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During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in
narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly
DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that
RNA-directed DNAmethylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is
associated with increased nucleosome density and H3K9me2. However, loss of CGDNAmethylation maintenance
in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and
euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering
crossover repair pathways ( fancm and zip4) to demonstrate that remodeling primarily involves redistribution of
interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by
loss of CGmethylationwithin the centromeric regions. Using cytogenetics, we profiledmeiotic DNA double-strand
break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome
structure is altered, causing centromere-proximal DSBs to be inhibited frommaturation into interfering crossovers.
These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in
establishing domains of meiotic recombination along chromosomes.
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Sexually reproducing eukaryotes produce haploid gam-
etes via the specialized meiotic cell division, where a sin-
gle round of DNA replication is coupled to two rounds of
chromosome segregation (Villeneuve and Hillers 2001).
During meiotic prophase-I, homologous chromosomes
pair and undergo programmed recombination that can re-
sult in reciprocal genetic crossover (Villeneuve andHillers
2001; Keeney and Neale 2006). Meiotic recombination is
initiated by DNA double-strand breaks (DSBs) generated
by the SPO11 transesterase (Villeneuve and Hillers 2001;
Keeney and Neale 2006). DSBs are then resected to yield
3′ ssDNA that is bound by the RAD51 and DMC1 recom-
binases, which mediate interhomolog strand invasion
(Villeneuve and Hillers 2001; Keeney and Neale 2006).
Strand invasion intermediates are further processed to
form doubleHolliday junctions (dHJs) that can be resolved
as crossovers or noncrossovers (Szostak et al. 1983;
Schwacha and Kleckner 1995). Meiotic recombination oc-

curs in the context of a chromatin loop–axis structure that
matures into the synaptonemal complex and exerts a sig-
nificant influence on crossover formation (Kleckner 2006;
Storlazzi et al. 2010; Panizza et al. 2011; Ferdous et al.
2012). As a consequence of homologous recombination,
chromosome segregation, and gamete fusion, meiosis
strongly influences patterns of genetic diversity within
sexually reproducing populations.
Eukaryotes typically initiate a larger number of meiotic

DSBs than final crossover events. For example,�200DSBs
are estimated to form inArabidopsis, which generate�10
crossovers per meiosis, with the remaining events re-
paired as noncrossovers or via intersister repair (Copenha-
ver et al. 1998; Chelysheva et al. 2010; Giraut et al. 2011;
Ferdous et al. 2012; Salomé et al. 2012; Sun et al. 2012;
Wijnker et al. 2013). Eighty percent to 90% of wild-type
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Arabidopsis crossovers are generated by an interfering
pathway, which causes events to be more widely distribu-
ted than would be expected if they were independent
(Copenhaver et al. 2002; Higgins et al. 2004; Mercier
et al. 2005). Interfering crossovers are generated by the
conserved ZMM pathway (MSH4, MSH5, MER3, HEI10,
ZIP4, SHOC1, and PTD), which is thought to stabilize
strand invasion intermediates and promote dHJ formation
(Copenhaver et al. 2002; Higgins et al. 2004, 2008b; Chen
et al. 2005; Mercier et al. 2005; Chelysheva et al. 2007,
2010, 2012; Macaisne et al. 2008). The mechanism of
crossover interference is unknown but can be modeled
as mechanical stress mediated via the meiotic chromo-
some axis (Zhang et al. 2014). The remaining minority
of Arabidopsis noninterfering crossovers is dependent
on MUS81 (Berchowitz et al. 2007; Higgins et al. 2008a).
The FANCM helicase acts with MHF1 and MHF2 to pro-
mote formation of noncrossovers, in the absence of which
most strand invasion events enter a noninterfering cross-
over repair pathway (Crismani et al. 2012; Knoll et al.
2012; Girard et al. 2014). FIDGITIN, RECQ4A, RECQ4B,
and TOPOISOMERASE3α have been identified as addi-
tional anti-crossover factors in Arabidopsis (Girard et al.
2015; Séguéla-Arnaud et al. 2015).

Meiotic recombination is nonrandomly distributed
along chromosomes and tends to occur in narrow hot
spots, which are controlled by both genetic and epigenetic
information (Lichten and Goldman 1995; Kauppi et al.
2004; de Massy 2013). Plant hot spots are observed at
gene transcriptional start sites (TSSs) and transcriptional
termination sites (TTSs) and require the histone variant
H2A.Z for wild-type activity (Brown and Sundaresan
1991; Fu et al. 2001; Saintenac et al. 2011; Choi et al.
2013; Drouaud et al. 2013; Hellsten et al. 2013; Li et al.
2015). In contrast, crossovers are largely suppressed in re-
peat-rich heterochromatic regions in plant genomes
(Copenhaver et al. 1999; Wei et al. 2009; Mayer et al.
2012; The Tomato Genome Consortium 2012; Yelina
et al. 2012; Choulet et al. 2014; Rodgers-Melnick et al.
2015). Plant heterochromatin is densely epigenetically
modified with DNA cytosine methylation and histone
H3K9me2 methylation, which contribute to suppressed
RNA polymerase II (Pol II) transcription, late DNA repli-
cation, cytological condensation, and higher-order struc-
tural organization (Fransz et al. 2002; Soppe et al. 2002;
Zhang et al. 2006; Mathieu et al. 2007; Lister et al. 2008;
Lee et al. 2010; Feng et al. 2014). DNAmethylation occurs
in CG, CHG, and CHH sequence contexts (where H =A,
T, or C) in plant genomes (Law and Jacobsen 2010). CG
methylation is maintained through DNA replication by
METHYLTRANSFERASE1 (MET1) acting with the SWI/
SNF chromatin remodeling enzyme DECREASED DNA
METHYLATION1 (DDM1) (Vongs et al. 1993; Saze
et al. 2003; Stroud et al. 2013). Non-CG methylation is
maintained redundantly by theCHROMOMETHYLASE2
(CMT2), CHROMOMETHYLASE3 (CMT3), and DO-
MAINS REARRANGED METHYLASE2 (DRM2) cyto-
sine methyltransferases (Cao et al. 2003; Stroud et al.
2013, 2014; Zemach et al. 2013; Dubin et al. 2015).
DNAmethylation controls meiotic recombination distri-

butions along Arabidopsis chromosomes, as met1 and
ddm1 mutants show epigenetic crossover remodeling,
with increases in the gene-rich chromosome arms and de-
creases in the repetitive pericentromeric regions (Colomé-
Tatché et al. 2012; Melamed-Bessudo and Levy 2012;Mir-
ouze et al. 2012; Yelina et al. 2012). As total crossovers are
similar between wild type and met1, this redistribution
represents a homeostatic effect.

Small RNAs are able to target DNAmethylation to ho-
mologous sequences via the RNA-directed DNA methyl-
ation (RdDM) pathway in plants (Wassenegger et al. 1994;
Law and Jacobsen 2010). Using this mechanism, we
directly DNA-methylated endogenous Arabidopsis mei-
otic crossover hot spots located in euchromatin and dem-
onstrate that this is sufficient to epigenetically silence
recombination. Using chromatin immunoprecipitation
(ChIP), we show that RdDM at hot spots is associated
with gain of H3K9me2 and increased nucleosome occu-
pancy. To understand how loss of CG DNA methylation
maintenance causes remodeling of crossovers at the chro-
mosome scale, we combined met1 with mutations that
alter interfering and noninterfering crossover repair path-
ways. This demonstrates that crossover remodeling is
driven by loss of interfering crossovers from pericentro-
meric regions and gains in the euchromatic chromosome
arms. We performed whole-genome bisulfite sequencing
in met1/+ heterozygotes and show that crossover remod-
eling is driven by loss of CG context DNA methylation
in the centromeric regions. Despite the extensive changes
to met1 chromatin, we show that meiotic chromosomes
do not form ectopic DSB foci, indicating downstream
changes in crossover maturation. Together, this demon-
strates that DNA methylation can potently suppress
crossovers at the hot spot scale and impose regional con-
trol on recombination patterns at the chromosome scale.

