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1  | INTRODUC TION

Chagas disease is a chronic disease caused by the protozoan para-
site Trypanosoma cruzi, which is mainly transmitted to humans and 
other mammals through contaminated feces of hematophagous 
bugs called triatomines (family Reduviidae). Less commonly, T. cruzi 
is transmitted congenitally, through blood transfusion and trans-
plantation, or from consumption of contaminated food or beverages 

(Rassi, Rassi, & Marin-Neto, 2010; WHO, 2017). Chagas disease is a 
major public health problem in Latin America where it is estimated 
that at least six to seven million people are currently infected, caus-
ing incapacity in infected individuals and more than 10,000 deaths 
per year (WHO, 2017).

The initial acute phase of Chagas disease develops 1–2 weeks 
after the infection and can be characterized by an elevated para-
sitemia associated with nonspecific signs and symptoms such as 
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Abstract
Introduction: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is 
a major public health problem in the Americas, and existing drugs have severe limita-
tions. In this context, a vaccine would be an attractive alternative for disease control. 
One of the difficulties in developing an effective vaccine lies in the high genetic di-
versity of T. cruzi. In this study, we evaluated the level of sequence diversity of the 
leading vaccine candidate Tc24 in multiple parasite strains.
Methods and Results: We quantified its level of polymorphism within and between T. 
cruzi discrete typing units (DTUs) and how this potential polymorphism is structured 
by different selective pressures. We observed a low level of polymorphism of Tc24 
protein, weakly associated with parasite DTUs, but not with the geographic origin 
of the strains. In particular, Tc24 was under strong purifying selection pressure and 
predicted CD8+ T-cell epitopes were mostly conserved. Tc24 strong conservation 
may be associated with structural/functional constrains to preserve EF hand domains 
and their calcium-binding loops, and Tc24 is likely important for the parasite fitness.
Discussion: Together, these results show that a vaccine based on Tc24 is likely to be 
effective against a wide diversity of parasite strains across the American continent, 
and further development of this vaccine candidate should be a high priority.
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fever (Benck, Kransdorf, & Patel, 2018). Approximately 20%–30% 
of individuals infected with T. cruzi progress to the chronic stage and 
develop cardiomyopathy or more rarely megacolon or megaesopha-
gus (Benziger, do Carmo, & Ribeiro, 2017; Rassi et al., 2010; Ribeiro, 
Nunes, Teixeira, & Rocha, 2012). The current etiological treatments 
for Chagas disease, benznidazole or nifurtimox, result in a reduc-
tion in detectable parasitemia (Bern, 2011). However, these drugs 
can have severe side effects and limited efficacy has been demon-
strated in adults and advanced chronic patients (Morillo et al., 2015; 
Pecoul et al., 2016; Pérez-Molina et al., 2009). In this context, a 
vaccine would be an attractive and cost-effective alternative to im-
prove the control of Chagas disease (Beaumier, Gillespie, Hotez, & 
Bottazzi, 2013; Beaumier et al., 2016; Dumonteil et al., 2012).

Vaccination has the advantages of relying on short administra-
tion regimens, and the induction of multiple effector mechanisms 
against the pathogen may have high efficacy to control the infec-
tion and lower the possibilities of resistance (Bahloul et al., 2003; 
Boyer et al., 1997; Lai, Pakes, Ren, Lu, & Bennett, 1997; Lodmell & 
Ewalt, 2001; Lowrie et al., 1999). During the last decade, several 
vaccine types have been found immunogenic and protective in 
mouse models, providing proof-of-concept data on the feasibility 
of a preventive or therapeutic vaccine to control a T. cruzi infection 
(see for review Quijano-Hernandez & Dumonteil, 2011). However, 
one of the difficulties in developing an effective vaccine lies in the 
high levels of genetic variability of T. cruzi, which may lead to anti-
genic variability and immune evasion of some parasite strains (Haolla 
et al., 2009). Indeed, T. cruzi has been divided into seven discrete 
typing units (DTUs, TcI-VI) based on molecular markers (Telleria & 
Tibayrenc, 2017; Zingales et al., 2012), including two hybrid lin-
eages (TcV and TcVI), and one found mostly in bats (TcBat) (Marcili 
et al., 2009; Ramírez et al., 2014). Therefore, it remains essential to 
identify how this genetic diversity is distributed in the endemic re-
gions and to consider its impact on antigenic diversity for vaccine 
and diagnostic development.

