellings, 2011).

Breeding efforts for stripe rust resistance has been made in
the past. Breeding approaches involves developing several crosses
with careful phenotypic selection which makes it difficult for a
breeder to achieve the desired objective. About 52 permanently
named and more than 40 temporarily designated genes or
QTL for stripe rust resistance have been reported (Chen, 2005;
McIntosh et al., 2011; Ren et al., 2012). Among the permanently
named resistance genes, Yr11, Yr12, Yr13, Yr14, Yr16, Yr18,
Yr29, Yr30, Yr34, Yr36, Yr39, Yr46, Yr48, and Yr52, confer adult
plant or high temperature adult plant (HTAP) resistance genes,
whereas the others confer all-stage resistance. The identification
and use of the resistant genes is the only way to conquer the
impact of disease on wheat production. Till date, 65 (Yr1–
Yr65) yellow rust resistance genes have been characterized and
designated in wheat (McIntosh et al., 1995; Singh et al., 2004;
Boyd, 2005; McIntosh et al., 2008). A wide range of markers are
reported to be associated with Yr genes (Table 1). RFLP (Yr28-
Singh et al., 2000), SSR (Yr10-Wang et al., 2002; Yr15, Yr26,
YrH52-Peng et al., 2000), STS/CAPS (Y17-Robert et al., 1999;
Helguera et al., 2003; YrMoro-Smith et al., 2002), STS (Yr61-Zhou
et al., 2014a), DArt (Yr51-Randhawa et al., 2014), RGAP/SSR
(Yr59-Zhou et al., 2014c) and SSR (YrSN104-Asad et al., 2012; Yr
50- Liu et al., 2013; Yr64 and Yr65-Cheng et al., 2014) markers
have been reported to be associated with different Yr genes in
wheat. Most of the identified yellow rust resistant Yr genes have
been characterized as the race specific ones and are responsible
for acquiring resistance against the isolates of P. striiformis f.
sp. tritici only, which carries the corresponding avirulence (avr)
gene. Various stripe rust resistant genes have been transferred
into hexaploid wheat from different wild species (Kuraparthy

et al., 2007a,b; Singh et al., 2007; Chhuneja et al., 2008). With the
help of molecular marker a study reveals that recent Canadian
wheat varieties have the strip rust resistant genes Yr 10, Yr17,
Yr18, and Yr 36 (Randhawa et al., 2012). Further, a highly stripe
rust resistant gene, namely Yr36 has been used for positional
cloning. Yr36 gene, derived from wild emmer wheat, carries
broad spectrum resistance for stripe rust races (Fu et al., 2009).
A total of 54 wheat genotypes representing breeding lines and
current grown cultivars in the western US were tested with race
PST-100 and the Yr53-flanking markers, XLRRrev/NLRRrev350,
Xgwm441 and the STS marker (STS2F/1R219) developed from
RGAP marker, Ptokin2/Xa1NBSF234 (Xu et al., 2013).

Four Gatersleben wheat microsatellite (GWM) markers were
used to identify non-specific adult plant disease resistance genes
against stripe rust in 160 F2 plants from the cross of UK/German
wheat cultivars Lgst.7/Winzi (Khlestkina et al., 2007). To identify
genes for stripe rust in 181 plants from one segregating F3 line
of Xiaoyan/Mingxian cross. SSR primers were used to identify
molecular markers flanking Yrxy2, whereas for Yrxy1 RGAP
and SSR markers both were used (Zhou et al., 2011). Naz et al.
(2012) done QTL analysis by using a genetic map based on 118
SSR markers in 150 back cross lines of German wheat cultivars
Zentos and Syn86L. To identify genes for stripe rust resistance
in 179 F2 population of Wuhan 2/Mingxian 169 cross against
races CYR30 and CYR31 using RGAP and SSR markers (Zhou
et al., 2014b). Yaniv et al. (2015) concluded from their findings
that SSR markers from Yr15 region are efficient tools for MAS
and for introgression of Yr15 into wheat from T. dicoccoides. In
case of stripe rust resistance genes, Yr17, Yr18, and Yr36 were
amongst the successfully cloned genes (Helguera et al., 2003;
Lagudah et al., 2009; Fu et al., 2009). Stripe rust response for adult
plants was evaluated using AM in 192 genotypes including 181
synthetic hexaploid wheat (SHW) and 11 bread wheat cultivars
from different countries (Zegeye et al., 2014). Similar studies
were performed using 402 wheat varieties and 1000 spring wheat
accessions from USA (Naruoka et al., 2015; Maccaferri et al.,
2015).