Results

Silencing meiotic crossover hot spots via RdDM

Relatively low numbers of crossover events (�10) occur
per meiosis in Arabidopsis (Copenhaver et al. 1998; Gir-
aut et al. 2011; Salomé et al. 2012), and known hot spots
have genetic distances of �0.2–0.5 cM (Table 1; Drouaud
and Mézard 2011; Yelina et al. 2012; Choi et al. 2013;
Drouaud et al. 2013). Therefore, to measure >100 events
at single hot spots, it is necessary to screen hundreds of
thousands of meioses. To achieve this, we collected large
quantities of pollen (post-meiotic male gametes) from
Col/Ler F1 hybrids and extracted genomic DNA. For a giv-
en hot spot, this DNA consists of a mixture of crossover
and parental molecules, distinguishable by patterns of
Col/Ler sequence polymorphisms (Drouaud and Mézard
2011; Yelina et al. 2012; Choi et al. 2013; Drouaud et al.
2013). Allele-specific PCR primers that anneal to poly-
morphic sites can be used to amplify and titrate crossover
versus parental DNA molecules (Drouaud and Mézard
2011; Yelina et al. 2012; Choi et al. 2013; Drouaud et al.
2013). Dilutions of template DNA were analyzed until
approximately half of the amplifications were negative,
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which allowed low relative error in estimating crossover
molecule numbers (Drouaud and Mézard 2011; Yelina et
al. 2012; Choi et al. 2013; Drouaud et al. 2013). Single-
molecule amplification products could then be genotyped
via Sanger sequencing to identify internal crossover loca-
tions (Drouaud and Mézard 2011; Yelina et al. 2012; Choi
et al. 2013; Drouaud et al. 2013).
We previously mapped two hot spots, 3a and 3b, which

are located subtelomerically within the first megabase of
chromosome 3 (Fig. 1A; Yelina et al. 2012; Choi et al.
2013). The 3a and 3b amplicons are 5.8 and 5.7 kb, respec-
tively, and have maximum crossover rates of 83.15 and
78.70 cM/Mb, compared with themale chromosome 3 av-
erage of 4.77 cM/Mb (Fig. 1B; Supplemental Tables 1–3;
Giraut et al. 2011; Yelina et al. 2012; Choi et al. 2013).
Hot spots of comparable magnitude were detected using
linkage disequilibrium-based approaches that measure
historical crossover activity in regions overlapping 3a
and 3b (Fig. 1C; Choi et al. 2013). The 3a–3b hot spot re-
gion has low DNA methylation (CG, 4.5%; CHG, 0.3%;
CHH, 0.4%) compared with the genome average (CG,
27.0%; CHG, 8.9%; CHH, 2.9%), although an intervening
gene showsCG bodymethylation (Fig. 1A). This is consis-
tent with genome-wide analysis of hot spots in Arabidop-
sis and maize, which show low levels of DNA
methylation (Choi et al. 2013; Wijnker et al. 2013; Rod-
gers-Melnick et al. 2015).
To directly test the role of DNA methylation on hot

spot activity, we used the RdDMpathway (Fig. 1D;Wasse-
negger et al. 1994; Law and Jacobsen 2010). Transforma-
tion of Arabidopsis with inverted repeat hairpin
transgenes produces dsRNAs that are processed into 21-
to 24-nucleotide (nt) siRNAs (Fig. 1D; Mette et al. 2000;
Zilberman et al. 2004). These siRNAs are able to direct
DNA methylation to homologous sequences in all se-
quence contexts (CG, CHG, and CHH) via the DRM2 de

novo methyltransferase (Cao and Jacobsen 2002; Zilber-
man et al. 2004). To methylate the 3a and 3b hot spots,
we generated hairpin constructs driven by the ACTIN2
promoter (3a: HP1–HP4; 3b: HP5) (Fig. 1B; Supplemental
Table 4). HAIRPIN (HP) T1 transformants showed accu-
mulation of 21- to 24-nt siRNAs detectable by Northern
blotting and hybridization (Fig. 1E). To assess RdDM at
the 3a and 3b target regions in HP transformants, we
used McrBC, which digests methylated DNA, followed
by PCR amplification. Using McrBC assays, we detected
methylation at the boundaries of the HP targeted regions
within the 3a and 3b hot spots (Fig. 1F; Supplemental Ta-
ble 4). DNA methylation was detectable in HP T1 plants
and increased in strength in subsequent T2 and T3 gener-
ations (Fig. 1F), consistent with promotion of RdDM dur-
ing reproductive development (Teixeira et al. 2009). All
McrBC assays detected DNA methylation except in the
HP5a region (Fig. 1F; Supplemental Table 4). We selected
HP plants with high levels of DNA methylation at 3a or
3b target regions for further analysis.
To measure 3a and 3b crossover rates after establish-

ment of DNA methylation, we crossed HP1–HP5 Col
lines to wild-type Ler plants. The resulting HP/Ler F1
plants were used for pollen collection and genomic
DNA extraction alongside untransformed wild-type Col/
Ler F1 controls. We used dilution of genomic DNA and
amplification to measure the concentration of parental
and crossover molecules at the 3a and 3b hot spots in
HP lines (Fig. 1G; Table 1). For the HP1–HP4 trans-
formants that acquired DNA methylation within 3a, we
observed that onlyHP3 andHP4 caused significant reduc-
tions in crossover frequency (nonlinear least squaresmod-
el, HP3, P = 9.95 × 10−5; HP4, P = 0.00136) (Fig. 1G; Table
1). This is consistent with the HP3 and HP4 hairpins di-
recting DNAmethylation toward 3a regions with highest
recombination activity in wild type (Fig. 1B). DNA

Table 1. Silencing of 3a and 3b crossover hot spots using RdDM

Genotype
Crossovers per

milliliter
Parentals per
milliliter 3a

Standard
deviation 3a P

Col/Ler 37.6 18,596 0.202 cM 0.013 cM 33.3 cM/Mb —

HP1/Ler 42.1 18,639 0.226 cM 0.029 cM 38.8 cM/Mb 0.590
HP2/Ler 24.4 13,813 0.177 cM 0.025 cM 30.4 cM/Mb 0.652
HP3/Ler 12.1 17,594 0.069 cM 0.009 cM 11.9 cM/Mb 9.95 × 10−05

HP4/Ler 13.0 14,273 0.091 cM 0.013 cM 15.6 cM/Mb 0.00136
HP5/Ler 17.6 7784 0.227 cM 0.041 cM 39.0 cM/Mb 0.452

Genotype
Crossovers per

milliliter
Parentals per
milliliter 3b

Standard
deviation 3b P

Col/Ler 5.2 4399 0.119 cM 0.019 cM 21.4 cM/Mb —

HP1/Ler 8.4 9949 0.085 cM 0.014 cM 14.8 cM/Mb 0.686
HP2/Ler n.d n.d. n.d. n.d. n.d. n.d.
HP3/Ler 8.5 9228 0.092 cM 0.010 cM 15.7 cM/Mb 0.680
HP4/Ler 6.1 7383 0.083 cM 0.010 cM 14.1 cM/Mb 0.526
HP5/Ler 0.9 4516 0.020 cM 0.005 cM 3.5 cM/Mb 0.012

Hot spot recombination rates (centimorgans per megabase) were calculated using the ratio of crossover molecules versus parental mole-
cules, measured per microliter of Col/Ler F1 pollen genomic DNA. To test for significant differences in recombination frequency, we com-
pared numbers of crossover molecules in wild-type and hairpin (HP) lines by fitting a nonlinear least squares model (Bates andWatts 1988).
(n.d.) Not done.
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Figure 1. RdDM silencesArabidopsis crossover hot spots. (A, top plot) Gene (green) and transposon (blue) density (base pairs [bp] per 100
bp) along Arabidopsis chromosome 3. DNA methylation (percentage; red) is shown for wild-type Col-0. The centromere is indicated by
the vertical dotted line, and the 3a–3b hot spots are indicated by the vertical black line. (Bottom plot) DNAmethylation frequency (per-
centage) within the 3a–3b region. (Blue) CG; (green) CHG; (red) CHH. (B) 3a and 3b crossover frequency (centimorgans permegabase)mea-
sured by pollen typing. Vertical black lines indicate allele-specific primer-annealing sites. Red X-axis ticks indicate Col/Ler single-
nucleotide polymorphisms (SNPs), and black arrows indicate genes. RdDM hairpins (HPs) are indicated by purple and blue bars. The hor-
izontal dotted line indicates chromosome 3 Col/Ler male average recombination (Giraut et al. 2011). (C ) Historical crossover frequency
within the 3a–3b region estimated from LDhat analysis of SNPs from Eurasian (blue) and Swedish (red)Arabidopsis accessions (Cao et al.
2011; Auton andMcVean 2012; Choi et al. 2013; Long et al. 2013). SNP positions are indicated by X-axis ticks. Chromosome average val-
ues are indicated by the horizontal dotted lines. (D) Inverted repeat hairpin expression via RNAPol II from theACTIN2 promoter produces
dsRNA, which is processed by DICER-LIKE (DCL) enzymes into 21- to 24-nucleotide siRNAs, which act in trans to target DNA cytosine
methylation (m) to homologous genomic target sequences. (E) Total RNAwas blotted and hybridized with radioactively labelled probes
complementary to hairpin (HP) sequences to detect siRNAs, and the U6 nuclear RNA was used as a loading control. (F ) Total genomic
DNA was untreated (−) or digested with McrBC (+) and used for PCR amplification. Methylation of HP target sequences was tested in
primary T1 transformants or subsequent T2 or T3 generations. The regions analyzed were HP1a, HP2b, HP3b, HP4b, and HP5b (Supple-
mental Table 4). The Ta3-LTR retrotransposon and At5g13440 were used as methylated and unmethylated controls, respectively. (G) Re-
combination rates (centimorgans per megabase) at the 3a and 3b hot spots estimated by pollen typing in wild-type Col/Ler and HP/Ler
lines. Asterisks indicate HP/Ler lines with significantly different crossover frequency compared with the Col/Ler control (Table 1).
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methylationwithin 3b directed byHP5 also caused signif-
icant suppression of recombination within this hot spot
(nonlinear least squares model, P = 0.012) (Fig. 1G; Table
1). In budding yeast, hot spot activity shows compensa-
tion when adjacent hot spots are altered over distances
of �60 kb (Robine et al. 2007). Due to the physical pro-
ximity of 3a and 3b (�10 kb), we tested whether their ac-
tivity was altered when the other hot spot was silenced.
However, we did not observe significant differences in
3a when 3b was silenced or vice versa, indicating limited