The antigen Tc24 is one of the leading candidates for an immuno-
therapeutic vaccine against T. cruzi (Dumonteil et al., 2012; Gunter 
et al., 2016; Sanchez-Burgos et al., 2007). This protein of 24 kDa is 
ubiquitously expressed in all stages of T. cruzi strains (Guevara, Taibi, 
Billaut-Mulot, & Ouaissi, 1997; Umezawa et al., 1999) from multiple 
gene copies located in tandem arrays (Porcel et al., 1996). It has calci-
um-binding domains and is localized in the flagellar pocket (Hopkins 
et al., 2011; Ouaissi, Da Silva, Guevara, Borges, & Guilvard, 2001; 
Ouaissi et al., 1990). It is an immune modulator and possesses 
B-cell superantigenic properties (Cordeiro Da Silva, Espinoza, Taibi, 
Ouaissi, & Minoprio, 1998). This antigen facilitates immune escape 
by interfering with antibody-mediated responses, particularly the 
avoidance of catalytic antibodies (Gunter et al., 2016). These anti-
bodies are an innate host defense mechanism present in the naive 
repertoire, and catalytic antibody–antigen binding results in hydro-
lysis of the target (Gunter et al., 2016). The therapeutic adminis-
tration of a DNA vaccine encoding Tc24 can stimulate the immune 
response and lead to the control of disease progression in murine 
and canine models of T. cruzi infection (Limon-Flores et al., 2010; 

Quijano-Hernandez, Bolio-González, Rodríguez-Buenfil, Ramirez-
Sierra, & Dumonteil, 2008; Sanchez-Burgos et al., 2007). We have 
thus developed a recombinant protein expression system for the 
production of this vaccine candidate (Barry et al., 2019; Villanueva-
Lizama et al., 2018), and recombinant Tc24 protein in multiple for-
mulations can decrease parasitemia and cardiac parasite burden 
in immunized mice compared to controls (Dumonteil, Escobedo-
Ortegon, Reyes-Rodriguez, Arjona-Torres, & Ramirez-Sierra, 2004; 
Martinez-Campos et al., 2015; Sanchez-Burgos et al., 2007). Further 
enhancements of this vaccine candidate include the mutagenesis of 
four cysteine residues, which facilitates the production process of 
Tc24-C4 while maintaining its immunogenicity and protective effi-
cacy (Biter et al., 2018).

Therefore, the Tc24 antigen appears as a promising vaccine can-
didate, but little is known about the extent of its genetic variability 
among parasite strains. An initial study indicated about 97% sequence 
conservation of the Tc24 amino acid sequences among five T. cruzi 
strains from TcI, TcII, and TcVI DTUs (Dm28c, SilvioX10, Y, Tulahuen 
and CL) (Maldonado et al., 1997). In addition, Tc24-like genes are 
found in other species such as Trypanosoma conorhini, Trypanosoma 
freitasi, Trypanosoma lewisi, Herpetomonas megaseliae, Leptomonas 
seymouri, and Phytomonas serpens (Maldonado et al., 1997).

Accordingly, the aim of this study was to evaluate in detail the 
extent of Tc24 diversity in multiple T. cruzi parasite strains and DTUs. 
To do so, we quantified its level of polymorphism within and among T. 
cruzi DTUs from multiple countries, and evaluated how its polymor-
phism may be structured by selective evolutionary pressures. Such 
analyses have been found important to assess forces driving protein 
evolution (Bitencourt Chaves et al.., 2017; Kumar et al., 2018).