Recent Trends

Recently the new technologies are being used for sequencing of
cereal crops, but the storage of data and analysis are difficult
due to its vast size. Single nucleotide polymorphism (SNP)
genotyping offers a solution to this problem and accelerates
the crop improvement by providing insights into their genetic
constitution. It has number of advantages over conventional
marker system such as rapid processing of large populations,
abundance of markers and varieties of genotyping system
(Thomson, 2014). In quantitative trait locus (QTL) mapping
experiments and genome-wide association studies (GWAS),
SNP data is frequently used to detect marker-trait associations
(Zhao et al., 2011; Cook et al., 2012). Discovery of SNPs using
complete genome is facilitated by recent advances in next-
generation sequencing (Berkman et al., 2012; Chia et al., 2012;
Xu et al., 2012). Genetic studies of number of economically
important crops have been successfully done by the application
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of high-density SNP arrays (Wiedmann et al., 2008; Ganal et al.,
2011; Zhao et al., 2011; Sim et al., 2012; Song et al., 2013).
44K SNP genotyping chip was employed for GWAS of diverse
rice accessions and identified number of alleles responsible for
governing morphological and agronomic traits (Zhao et al.,
2011). Similarly, the genetic control of maize kernel composition
in a nested AM panel was studied by the use of 50K maize
SNP chip (Cook et al., 2012; Hufford et al., 2012). Moreover,
the genomic regions targeted by breeding in wheat were detected
by 9K SNP wheat (Cavanagh et al., 2013). The most challenging
task is to analyze the genotypic data of durum [T. turgidum
subsp. durum (Desf.) Husnot] and bread wheat (T. aestivum
L.) genome using SNP genotyping platforms (Akhunov et al.,
2009). The use of wheat SNP iSelect array has proven to be a
promising tool to infer detailed haplotype structure in polyploid
wheat and will serve as an invaluable resource for diversity
studies and investigating the genetic basis of trait variation in
wheat. A combination of eight mapping populations was used to
genetically map 46,977 SNPs using wheat 90K array (Wang et al.,
2014).

Conclusion

Due to global food security and consistent increase in world
population, there is an immediate need to increase wheat
yield considerably. Fungal diseases continue to cause huge
losses and pose a great challenge for wheat production. Novel
genetic tools based on molecular marker technologies provide
a good alternative for developing improved resistant cultivars.
Development of molecular markers such as RFLPs, SSRs, AFLPs,
SNPs, andDArT in last more than two decades has revolutionized
wheat genomics. Marker assisted breeding and functional
genomics tools are effective strategies to develop resistant

cultivars against fungal diseases in wheat for achieving estimated
production paradigm. In future, functional genomics approaches
such as TILLING, RNAi and epigentics etc. are needed to
strengthen the development of resistant varieties. Mutagenesis-
derived broad-spectrum disease resistance may lead to a better
understanding of the regulation of defense response networks
in wheat. Large-scale genome sequencing and associated
bioinformatics are becoming widely accepted research tools for
accelerating the analysis of wheat genome structure and function.
Currently, functional markers are being increasingly adopted
in wheat breeding. These markers are needed for important
traits such as disease and stress resistance in order to strengthen
the application of molecular markers in breeding programs.
The collaborative effort (MASwheat: http://maswheat.ucdavis.
edu/index.htm) by United States Department of Agriculture
(USDA), National Institute of Food and Agriculture (NIFA) and
Borlaug Global Rust Initiative (BGRI) has given the platform
for transferring new developments in wheat genomics and
biotechnology to increase wheat production. Many traits such
as the disease/pest resistance and end-use quality which has
increased the competitiveness of wheat breeding programs
through MAS were included. Triticeae Coordinated Agricultural
Project (T-CAP) focused on studying the effects of climate
change on crop yields by identification and incorporation of
genetic loci for enhancing tolerance in crops. For improving the
barley and wheat germplasm, gene variants for disease resistance,
water and nitrogen use efficiency and yield improvement are
being identified, along with molecular markers to tag them
and accelerate breeding. The International Wheat Genome
Sequencing Consortium (IWGSC) will put the foundation to
accelerate wheat improvement for wheat growers, scientists,
and breeders. The ultimate goal leads to obtain high quality
annotation of the genome and thus complete sequencing of the
common wheat genome.
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