compensatory interactions between these loci (Fig. 1G;
Table 1).

Fine-scale mapping of crossovers and chromatin
at silenced hot spots

We next investigated the fine-scale relationships between
DNA methylation and crossover recombination (Fig. 2).
We performed sodium bisulfite sequencing using DNA
from closed flower buds of HP/Ler F1 lines that showed
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suppressed crossover frequency (HP3, HP4, and HP5) and
compared them with untransformed Col/Ler F1 plants
(Supplemental Table 4). HP3, HP4, and HP5 triggered
dense DNA methylation in the targeted regions, with
methylation observed in all sequence contexts, consistent
with the action of RdDM (Fig. 2D–F; Supplemental Tables
5–14; Cao and Jacobsen 2002; Zilberman et al. 2004; Hen-
derson and Jacobsen 2008). Low levels of DNA methyla-
tion were observed in untransformed plants (Fig. 2D–F;
Supplemental Tables 5–14). As levels of CG and CHG
methylation exceeded 80% in HP/Ler F1 plants, this sug-
gests that both Col and Ler alleles acquired DNAmethyl-
ation (Fig. 2D–F; Supplemental Tables 5–14). Limited
spreading (<150 base pairs [bp]) of DNA methylation was
observed outside of the hairpin targeted regions (Figs.
2D–F), consistent with the known behavior of RdDM (Pél-
issier et al. 1999; Zilberman et al. 2004). TheHP3 andHP4
hairpins directed dense DNAmethylation throughout the
3a targeted regions that we tested (Fig. 2D,E). However,
theHP5 hairpin causedmore limitedmethylation,mainly
within the central targeted region of 3b (Fig. 2F; Supple-
mental Tables 5–14).

To analyze fine-scale recombination patterns, we Sang-
er-sequenced �100–200 single-crossover-molecule PCR
amplification products from HP3/Ler, HP4/Ler, and

HP5/Ler F1 lines in addition to untransformed wild-type
Col/Ler F1 controls (Fig. 2A–C; Supplemental Tables 1–
3). This approach identifies internal crossover locations
to the resolution of individual sequence polymorphisms.
The HP3 and HP4 hairpins targeted DNA methylation
to adjacent regions within the 3a hot spot, which correlat-
ed with shifted patterns of crossover activity (Fig. 2A,B;
Supplemental Tables 1–2). The HP5 hairpin also directed
localized crossover suppression within the 3b hot spot
(Fig. 2C; Supplemental Table 3). This demonstrates that
de novo DNA methylation causes specific and localized
silencing of meiotic recombination in Arabidopsis. Inter-
estingly, in wild type, we saw suppressed crossovers in a
region of dense polymorphism 3′ to the 3b hot spot and,
in HP5/Ler plants, observed increased crossovers in this
region (Fig. 2C; Supplemental Table 3).

To further investigate how chromatin at the 3a and
3b hot spots changes following RdDM, we performed
ChIP analysis. As DNA methylation and H3K9me2 are
strongly correlated in Arabidopsis (Bernatavichute et al.
2008), we first performed ChIP for this modification
within the hot spots. We assayed chromatin from in-
florescences of wild-type Col, HP3 T3, HP4 T3, and HP5
T2 lines that had acquired dense DNA methylation via
RdDM (Fig. 3A; Supplemental Table 4). Amplification
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was performed for regions overlapping DNA methylation
and normalized against the Ta2 transposon (Johnson et al.
2002). We observed strong enrichment of H3K9me2 in
HP3,HP4, andHP5 lines, overlapping the DNAmethylat-
ed regions, but not in Col wild type (Fig. 3B). These in-
creases were specific to the hot spot region targeted
for DNA methylation (Fig. 3B). To monitor nucleosome
density, we also performed ChIP using antibodies that
recognize unmodified H3, analyzed the same amplicons,
and normalized the values against ACTIN7 (At5g09810).
We observed that the HP3, HP4, and HP5 lines showed
an increase in nucleosome occupancy in the DNA/
H3K9me2methylated regions (Fig. 3C). This is consistent
with methylated regions showing higher nucleosome
occupancy in Arabidopsis (Chodavarapu et al. 2010).
Together, these data demonstrate that establishment of
DNA methylation via the RdDM pathway recruits
H3K9me2 and causes an increase in nucleosome occupan-
cy. It is likely that combination of these chromatin
modifications contributes to suppression of hot spot
recombination.

Epigenetic crossover remodeling along met1
chromosome arms

Using RdDM, we demonstrated that establishment of
DNAmethylation andH3K9me2 is sufficient to epigenet-
ically silence crossover hot spots. However, at the chro-
mosome scale, loss of CG DNA methylation in met1
and ddm1mutants is associatedwith remodeling of cross-
overs, with increases in the euchromatic chromosome
arms and decreases in the pericentromeres (Colomé-
Tatché et al. 2012; Melamed-Bessudo and Levy 2012;Mir-
ouze et al. 2012; Yelina et al. 2012). To further character-
ize epigenetic remodeling along the chromosome arms,
we performed genetic mapping. Wild-type or met1-3
Col/Ler F1 was used as male parents and backcrossed
onto Col/Col homozygotes. We isolated genomic DNA
from 187 (wild-type) and 192 (met1-3) backcross progeny
and generated sets of 96 barcoded sequencing libraries
(Rowan et al. 2015). Low-depth sequencing was performed
(mean 2.4× sequencing depth), and a set of 153,842 high-
quality Col/Ler single-nucleotide polymorphisms (SNPs)
was analyzed (Supplemental Table 15). We used the TI-
GER pipeline to analyze read counts supporting reference
or variant positions along the chromosomes and identified
1006 and 1083 crossovers in the wild-type and met1 pop-
ulations (Fig. 4A–D; Supplemental Table 16; Rowan et al.
2015). We observed that mean crossovers per individual
were not significantly different between wild-type (5.38)
and met1 (5.64) populations (generalized linear model
[GLM] assuming a negative binomial distribution, P =
0.877) (Supplemental Fig. S1; Supplemental Table 16),
which is consistent with previous genetic maps (Co-
penhaver et al. 1998; Giraut et al. 2011; Salomé et al.
2012; Wijnker et al. 2013; Rowan et al. 2015). However,
an �5.15-Mb region of Col/Col homozygosity on the
south arm of chromosome 5 surrounds the met1-3 allele,
which was backcrossed into Ler from Col in order to gen-
erate the met1 Col/Ler F1 used for mapping (Yelina et al.