2  | MATERIAL S AND METHODS

2.1 | Tc24 sequences

Raw sequence reads from whole genome sequencing projects from 
32 T. cruzi strains were obtained from the NCBI Sequence Read 
Archive database for analysis, as well as five annotated genome se-
quences obtained from the TriTryp database (Table 1). These strains 
covered TcI to TcVI DTUs, although TcI was over-represented, and 
originated from multiple countries across the Americas.

Tc24 nucleotide sequences were extracted from the reads of T. 
cruzi strain genomes by rapid sequence mapping at a medium–low sen-
sitivity using the software Geneious 9.1. The aligned Tc24 sequence 
reads were annotated for variants using the SNP/Free Bayes function 
of Geneious (Garrison & Marth, 2012). Every significant change in the 
sequences was recorded to generate lists of Tc24 nucleotide sequence 
variants for each T. cruzi strain. For analysis of copy number, we used 
the annotated genomes of Dm28c (TcI) and TCC strains (TcVI), which 
have been obtained by long-read sequencing on a PacBio single-mo-
lecular real-time platform, and represent some of the most complete 
genome assemblies currently available for T. cruzi (Berná et al., 2018). 
These genomes were searched for Tc24 sequence using BLAST, and 
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only matches including the full-length coding sequence of Tc24 were 
considered. Similar BLAST searches of other assembled T. cruzi ge-
nomes were also performed. We calculated nucleotide diversity (π) and 
haplotype diversity (Hd) for Tc24 sequences. All the Tc24 nucleotide 
sequences were translated to the corresponding protein sequences 
using the software Geneious 9.1. Amino acid sequences were aligned 
using MUSCLE (Edgar, 2004a, 2004b), and phylogenetic trees were 

created using the Maximum-likelihood as implemented in PhyML. To 
determine whether there is a DTU or country effect in structuring 
Tc24 protein diversity, we compared phylogenetic distances (pairwise 
genetic distances) among nodes within and between different groups 
through a nonparametric Wilcoxon test using R software 3.6.1. We 
further tested for a spatial structure by evaluating isolation by distance 
through a Mantel test with 10,000 permutations.

2.2 | Analysis of selection pressures

Analysis of selection pressures on Tc24 nucleotide sequences was 
performed in MEGA software (10.0.4 version). We performed a sin-
gle-likelihood ancestor counting (SLAC) analysis, which uses a com-
bination of maximum-likelihood (ML) and counting approaches to 
infer nonsynonymous (dN) and synonymous (dS) substitution rates 
on a per-site basis for a given coding alignment and corresponding 
phylogeny. This method assumes that the selection pressure for 
each site is constant along the entire phylogeny (Kosakovsky Pond 
& Frost, 2005), and statistical significance is ascertained at each 
site using an extended binomial distribution (Kosakovsky Pond & 
Frost, 2005). We also performed a McDonald–Kreitman (MK) test 
to assess selection among T. cruzi Tc24 genes (Egea, Casillas, & 
Barbadilla, 2008). For estimates of divergence, we used a closely re-
lated T. rangeli Tc24 sequence (accession #KC544829).

2.3 | Epitope identification

We identified the Tc24 protein epitopes able to bind to the HLA-I 
alleles reported as more frequent in the Mexican mestizo population 
(HLA-A*02, A*24, B*35, and B*39) using SYFPEITHI, BIMAS-HLA, 
IEDB, RANKPEP, PROPRED-I, ANNPRED, COMPRED, SVMHC, 
PREDEP, and NETMHC algorithms. Predictions for HLA-A*02 were 
included in 10 algorithms, for HLA-A*24 in 5 algorithms, for HLA-
B*35 in 10 algorithms, and for HLA-B*39 in 6 algorithms. For each 
HLA allele, the 10 best peptides predicted by each analysis program 
were selected according to their prediction value. A consensus anal-
ysis was carried out with the peptides selected for each allele, and 
we selected the peptides that were predicted by ≥5 programs for the 
HLA-A*2 allele, for ≥3 programs for the HLA-A*24 allele, ≥5 for the 
allele HLA-B*35, and ≥3 for allele HLA-B*39 (Teh-Poot et al., 2015). 
Finally, the number of peptides that can be recognized by each of 
the alleles evaluated and their location in the amino acid sequence 
of the corresponding protein was determined (Doytchinova, Guan, 
& Flower, 2006).

2.4 | Mapping of amino acid variants on 3D 
protein structure

We used the previously determined 3D structure of T. cruzi Tc24 
protein (Wingard et al., 2008) to map the position of sites under 

TA B L E  1   List of Trypanosoma cruzi strains

Strains DTU
Country 
of origin

Arequipa TcI Peru

Bug2148a  TcI Brazil

CGl14 TcI Colombia

Corpus Christi TcI USA

Dm28ca  TcI Colombia

H1b TcI Mexico

H2 TcI Panama

H3 TcI Panama

H5 TcI Panama

H6 TcI Panama

H7 TcI Panama

H9 TcI Panama

H12 TcI Panama

H14 TcI Panama

H15 TcI Panama

Jose TcI Brazil

TBM3324 TcI Ecuador

TBM3479B1 TcI Ecuador

TBM3519W1 TcI Ecuador

TBM3406B1 TcI Ecuador

TD23 TcI USA

TD25 TcI USA

V1 TcI Panama

V2 TcI Panama

V3 TcI Panama

X10462 TcI Venezuela

X12422 TcI Venezuela

Esmeraldo TcII Brazil

Y TcII Brazil

231a  TcIII Brazil

M6241 TcIII Brazil

CanIII TcIV Brazil

9280 cl2 TcV Bolivia

CLBrenera  TcVI Brazil

H1a TcVI Panama

TCCa  TcVI Argentina

Tula cl2 TcVI Chile

aIndicates assembled genomes obtained from the TriTryp database. 
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significant selection pressure, and assess potential structural and 
functional constrains on the protein. Molecular graphics and visu-
alization of residues under selection pressure were performed with 
UCSF Chimera (Pettersen et al., 2004).

3  | RESULTS

We analyzed the full genome sequences currently available from 37 
T. cruzi strains, to identify a total of 367 Tc24 nucleotide sequences, 
corresponding to 96 unique Tc24 protein sequences (211 amino 
acids) with 1 to 7 variant protein sequences per strain/genome. 
Most strains (28/37) had two sequence variants, two had a unique 
Tc24 protein sequence, and some (8/37) presented 3–7 sequence 
variants. Phylogenetic analysis of this intra-strain sequence diver-
sity showed two clear clusters of sequences, with a similar level of 

sequence diversity irrespective of the DTU of the strains (Figure 1a-
d). These data indicate a multicopy gene within a diploid genome, 
with limited sequence diversity among the respective gene copies 
within each genome. Indeed, further analysis of Dm28c (TcI) and 
TCC (TcVI) genome sequences indicated the presence of 60 copies 
of full-length Tc24 genes in the haploid Dm28c genome and 43 cop-
ies in the diploid TCC genome, located in tandem arrays in two or 
three contigs, respectively.

Phylogenetic analysis of Tc24 sequence diversity among strains 
and DTUs indicated multiple clusters of sequences, indicating some 
level of sequence diversity (Figure 1e). Nucleotide diversity (π) was 
0.00957 ± 0.00188, and haplotype diversity (Hd) was 0.958 ± 0.012. 
However, this genetic structuration was not associated with the geo-
graphic origin of the strains, and somewhat loosely with the DTUs, 
with four main clusters of sequences corresponding to TcI DTU, and 
two clusters of sequences from other DTUs. Statistical analysis of 

F I G U R E  1   Relationships among Tc24 protein sequences. The phylogeny for Jose, Esmeraldo, 9,280 cl1, and TCC strains is shown in a–d, 
respectively. The phylogeny with all the strains (N = 37) is shown in (e). Each DTU is color-coded as indicated. V1–V7 after strain names 
indicate sequence variants for each strain
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pairwise genetic distances among sequences further supported the 
lack of structure according to the country of origin (Wilcoxon test 
among countries, W = 4,948.5, p = .9). A Mantel test also indicated a 
lack of isolation by distance (R = −.0098, p = .48). On the other hand, 
there was a significant structuring according to DTUs (Wilcoxon 
test, W = 4,069.5, p = .022), although this was mostly due to differ-
ences between TcI and the other DTUs, as there was no structuring 
according to the DTU when excluding TcI (Wilcoxon test, W = 5,243, 
p = .55), which represented most (70/96) of the sequences.