2012). As this causes artefactual crossover calls, chromo-
some 5 or the south arm alone was excluded from subse-
quent analysis.
We divided and orientated chromosome arms such that

each began at the telomere and ended at the centromere
(Fig. 4A–C). We assigned a proportional value to each
crossover along the orientated chromosome arms (exclud-
ing the south arm of chromosome 5). Crossover positional
values were then binned in windows and normalized by
total number of events. We also analyzed mean DNA
methylation in CG, CHG, and CHH sequence contexts
in 10-kb windows proportionally along the chromosome
arms. In wild type, the subtelomeric (0%–0.2%) and peri-
centromeric (0.7%–0.9%) regions show elevated cross-
overs, whereas the densely methylated centromeric
(>0.9%) regions are crossover-suppressed (Fig. 4A). In
met1/+, we observed that CG methylation was depleted
along the chromosomes and most strongly in proximity
to the centromere, whereas non-CG methylation was
less reduced (Fig. 4B). In met1, the pericentromeric arm
(0.7%–0.9%) regions showed a significant decrease in
crossovers (2 × 2 χ2 test, P = 0.01082),whereas the subtelo-
meric (0%–0.2%) regions significantly increased cross-
over frequency (2 × 2 χ2 test, P = 0.0301) (Fig. 4B,C). This
genome-wide analysis confirms epigenetic remodeling of
crossover frequency in met1 along the telomere–centro-
mere axes of the chromosome arms, with the pericentro-
meric regions decreasing and the subtelomeric regions
increasing recombination.

Crossover remodeling in met1 involves the interfering
repair pathway

As total numbers of crossovers are similar between wild
type andmet1 but regional changes in recombination fre-
quency are observed, we hypothesized that these phenom-
ena are mediated via crossover interference (Yelina et al.
2012). To test this idea, we combined met1 with meiotic
recombination mutants where interfering and noninter-
fering crossover repair is altered—specifically, the zip4
ZMM mutant, which eliminates interfering crossovers
(Chelysheva et al. 2007), and fancm, where noninterfering
crossovers are increased at the expense of noncrossovers
(Crismani et al. 2012; Knoll et al. 2012). These mutants
were combined with fluorescent FTL lines that measure
crossovers within a 1.85-Mb euchromatic interstitial in-
terval on chromosome 1 (I1b) or a 5.40-Mb centromeric/
pericentromeric region of chromosome 3 (CEN3) (Fig.
4E,F; Berchowitz and Copenhaver 2008; Yelina et al.
2012). The CEN3 interval contains a central nonrecom-
bining region (�12,782,751–14,750,881 bp) (Copenhaver
et al. 1998, 1999; Giraut et al. 2011; Salomé et al. 2012;
Yelina et al. 2012) in addition to flanking 1.67- and 1.77-
Mb regions that show increasing gene density andmeiotic
recombination (Fig. 4F; Copenhaver et al. 1998, 1999; Gir-
aut et al. 2011; Salomé et al. 2012; Yelina et al. 2012; Choi
et al. 2013). Due to the centromeric region within
the CEN3 interval being crossover-suppressed, its overall
recombination rate (2.11 cM/Mb) is lower than that
of I1b (4.25 cM/Mb). Inbreeding met1 mutants causes
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Figure 4. Epigenetic remodeling along chromosome arms in met1 involves interfering crossovers. (A) Normalized wild-type (Col/Ler)
crossovers (black) from amale backcross population are plotted along the proportional length of chromosome arms, orientated from telo-
mere (TEL) to centromere (CEN). Wild-type (Col) percentage of DNAmethylation is plotted on the same X-axis. (Red) CG; (green) CHG;
(blue) CHH. (B) As inA except that normalized crossovers are from amet1 (Col/Ler) male backcross population, and DNAmethylation is
frommet1-3/+. (C ) Normalized crossovers from wild-type (red) andmet1 (blue) backcross populations plotted and overlaid as in A and B.
(D) Violin plots showing the distribution of physical distances (in megabases) between double crossover (DCO) events in wild-type and
met1male backcross populations. Observed double crossovers (brown) are compared with distances for an equivalent set of randomly dis-
tributed sites (purple). (E) Gene (green) and transposon (blue) sequence density (base pairs per 100 bp) along Arabidopsis chromosome
3.Wild-type percentage of total DNAmethylation (red) calculated for adjacent 10-kbwindows. The centromere is indicated by the vertical
dotted line and the I1b fluorescent interval is indicated by vertical black lines and colored triangles. (F ) As in E but for chromosome 3 and
theCEN3 interval. (G) I1b genetic distances (in centimorgans) in the indicated genotypes. Replicatemeasurements are indicated by black
dots, and mean values are indicated by red dots. (H) As in G but for CEN3 genetic distances.
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progressive genome demethylation and increasingly
severe developmental phenotypes, including decreased
fertility (Saze et al. 2003;Mathieu et al. 2007).We also pre-
viously observed that expression of fluorescent FTL trans-
genes becomes stochastic in met1 homozygotes (Yelina
et al. 2012). However, the effects ofmet1/+ heterozygosity
on recombination are comparable with met1 homozy-
gotes, consistent with demethylation of met1 gameto-
phytes during haploid mitotic divisions (Saze et al. 2003;
Yelina et al. 2012). Therefore, to avoid problems associat-
edwith analysis ofmet1 homozygotes, we analyzed cross-
overs in met1/+ heterozygotes.
Consistent with previous work, we observed that I1b

showed a significant increase in crossover frequency in
met1/+ (GLM, P < 2.0 × 10−16) (Fig. 4G; Supplemental Ta-
ble 17; Yelina et al. 2012). In contrast, the zip4 mutant
showed dramatic suppression of crossovers, consistent
with the majority of wild-type recombination in this in-
terval being ZMM-dependent (GLM, P < 2.0 × 10−16) (Fig.
4G; Supplemental Table 17; Chelysheva et al. 2007). Re-
combination was significantly suppressed in met1/+
zip4 double mutants compared with wild type (GLM,
P < 2.0 × 10−16) (Fig. 4G; Supplemental Table 17), which
demonstrates that met1/+ I1b recombination increases
are dependent on interfering crossovers. In contrast, ele-
vated I1b crossovers observed in fancm are not suppressed
in fancm zip4 double mutants due to this increase being
dependent on noninterfering crossovers (Fig. 4G; Supple-
mental Table 17; Crismani et al. 2012; Knoll et al. 2012;
Yelina et al. 2013). The fancm met1/+ double mutant
showed a further significant increase over fancm alone
(GLM, P = 2.19 × 10−6) (Fig. 4G; Supplemental Table 17),
indicating an additive effect of epigenetic remodeling by
met1/+ and increased noninterfering crossovers caused
by fancm. Finally, we generated fancm zip4 met1/+ mu-
tants and observed a significant reduction in crossovers
relative to fancm (GLM, P = 2.77 × 10−9) (Fig. 4G; Supple-
mental Table 17). We propose that, due to mutation of
multiple recombination and chromatin pathways in the
triple mutant, a negative interaction occurs that reduces
crossovers below the fancm level.
The CEN3 interval shows significant decreases in re-

combination in met1/+ compared with wild type, consis-
tent with previous observations (GLM, P < 2.0 × 10−16)
(Fig. 4H; Supplemental Table 18; Yelina et al. 2012). The
suppression of CEN3 crossovers observed in met1/+ was
not significantly different from that observed in zip4
(GLM, P = 0.141) and remained suppressed in zip4
met1/+ double mutants (Fig. 4H). We observed a signifi-
cant increase in CEN3 recombination in fancm compared
with wild type (GLM, P = 3.20 × 10−7), which was signifi-
cantly reduced in both fancm zip4 (GLM, P = 3.05 ×
10−16) and fancm met1/+ (GLM, P < 2.0 × 10−16) (Fig. 4H).
This is consistent with met1/+ causing loss of ZIP4-de-
pendent crossovers in the CEN3 region. CEN3 crossovers
were further significantly reduced in fancm zip4 met1/+
compared with fancm met1/+ (GLM, P < 2.0 × 10−16) (Fig.
4H). As for I1b, this again suggests that a negative in-
teraction is occurring when multiple recombination and
chromatin pathways are disrupted. Together, these data

support that epigenetic recombination remodeling in
met1 primarily reflects changes in the distribution of
the interfering, ZMM-dependent crossovers.

Crossover interference is active in met1 mutants

Based on our genetic analyses, we propose that the epige-
netic remodeling of crossover frequency observed inmet1
is driven by changes in interfering crossovers. Therefore,
we next tested whether interference strength was signifi-
cantly altered inmet1mutants compared with wild type.
Arrangement of three linked FTL transgenes expressing
different colors of fluorescent protein allows simultane-
ous measurement of crossovers in adjacent intervals and
calculation of interference (Berchowitz and Copenhaver
2008; Yelina et al. 2013). Therefore, we crossed met1 to
two independent three-color intervals on chromosomes
1 (I1bc) and 5 (I5ab), both of which are located interstitial-
ly. Due to MET1 being linked to I5ab, we performed
experiments with this interval using met1/+ heterozy-
gotes. We observed that all four single genetic intervals
tested showed significant crossover frequency increases
in met1, consistent with our previous observations at
I1b (Table 2; Supplemental Table 19). For I1bc, we did
not observe a significant difference in crossover interfer-
ence in met1 relative to wild type (P = 0.33) (Table 2; Sup-
plemental Table 19). However, for I5ab, we observed a
slight but significant decrease in interference in met1/+
(P = 6.5 × 10−05) (Table 2; Supplemental Table 19).
As an additional measure of crossover interference, we

identified 239 and 183 double crossover events in the
wild-type and met1 backcross low-coverage sequencing

Table 2. Analysis of crossover interference using meiotic
tetrads in wild type and met1

I1bc Col met1 P

I1b 7.0 cM 9.7 cM 4.50 × 10−13

I1c 16.7 cM 20.2 cM 2.60 × 10−9

I1b without adjacent
crossover

8.7 cM 12.5 cM

I1b with adjacent
crossover

3.1 cM 4.8 cM

Total tetrads 14,701 11,259
Interference 0.35 0.38 0.33

I5ab Col met1/+ P

I5a 25.61 cM 31.16 cM 1.71 × 10−11

I5b 15.34 cM 17.39 cM 5.83 × 10−4

I5a without adjacent
crossover

31.68 cM 38.30 cM

I5a with adjacent
crossover

11.04 cM 16.53 cM

Total (tetrads) 10,733 10,774
Interference 0.35 0.43 6.5 × 10−05

χ2 tests were used to assess significant differences in genetic
distances using the number of tetrads with one or two cross-
over events (1/2PD + 3NPD; [PD] parental ditype; [NPD] non-
parental ditype) versus nonrecombinant tetrads. The
interference significance tests were performed using Stahl Lab
online tools (http://molbio.uoregon.edu/~fstahl).
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data (excluding chromosome 5) (Supplemental Table 16).
Physical distances between double crossover events
(mean wild type, 11.58 Mb; met1, 12.67 Mb) were greater
than an equivalent set of randomly distributed events in
both wild type and met1 (mean 7.41 and 6.82 Mb), as ex-
pected due to crossover interference (Fig. 4D). Observed
double crossover distances were slightly but significantly
greater in met1 compared with wild type (t-test, P =
0.0356) (Fig. 4D). Together, these data demonstrate com-
parable levels of crossover interference between wild
type andmet1, which is further consistent with epigenet-
ic crossover remodeling being mediated via interference.

Loss of centromeric CG methylation drives crossover
remodeling in met1

Themet1mutant shows loss of DNAmethylation in cen-
tromeric repetitive sequences in addition to dispersed re-
peats and gene body methylation in euchromatic regions
(Cokus et al. 2008; Lister et al. 2008; Stroud et al. 2013).
We therefore sought to investigate which changes in
DNA methylation drive epigenetic crossover remodeling
inmet1.Tosimultaneouslymeasureeuchromaticandhet-
erochromatic recombination rates, we generated a double
420-CEN3 chromosome3 reporter line (Melamed-Bessudo
et al. 2005; Yelina et al. 2012). The seed-based 420 and pol-
len-based CEN3 fluorescent intervals allow euchromatic
and pericentromeric regions to bemeasured for crossovers
in the same individuals (Fig. 5; SupplementalTable20).We
crossed 420-CEN3 to naïve wild-type Col,met1/+ hetero-
zygotes, andmet1homozygotes andmeasured genetic dis-
tances in the resulting F1 progeny (Fig. 5A; Supplemental
Tables 20–22). For crosses to met1/+, we selected
420-CEN3met1/+F1 progeny for analysis.Consistentwith
previous observations, crossover frequency in the euchro-
matic 420 interval increased (GLM, met1/+, P = 2.72 ×
10−4;met1, P = 9.02 × 10−3) and the pericentromericCEN3
interval decreased (GLM, met1/+, P = 7.91 × 10−15; met1,
P = 4.23 × 10−36) in met1/+ and met1 progeny compared
with naïve Col (Fig. 5A; Yelina et al. 2012). Importantly,
we observed a negative correlation between 420 andCEN3
crossovers whenmeasured in the same individuals (Spear-
man’s, r =−0.53,P = 0.0063) (SupplementalTable 20). This
is consistent with compensatory recombination changes
between pericentromeric and euchromatic chromosomal
domains driven by interference inmet1 backgrounds.

Greater variation in the 420 and CEN3 recombination
rates was observed within the met1/+ individuals ana-
lyzed compared with Col-0 wild-type controls (Fig. 5A).
This is consistent with epigenetic divergence observed
duringmet1/+ inbreeding as a consequence ofMET1 func-
tion in maintaining CGmethylation during the post-mei-
otic gametophytic cell divisions (Saze et al. 2003).
Therefore, we sought to correlate variation inmethylation
patterns between thesemet1/+ individuals, as assessed by
whole-genome bisulfite sequencing and meiotic recombi-
nation rates. We generated bisulfite sequencing data for a
420-CEN3 naïve control, 14 420-CEN3met1/+ F1 individ-
uals, and amet1/+ heterozygote control that was the prog-
eny of a self-fertilized met1/+ plant (referred to here as

met1/+) (Supplemental Table 20). We obtained an average
coverage of �13.7× for each cytosine, with DNA methyl-
ation false positive rates tested using the unmethylated
chloroplast genome that were 0.31%, 0.34%, and 0.36%
for CG, CHG, and CHH contexts, respectively (Supple-
mental Tables 23–24). At the chromosome scale, the
420-CEN3 met1/+ individuals showed decreased CG
methylation that was intermediate between the wild-
type and met1/+ controls (Fig. 5B). DNA methylation
loss was less pronounced in 420-CEN3 met1/+ F1 individ-
uals compared with the met1/+ control due to one chro-
mosome in 420-CEN3 met1/+ F1 individuals being
inherited from the wild-type parent carrying the fluores-
cent crossover reporters (Fig. 5B). We observed less reduc-
tion in CHG and CHH DNA methylation in 420-CEN3
met1/+ compared with CG methylation, as expected
(Fig. 5B; Cokus et al. 2008; Stroud et al. 2013). A similar
pattern was observed for CG methylation within trans-
posable elements and gene bodies, where methylation
was depleted in the 420-CEN3 met1/+ F1 individuals to
a level intermediate between wild-type and met1/+ con-
trols (Fig. 5C; Stroud et al. 2013). Therefore, our 420-
CEN3 met1/+ individuals represent a range of methyla-
tion states intermediate between wild type and met1/+,
with a predominant loss of CG methylation.

To investigate the relationship between recombination
and DNA methylation, we divided the 14 420-CEN3
met1/+ F1 individuals into five groups based on CEN3 ge-
netic distances (Fig. 5E; Supplemental Table 20). We then
calculated levels of DNA methylation in CG, CHG, and
CHH contexts within CEN3 and 420 and correlated these
with crossover frequencies in themeasured intervals (Sup-
plemental Table 25). We observed that CEN3 recombina-
tion and CEN3 CG DNA methylation were positively
correlated (Spearman’s rank, r = 0.768, P = 0.0013) (Fig.
5D,E; Supplemental Table 26). Changes in recombination
correlated comparably strongly with CG methylation in
the core versus flanking regions within CEN3 (left flank,
r = 0.729, P = 0.0029; right flank, r = 0.745, P = 0.0014;
core, r = 0.786, P = 0.0008) (Supplemental Table 26). This
is consistent with loss of CGmethylation within the cen-
tromere and surrounding regions driving changes in inter-
fering crossovers in met1/+. No significant correlations
were detected between recombination and CG methyla-
tion outside ofCEN3 orwithinCEN3 in non-CG sequence
contexts (Supplemental Table 26). For control compari-
sons, we correlated CEN3 recombination with CG meth-
ylation levels in the other chromosome centromeres and
with 5 Mb of randomly chosen 1-kb probes throughout
the genome and observed no significant correlations (Sup-
plemental Table 26). We observed a significant negative
correlation between 420 recombination and levels of CG
methylation within CEN3 (Spearman’s rank, r =−0.683,
P = 0.005) (Fig. 5D; Supplemental Table 26), which is again
consistent with demethylation of the centromeric regions
driving met1/+ crossover remodeling. We correlated 420
centimorgans with 420 DNA methylation in CG, CHG,
and CHH contexts, where CG and CHH were not signifi-
cant, but a positive correlation with CHGwas observed (r
= 0.542, P = 0.037). As a control comparison, we correlated
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420 centimorgans to CG methylation levels in two com-
parably sized subtelomeric regions on the north and south
arms of chromosome 1 and did not observe significant
relationships (Supplemental Table 26). Together, this sup-
ports that epigenetic remodeling of interfering crossovers
observed in met1 is driven by loss of CG context meth-
ylation within the centromeric and pericentromeric
regions.