We then analyzed in more detail how sequence variation was 
distributed within the Tc24 protein sequence. From the full protein 
sequence of 211 amino acids, sequence variation occurred at only 36 
sites (17%), and the remaining amino acids were conserved (175/211, 
83%) (Figure 2). Of the variant sites, only a few presented variant 
frequencies in over 2% of the sequences (sites 33, 71, 79, 85, and 
86 for example). However, variant amino acids often had compara-
ble physicochemical structures such as for site 66 or 79. Thus, Tc24 

sequence diversity appeared to be focused on a limited number of 
sites within the protein, which is otherwise highly conserved among 
T. cruzi strains. The four cysteine residues that were mutated to 
serine in our vaccine antigen to facilitate its large-scale production 
process (C4, C66, C74, and C124) corresponded to highly conserved 
residues.

We next analyzed potential selective pressures on Tc24 to un-
derstand what factors may drive its conservation among parasite 
strains and performed an analysis of synonymous and nonsynon-
ymous mutations on our set of nucleotide sequences. Among the 
211 codons of the Tc24 protein, 35 have a dN-dS ratio significantly 
different from zero, indicative of selection pressure. The majority 
of these codons (28/35, 80%) presented an excess of synonymous 
substitutions and are under purifying (negative) selection, while only 
7/35 (20%) showed excess nonsynonymous substitutions and are 
under diversifying (positive) selection (Figure 3a and Table S1). Thus, 
overall, the Tc24 protein appeared under strong purifying selective 

F I G U R E  2   WebLogo of Tc24 protein 
sequence. Arrows under the sequence 
point to variant AA, with orange arrows 
for chemically similar AA and blue arrows 
for chemically different AA. S indicates 
C residues that have been mutated to S 
in the Tc24-C4 vaccine candidate. Amino 
acids are colored according to their 
chemical properties: polar amino acids 
(G,S,T,Y,C,Q,N) are green, basic (K,R,H) are 
blue, acidic (D,E) are red, and hydrophobic 
(A,V,L,I,P,W,F,M) amino acids are black
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pressure, which may explain its limited level of polymorphism. We 
further performed a MK test of selection using a T. rangeli Tc24 se-
quence to estimate divergence and found a neutrality index of 0.788, 
with a proportion of adaptive substitutions (α) of 0.211 (χ2 = 0.33, 
p = .56). This indicated that Tc24 tended to present an excess of 
nonsilent divergence (as expected under positive selection) within 
T. cruzi species.

To further understand the selection pressure on Tc24, we as-
sessed whether the codons under diversifying selection were lo-
cated within potential epitopes with a high probability of HLA 
binding. We predicted 25 Tc24 protein epitopes with a high probabil-
ity of binding to class I HLA alleles, with six binding to HLA-A*2, six 
to HLA-B*24, five to HLA-B*35, and eight to HLA-B*39 (Figure 3b). 
In addition, some epitopes were predicted to have a high probability 
of binding to more than one HLA allele, such as peptide RLDEFTSGV 
that can bind to alleles A*02 and B*39 and peptide EFLEFRLML that 
can bind to alleles A*02 and A*24. Furthermore, the protein se-
quence comprised between amino acids 109 and 136 included mul-
tiple overlapping predicted epitopes for several HLA alleles, which 
corresponds to a conserved region of the protein. Detailed analy-
sis of 17 nonredundant predicted epitopes indicated that only four 

(23%) had amino acids subject to significant diversifying selection 
(Figure S1), while seven (41%) had amino acids subject to significant 
purifying selection, and an additional six (35%) were conserved but 
without significant selection. Thus, selection pressure for immune 
evasion could explain part of the diversifying selection detected on 
some of Tc24 residues. In addition, four predicted epitopes included 
a cysteine residue that was mutated to serine in Tc24-C4 antigen, 
corresponding to C66 in one predicted epitope and C124 in three 
overlapping epitopes.

Finally, we assessed Tc24 structural/functional constrains that 
may contribute to the selection pressure detected on the pro-
tein by mapping the amino acids under purifying and diversifying 
selection onto the 3D structure of Tc24 (Wingard et al., 2008). 
Importantly, 17/35 sites under purifying selection (49%) were dis-
tributed within the four EF hand domains of the proteins, with four 
of these sites located within the Ca2+-binding loops (Figure 4), sug-
gesting some important constrains to conserve these functional 
domains. On the other hand, only one of the seven sites under 
diversifying selection (14%) was located in one of the EF hand do-
mains (EF3), and the remaining six sites were spread within some 
of the α-helices of Tc24, but not within these critical domains 

F I G U R E  3   Selective pressure and CD8+ T-cell epitopes in Tc24 antigen. (a) Selective pressures on Tc24 protein, expressed as dN-
dS ratio, were determined by SLAC analysis. Statistically significant selection pressure is highlighted in green (purifying selection) and 
red (diversifying selection), respectively. (b) Localization of the Tc24 protein epitopes with a high probability of binding to HLA-I alleles. 
Horizontal lines correspond to epitopes for the indicated HLA alleles
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(Figure 4). Thus, functional/structural constrains on Tc24 protein 
appear to contribute at least in part to the overall strong purifying 
selection acting of the protein.

4  | DISCUSSION

The development of an effective vaccine against T. cruzi needs to 
take into account the high levels of genetic variability of this parasite, 
as antigenic variability and immune evasion of some parasite strains 
may restrict the protective efficacy of a vaccine (Haolla et al., 2009). 
Nonetheless, limited studies have investigated the antigenic diver-
sity of T. cruzi vaccine antigens (Knight, Zingales, Bottazzi, Hotez, 
& Zhan, 2014). Members of the trans-sialidase family, the largest 
family of surface proteins of the parasite, were found to be under 
strong evolutionary pressure, likely from the immune system, for the 
selection of variants leading to immune evasion, and frequent re-
combination was identified as a contributing mechanism (Weatherly, 
Peng, & Tarleton, 2016). Diversifying selection and variant motifs 
within trypomastigote small surface antigen have also been identi-
fied, which has led to DTU-specific serological diagnostic of the in-
fection (Bhattacharyya et al., 2010). In this study, we evaluated the 
extent of polymorphism of one of the leading vaccine antigen, the 
flagellar-associated calcium-binding protein Tc24, among multiple T. 
cruzi strains from most of the American continent.

Our identification of Tc24 genes in the genomes of multiple 
strains of T. cruzi is in agreement with initial observations indi-
cating that it is a multicopy gene located in tandem arrays (Porcel 
et al., 1996). We further identified 120 and 43 full-length copies in 
Dm28c and TCC diploid genomes, respectively, indicating a signif-
icant variation in gene copy number among strains. Nonetheless, 
these genes encoded for a limited number of protein variants per 
strain, with only up to seven distinct Tc24 proteins encoded per ge-
nome. This limited diversity of Tc24 among gene copies within ge-
nomes suggests an important functional role of this protein in T. cruzi 
biology.

Phylogenetic analysis of Tc24 protein sequences from multiple 
parasite strains further indicated a low but significant sequence di-
versity among them. While no clear clustering of Tc24 sequences 
could be detected based on the geographic origin of the strains, 
some clustering seemed to exist among T. cruzi DTUs, with se-
quences from non-TcI strains found in two clusters, while sequences 
from TcI strains were divided into four main clusters. This is in rela-
tive agreement with the currently accepted evolutionary history of T. 
cruzi DTUs, with TcI considered an ancestral DTU, and TcV and TcVI 
being hybrids derived from TcII and TcIII (Ramírez, Torres, Torres, 
& Curto, 2017). Further analysis with additional sequences from 
non-TcI strains should help refine these phylogenetic relationships. 
Nonetheless, genetic diversity among Tc24 sequences was overall 
limited, with only 35/211 (17%) residues presenting some variants.