DNA DSB foci are unchanged in met1

To investigate the cause of crossover remodeling observed
in met1, we considered whether the meiotic DSBs that
initiate homologous recombination were altered. Meiotic
DSBs can be analyzed cytologically using anther spreads
and immunostaining for phosphorylated γ-H2A.X (Fig.
6A–F; Table 3; Supplemental Table 27; Sanchez-Moran

Figure 5. Loss of centromeric CG DNA methylation drives crossover remodeling in met1. (A) 420 and CEN3 genetic distances (in cen-
timorgans) in the indicated genotypes. Replicate measurements are indicated by black dots andmean values are indicated by red dots. (B)
DNAmethylation (percentage) along chromosome 3 is shown separately for CG, CHG, and CHH sequence contexts. Wild-type (red) and
met1/+ (blue) controls are shown, along with 14 420-CEN3met1/+ F1 samples that are color-coded according to theCEN3 recombination
rate. (Red) Highest; (blue) lowest. The centromere is indicated by vertical dotted lines, and the 420 and CEN3 fluorescent intervals are
indicated by the vertical black lines and colored triangles. (C ) Average CGmethylation within scaled windows across all genes and trans-
posons and in 4-kb upstream and downstream regions. Samples are color-coded according toCEN3 centimorgans, as in B. Vertical dotted
lines indicate gene TSSs and TTSs or transposon start and end coordinates. (D) Correlations betweenCEN3CGmethylation andCEN3 or
420 genetic distances (in centimorgans). Spearman’s correlation values, r, are shown with P-values. (E) Plots showCGDNAmethylation
for chromosome 3 (as in B) separately for groups of 420-CEN3 F1 met1/+ individuals, according to CEN3 genetic distance (as indicated).
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et al. 2007; Ferdous et al. 2012). γ-H2A.X shows numerous
foci on leptotene stage meiotic chromosomes, which are
dependent on SPO11 and show numbers comparable
with RAD51/DMC1 recombinase foci (Sanchez-Moran
et al. 2007; Ferdous et al. 2012). At leptotene stage, meiot-
ic chromosomes are observed to form euchromatic thin fi-
bers connected via the meiotic axis protein ASY1, with
clustered heterochromatic chromocenters containing
the centromeres (Fransz et al. 2002; Ferdous et al. 2012;
Yelina et al. 2012). We therefore immunostained wild-
type andmet1nuclei and counted γ-H2A.X foci associated
with ASY1 axial structures. In wild type, we observed a
mean of 172.3 foci per nucleus with a low number of
foci within the DAPI-dense chromocenters (mean = 5.8)
(Fig. 6A–C; Table 3; Supplemental Fig. S2; Supplemental
Table 27). We did not observe a significantly different
number of foci inmet1 nuclei (mean = 176.5; GLMassum-

ing a Poisson distribution, P = 0.441) or increased numbers
within the chromocenters (mean = 5.3; GLM assuming a
Poisson distribution, P = 0.571) (Fig. 6A–F; Table 3; Sup-
plemental Table 27). Therefore, epigenetic crossover re-
modeling in met1 is not associated with greater
numbers of DSB-associated γ-H2A.X foci or changes to
DSB foci in the heterochromatic regions. This indicates
that changes to the meiotic recombination pathway in
these regions are likely occurring downstream from DSB
formation.

Loss of DNA methylation in met1 and ddm1 is known
to cause transcriptional up-regulation and mobilization
of transposable elements (Miura et al. 2001; Zhang et al.
2006; Lister et al. 2008). As transposition can generate
DSBs,weconsideredwhether this phenomenoncouldcon-
tribute to met1 meiotic phenotypes. For example, DSBs
from exogenous DNA damage agents (e.g., cisplatin) or

Figure 6. Meiotic DNA DSB foci are unchanged in
met1. (A–F ) Localization of ASY1 (green) and γ-H2A.
X (red) in wild-type (A–C ) and met1-3 (D–F) nuclei at
leptotene. DNAwas stained with DAPI (blue). Dense-
ly DAPI-staining chromocenters are marked with
white arrowheads. The inset boxes show magnifica-
tions of the centromeric regions, with yellow arrow-
heads marking γ-H2A.X foci localized within the
DAPI-dense regions (Supplemental Fig. 2). Bars, 10
μm. (G–O) DAPI-stainedmeiotic chromosome spreads
of wild-type (G–I ), spo11-1 (J–L), and met1 spo11-1
(M–O) nuclei at late prophase I (G,J,M ), metaphase I
(H,K,N), and tetrad (I,L,O) stage. Bars, 10 μm.
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X-rays can promote crossovers inArabidopsis andCaeno-
rhabditis elegans, respectively (Sanchez-Moran et al.
2007; Youds et al. 2010). The spo11-1 mutant is almost
completely sterile due to a failure in homologous chromo-
some pairing and synapsis caused by an absence of meiot-
ic DSBs (Grelon et al. 2001). Therefore, if met1 generates
ectopic meiotic DSBs that result in crossovers, then
spo11-1 met1 fertility should increase. We compared
seed set in spo11-1 and spo11-1 met1 double mutants
and did not observe an increase in fertility (Supplemental
Table 28). We also performed DAPI staining on meiotic
nuclei from anther spreads (Fig. 6G–O). In wild type,
paired homologous chromosomes align along the meta-
phase I plate as five bivalents connected via chiasmata
(Fig. 6H). In spo11-1 mutants, 10 unpaired univalents
are observed at the same stage (Fig. 6K; Grelon et al.
2001). The spo11-1 met1 double mutant showed patterns
of univalent segregation comparable with spo11-1 single
mutants (Fig. 6N). Together, this indicates that any trans-
position-associated DSBs occurring in met1 are unable to
drive meiotic recombination and crossover formation to a
significant level.

Discussion

We demonstrated that establishment of DNA methyla-
tion via the RdDM pathway is sufficient to potently sup-
press euchromatic meiotic recombination hot spots in
Arabidopsis. This is consistent with low levels of DNA
methylation observed atArabidopsis andmaize crossover
hot spots (Choi et al. 2013; Wijnker et al. 2013; Rodgers-
Melnick et al. 2015) and the widespread suppression of re-
combination in plant heterochromatin (Copenhaver et al.
1999; Fu et al. 2002; Liu et al. 2009; Giraut et al. 2011;
Mayer et al. 2012; Salomé et al. 2012; The Tomato Ge-
nome Consortium 2012; Bauer et al. 2013; Choulet et al.
2014; Li et al. 2015; Rodgers-Melnick et al. 2015). We
show that RdDM is associated with acquisition of
H3K9me2 and increased nucleosome occupancy at the
targeted hot spots. Therefore, the combination of these
chromatin modifications is likely to suppress recombina-
tion (Fig. 7A). As hot spots associate with promoter-asso-
ciated chromatinmarks, including H3K4me3 and H2A.Z,
RdDM may also exclude these modifications and thereby
reduce crossovers (Liu et al. 2009; Choi et al. 2013;
Wijnker et al. 2013). It is also important to consider that
hot spots may vary in both their sensitivity to RdDM
and the effect of methylation on crossovers, depending
on their location in euchromatic versus pericentromeric
regions.

As DNA methylation locally inhibits crossover hot
spots, this leads to a prediction that loss of CG methyla-
tion in met1 centromeric/pericentromeric regions would
up-regulate crossovers. However, the opposite is true,
with met1 pericentromeric regions showing reduced
crossovers, coupled to compensatory increases in the chro-
mosome arms (Colomé-Tatché et al. 2012; Melamed-Bes-
sudo and Levy 2012; Mirouze et al. 2012; Yelina et al.
2012). We explain these observations, as the hot spot–
RdDM and met1 experiments are not exact reciprocals of
one another in terms of epigenetic change. For example,
we show that RdDM establishes CG and non-CG DNA
methylation, H3K9me2, and increased nucleosome occu-
pancy at the 3a and 3b hot spots, causing suppressed re-
combination (Fig. 7A). However, in met1, while CG-
contextDNAmethylation is strongly reduced, substantial
non-CG methylation and H3K9me2 remain (Fig. 7B;
Cokus et al. 2008; Lister et al. 2008; Deleris et al. 2012;
Stroud et al. 2013). Therefore, to understand these interac-
tions, it will be necessary to obtain further recombination
measurements in mutants with different alterations to
heterochromatin.
In order to understand meiotic recombination patterns

in wild type versus met1, it is also important to consider
higher-order chromosome structure. For example, Arabi-
dopsis centromeres physically interact with each other
in Arabidopsis somatic nuclei, which is cytologically
manifested as the DAPI-dense chromocenters fromwhich
euchromatin loops emanate (Franszet al. 2002; Soppe et al.
2002; Probst et al. 2003; Moissiard et al. 2012; Feng et al.
2014; Grob et al. 2014; Wang et al. 2014). In met1 and
ddm1, the chromocenters become cytologically decon-
densed and are observed to interact with euchromatin to
a greater extent, as measured by Hi-C (chromosome cap-
ture followed by high-throughput sequencing) (Soppe
et al. 2002; Probst et al. 2003; Mathieu et al. 2007;
Moissiard et al. 2012; Feng et al. 2014). It is presently un-
clear how these changes to higher-order chromosome or-
ganization will interact with the chromatin loop–axis
arrangement ofmeiotic chromosomes to influence recom-
bination (Kleckner 2006; Storlazzi et al. 2010; Panizza
et al. 2011; Ferdous et al. 2012). We propose two models
to explain crossover remodeling inmet1 (Fig. 7B). First, al-
though the spatial distribution ofDSB foci is unchanged in
met1, the relative timing of DSB formation between eu-
chromatin andheterochromatinmay be altered. For exam-
ple, it is known that replicationoccurs later inArabidopsis
heterochromatin (Lee et al. 2010) and that replication is
tightly coupled to progression of meiotic recombination
in budding yeast (Borde et al. 2000;Murakami and Keeney

Table 3. γ-H2A.X foci counts in wild-type and met1 leptotene nuclei

Genotype
γ-H2A.X foci
(total), mean

γ-H2A.X foci (total),
standard deviation

γ-H2A.X foci
(chromocenters), mean

γ-H2A.X foci (chromocenters),
standard deviation

Col 172.3 27.2 5.81 4.1
met1-3 176.5 39.4 5.25 3.4

Total foci number are listed in addition to those located within the densely DAPI-staining chromocenters, which contain the centro-
meres (Yelina et al. 2012).
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2014).Therefore, it is possible thatmet1 could alter the rel-
ative timing of replication between heterochromatin and
euchromatin and thereby influence patterns of crossover
designation. Second, we propose that loss of CGmethyla-
tion alters met1 chromosome structure, including its in-
teraction with the meiotic axis, such that interhomolog
invasion sites closer to the centromere are inhibited
from crossover designation. As total crossovers are similar
in number inmet1 and as interference is active, crossovers
are favored in the gene-rich arms (Fig. 7B).

Together, our results highlight the importance of epige-
netic information for determining distributions ofmeiotic
recombination along eukaryotic chromosomes. We dem-
onstrate that analyzing the roles of chromatin marks at
both the whole chromosome and hot spot scales is impor-

tant. Although DNAmethylation is widely conserved, its
distribution and function between eukaryotes vary, and it
has been lost from several model species (Feng et al. 2010;
Zemach et al. 2010). For example, within fungi, DNA
methylation strongly suppresses crossovers in Ascobolus
immersus (Maloisel and Rossignol 1998), whereas this
modification is absent in Schizosaccharomyces pombe
and Saccharomyces cerevisiae. However, in fission yeast,
other heterochromaticmarks, includingH3K9me2,medi-
ate a repressive effect on meiotic crossovers (Ellermeier
et al. 2010). Therefore, it will be important to study the in-
teractions of DNAmethylation and additional markers of
heterochromatin in multiple species to more completely
understand control of meiotic recombination by epigenet-
ic information.
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Figure 7. Control ofmeiotic recombination byDNAmethylation inArabidopsis. (A) Epigenetic changes associatedwithRdDMat cross-
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Materials and methods

Plant material

Arabidopsis lines used in this study were Col-0, Ler-0, met1-3
(Saze et al. 2003), fancm-1 zip4-2 (Crismani et al. 2012), and
spo11-1-3 (SALK_146172) (Stacey et al. 2006). Plants were grown
at 20°C and 60% humidity with a long day photoperiod (16 h
light) and light intensity of 150 μmol. Genotyping of met1-3
was performed by PCR amplification using met1-3-F and met1-
3-R oligonucleotides for wild type and met1-3-F and met1-3-T
for met1-3 (oligonucleotide sequences are provided in Supple-
mental Table 29). Genotyping of fancm-1 was carried out by
PCR amplification using fancm-F and fancm-R oligonucleotides
followed byMboII restriction endonuclease digestion. zip4-2 gen-
otyping was carried out by PCR amplification using oligonucleo-
tides zip4-F and zip4-R for the wild type and zip4-R and SALK-LB
for the T-DNA alleles. Genotyping for spo11-1-3 was performed
as described (Stacey et al. 2006).

RdDM

PCR fragments corresponding to HP1–HP5 were amplified using
overlap PCR fromCol-0 genomicDNAsuch that a unique restric-
tion site was introduced into the hairpin (Supplemental Tables 4,
29). The resulting amplification products were cloned into
pENTR/D-TOPO (Life Technologies) and then into pJawohl-
Act2 using Gateway LR Clonase II (Life Technologies) to produce
pJawohl-Act2-HP plasmids.Arabidopsis plantswere transformed
using floral dippingwithAgrobacteriumGV3101 carrying pMP90
helper plasmids.

Northern blot and hybridization analysis of small RNAs

Five to seven inflorescences were collected per genotype, and to-
tal RNA was extracted using TRI reagent (Sigma). Ten micro-
grams of total RNA was separated on 15% polyacrylamide/8 M
urea gels, blotted on Zeta probe membrane (Bio-Rad), and hybrid-
ized with 32P-labeled probes synthesized using Rediprime II kits
(Amersham Biosciences). Hybridization was carried out over-
night at 39°C in PerfectHyb Plus hybridization buffer (Sigma).
Templates for 32P-labeled probes were obtained by PCR amplifi-
cation of Arabidopsis genomic DNA.

DNA methylation analysis

DNA isolated from Arabidopsis closed flower buds was used for
McrBC analysis. One-hundred nanograms of DNA was digested
with 10 U of McrBC (New England Biolabs) for 6 h at 37°C. The
enzymewas heat-inactivated for 20min at 65°C. Two nanograms
of McrBC-digested DNAwas used as a template for PCR amplifi-
cation. For Sanger sequencing analysis, DNA sodium bisulfite
conversion was carried out using an EZ DNA methylation gold
kit (Zymo Research). Prior to conversion, DNA was digested at
the restriction sites introduced into the hairpin arms in order to
enrich for endogenous target sequences. Following conversion,
DNA was PCR-amplified using oligonucleotides designed as de-
scribed (Henderson et al. 2010). PCR products were cloned into
pGem-T Easy (Promega), and 15–26 individual clones were Sang-
er-sequenced to determine the percentage of DNA methylation
for cytosines in the amplified regions (Gruntman et al. 2008).
For genome-wide bisulfite sequencing, DNA was isolated from
leaves of 3- to 5-wk-oldArabidopsis plants. Onemicrogram of ge-
nomic DNAwas sheared to yield fragments with an average size
of 340 bp using a Covaris E220 instrument and purified using

Agencourt AMPure XP beads (ratio 1.8×; Beckman Coulter).
DNA was end-repaired and A-tailed using T4 DNA polymerase
and Klenow fragment (New England Biolabs) and purified again
using XP beads (ratio 1.8×). Finally, double-stranded paired-end
adapters were ligated using quick-stick ligase (Bioline), and
DNAwas purified using XP beads (ratio 1.8×). Four-hundred-fifty
nanograms of DNAwas used for sodium bisulfite conversion us-
ing an EZDNAmethylation gold kit. DNAwas quantified with a
Bioanalyzer 2100 using the high-sensitivity DNA kit (Agilent
Technologies) and size-selected to yield fragments with the aver-
age size of 400 bp using XP beads (ratio 0.8×). DNAwas barcoded
using PCR amplification with KAPA HiFi HotStart uracil+ ready
mix (Kapabiosystems) with PE1.0 and one of the iPCRtag 1–17
oligonucleotides and then purified using XP beads (ratio 1×),
and libraries were quantified on a Bioanalyzer 2100. Final librar-
ies were mixed in equal molar ratios to a final concentration of
10 nM and used for 150-bp paired-end sequencing on a HiSeq
2000 instrument. FastQ files were analyzed and DNA methyla-
tion was identified using Bismark (Krueger and Andrews 2011)
and SeqMonk (http://www.bioinformatics.bbsrc.ac.uk/projects/
seqmonk).