Further analysis indicated that Tc24 is under strong selective 
pressures, with the majority of the sites under significant purifying 
selection preventing any amino acid changes, and only a few sites 
subject to diversifying selection. Four predicted CD8+ epitopes had 
amino acids subject to significant diversifying selection, suggesting 
that Tc24-specific immune responses may in part be driving this 
diversifying selection pressure, to allow parasites with sequence 
variants to escape the immune response. However, the majority of 
predicted epitopes were conserved, suggesting that the balance of 
diversifying and purifying selection pressures was biased toward pu-
rifying selection, favoring protein conservation. Topological evalua-
tion of the distribution of selection pressure on the 3D structure of 
the protein suggested that constrains to preserve the structure and 
function of Tc24 four EF hand domains, which include calcium-bind-
ing loops, may contribute to the strong purifying selection acting on 
the protein.

Taken together, these results emphasize that Tc24 is an excellent 
target antigen for vaccine development. Its low level of polymor-
phism, combined with the lack of structure according to geographic 
location, suggests that a vaccine based on this protein should be 
effective against a wide diversity of parasites circulating in the 
American continent. Moreover, the strong purifying selective pres-
sures identified in this study demonstrate that this protein likely 
plays an important role in the parasite fitness, which strengthens 
the rationale for targeting the host immune response on this protein, 
as immune evasion would be less likely. Initial studies suggested that 
Tc24 may be used as antigen for the serological diagnostic of T. cruzi 
infection (Dumonteil et al., 2004; Villanueva-Lizama et al., 2018), 

F I G U R E  4   Location of selection pressures on the structure of 
the Tc24 antigen. EF hands are highlighted in blue (a and c). Sites 
under purifying selection are indicated in green, and sites under 
diversifying selection are indicated in red (b and d)
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and it has been incorporated as part of recombinant antigen mix-
tures in some commercial tests.

Implementing a vaccine targeting this protein may impact the 
evolution of the parasite in the field and induce a vaccine escape 
phenomenon, with could produce potentially detrimental outcomes 
such as an increase in parasite virulence. Such a response has been 
already identified for various diseases (Kennedy & Read, 2017); it is 
therefore important to consider. One possibility could be to develop 
a “cocktail” vaccine targeting multiple proteins in order to distrib-
ute these selective pressures over multiple parasite antigens and 
therefore further reduce the opportunities for the parasite to es-
cape vaccine-induced immunity. In that respect, we have proposed 
TSA-1 antigen as an additional component of our vaccine (de la Cruz 
et al., 2019; Dumonteil et al., 2004; Quijano-Hernández et al., 2013; 
Villanueva-Lizama et al., 2018), which was also found to be highly 
conserved among T. cruzi DTUs (Knight et al., 2014).

Nevertheless, this study has some limitations, the main one being 
that strain diversity may be further expanded as mentioned above, 
particularly for non-TcI parasite strains, as additional sequence vari-
ants may be present in these DTUs as well as from some of the less 
represented countries from our study. Further genotyping of Tc24 
antigens from strains currently circulating in Chagasic patients 
across the Americas should help expand our study.

In conclusion, we have demonstrated that Tc24 antigen is highly 
conserved in parasite strains originating from a wide geographic 
range in the Americas and covering DTUs TcI to TcVI. In addition, di-
versifying selection pressure was restricted to a few residues, which 
would limit immune evasion, and most of the protein was under 
strong purifying selection. This was likely associated, at least in part, 
with functional/structural constrains on the protein. These results 
indicate that Tc24 is an excellent vaccine candidate, which would be 
effective against a wide diversity of T. cruzi parasite strains across 
the continent. Further development of this vaccine candidate should 
represent a scientific and public health priority.
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