Pollen typing

Pollen typing was performed as previously described (Drouaud
and Mézard 2011; Yelina et al. 2012; Choi et al. 2013; Drouaud
et al. 2013). Genomic DNA was isolated from Col/Ler F1 or HP/
Ler F1 pollen and used for nested PCR amplifications using paren-
tal or crossover configurations of allele-specific oligonucleotide
primers (Yelina et al. 2012; Choi et al. 2013). To test for signifi-
cant differences in recombination frequency, we compared num-
bers of crossover molecules in wild-type and hairpin lines by
fitting a nonlinear least squares model (Bates and Watts 1988).
Themodel fit is given byXijk� Sk + P × Iparental( j) + P[1− Iparental( j)]
[Z− z × Imutant(k)], whereXijk is the log of the number of estimated
molecules for the ith observation, with the index j identifying
whether the estimation is for the parental or crossovermolecules,
and the index k indicatingwhether the estimation is forwild-type
or HP strains. The model thus describes for each observation a
strain effect (Sk). If the observation is for the parental molecules,
a parental effect (P) is added; if the observation is for crossover
molecules, the parental effect is modified by a crossover factor
[Z− z Imutant(k)], where z represents the change in the crossover
factor attributed to the HP line. The key result in the model fit
for evaluating whether the number of crossovers is influenced by
the hairpin is thus to evaluate whether z significantly deviates
from 0.

H3 and H3K9me2 ChIP

ChIP was performed as described (Johnson et al. 2002). Five mi-
crograms of antibodies ab1220 (Abcam) and ab1791 (Abcam)
was used to ChIP H3K9me2 and unmodified H3, respectively.
Primer sequences used for ChiP-qPCR are provided in Supple-
mental Table 29. Two biological replicates were performed for
each experiment, and each was analyzed using two technical
replicates.

Mapping crossovers via low-coverage sequencing

We applied a method to identify crossovers from low-coverage
(�0.5×–2×) sequencing, using 96 barcoded genomicDNA libraries
generated from recombinant individuals (Rowan et al. 2015) with
the following modifications. DNA was digested with 0.3 U of
dsDNA Shearase (Zymo Research) in a final volume of 15 µL.
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The resulting DNA fragments were end-repaired with 3 U of T4
DNA polymerase (New England Biolabs), 10 U of T4 polynucleo-
tide kinase (Thermo Fisher Scientific), and 1.25 U of Klenow frag-
ment (New England Biolabs) in the presence of 0.4 mM dNTPs in
a reaction volume of 30 µL for 30 min at 20°C. DNA fragments
were cleaned as described (Rowan et al. 2015), and the protocol
was followed until the DNA fragment size selection step. To
size-select, following barcoded Illumina adaptor ligation, 30 µL
of a mixture of eight concentrated DNA libraries was combined
in a tube containing 48 µL of a 1:1 mix of AMPure XP magnetic
SPRI beads (Beckman-Coulter; referred to as SPRI beads) inwater.
After 5 min of incubation at room temperature, the samples were
placed on amagnetic rack and allowed to clear before supernatant
was transferred to a fresh tube andmixedwith 0.12 vol of undilut-
ed SPRI beads. After 5min of incubation at room temperature, the
tubes were placed on a magnetic rack and allowed to clear. The
supernatants were discarded, and the beads were washed twice
with 80% ethanol. DNA was eluted in 20 µL of 10 mM Tris
(pH 8.0). Twelve microliters of the eluate was used for PCR am-
plification in a reaction volume of 50 µL using KAPA HiFi Hot-
Start ReadyMix PCR kit (Kapabiosystems) and the reported
DNA oligonucleotides (Rowan et al. 2015). Twelve cycles of am-
plification were performed, and PCR products were then purified
on SPRI beads (1× ratio) and quantifiedwith a Bioanalyzer. The re-
sulting libraries were subjected to paired-end 150-bp sequencing
on an Illumina NextSeq instrument.
We pooled data from 94 wild-type libraries and aligned reads to

the TAIR10 Col genome assembly using Bowtie 2 (Langmead and
Salzberg 2012). Variant sites were called using SAMtools and
BCFtools (Li et al. 2009). Sites were filtered to remove those
with qualities <100 and those with >2.5× mean coverage and re-
peat-masked as described previously (Choi et al. 2013). Sites
were also intersected with an independent set of high-quality
Ler SNP calls provided by K. Schneeberger, yielding a final set
of 153,842 SNPs. For each barcoded library, the number of reads
supporting reference versus variant bases at these sites was ob-
tained and used as input for the TIGER pipeline, and the cross-
overs identified were used for subsequent analysis (Rowan et al.
2015). To test for significant differences in crossovers between
wild type andmet1, we used a GLM assuming a negative binomi-
al distribution. To analyze chromosomal distributions, chromo-
some arms were split and orientated such that they began at
the telomere and ended at the centromere. Each crossover was as-
signed a proportional distance value along the chromosome arms.
Events were binned into 100 windows, counted, and normalized
by total crossovers. A cubic smoothing spline was fitted to these
data using the R function smooth.spline and used for plotting. To
test for significant differences between regions of the chromo-
some arms, the counts inside and outside the region being consid-
ered in wild type and met1 were used to construct 2 × 2
contingency tables, and χ2 tests were performed. To analyze dou-
ble crossovers, we identified chromosomes with more than one
crossover and measured physical distances between the cross-
overs. For each double crossover chromosome, we generated the
same number of randomly distributed sites and used the distanc-
es between these positions for random comparisons.

Seed and pollen fluorescence measurement of crossovers

Fluorescent tetrad scoring and crossover interference calcula-
tions were carried out as described (Berchowitz and Copenhaver
2008). Flow cytometry on fluorescent pollenwas performed as de-
scribed (Yelina et al. 2012, 2013). Fluorescent seed scoring was
carried out as described (Melamed-Bessudo et al. 2005; Yelina
et al. 2012). To test whether recombinant and nonrecombinant
counts were significantly different between replicate groups, we

used a GLM.We assumed the count data are binomially distribu-
ted—Yi�B(ni,pi), where Yi represents the recombinant counts,
and ni is the total counts—and modeled the proportions Yi/ni.
Then, E(Yi/ni) = pi and

var(Yi/ni) = pi(1− pi)
ni

.

Thus, our variance function is V(µi) = µi(1− µi), and our link func-
tion must map from (0,1)→ (−∞,∞). We used a logistic link func-
tion, which is

g(mi) = logit(mi) = log
mi

1− mi
= bX + 1i,

where εi�N(0,σ2). Both replicates and genotypes were treated as
independent variables (x) in our model. We considered P-values
<0.05 as significant.

Cytological analysis

Chromosome spreads of Arabidopsis pollen mother cells (PMCs)
were immunostained as described (Ferdous et al. 2012). The fol-
lowing antibodies were used for immunostaining: α-ASY1 (rat,
1/500 dilution) (Armstrong et al. 2002) and α-γH2A.X (Ser 139,
rabbit, 1/100 dilution; Upstate Biotechnology, catalog no. 07-
164). Microscopy was conducted using a DeltaVision Personal
DV microscope (Applied Precision/GE Healthcare) equipped
with a CCD Coolsnap HQ2 camera (Photometrics). Image cap-
ture, image analysis, and processing were performed using Soft-
WoRx software version 5.5 (Applied Precision/GE Healthcare).
The images were deconvolved using the function “Mexican
hat” of SoftWoRx software version 5.5. Deconvolution improved
the contrast and resolution of images, allowing better visualiza-
tion of the signal.

Accession numbers

Accession numbers for the next-generation sequencing data in
this study have been uploaded to EMBL European Bioinformatics
InstituteAnnotare (https://www.ebi.ac.uk/fg/annotare) and are as
follows: for whole-genome bisulphite sequencing of met1-3/+,
ArrayExpress accession E-MTAB-3927; for mapping meiotic
crossovers in Arabidopsis using low-coverage whole-genome se-
quencing, ArrayExpress accession E-MTAB-3926.
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