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Abstract
Objective  Whether increased myocardial oxygen 
demand could help explain the association of left 
ventricular (LV) hypertrophy with higher adverse 
event rate in patients with aortic valve stenosis (AS) is 
unknown.
Methods  Data from 1522 patients with asymptomatic 
mostly moderate AS participating in the Simvastatin-
Ezetimibe in AS study followed for a median of 4.3 
years was used. High LV mass–wall stress–heart rate 
product was identified as >upper 95% CI limit in normal 
subjects. The association of higher LV mass–wall stress–
heart rate product with major cardiovascular (CV) events, 
combined CV death and hospitalised heart failure and 
all-cause mortality was tested in Cox regression analyses, 
and reported as HR and 95% CI.
Results  High LV mass–wall stress–heart rate product 
was found in 19% at baseline, and associated with 
male sex, higher body mass index, hypertension, LV 
hypertrophy, more severe AS and lower LV ejection 
fraction (all p<0.01). Adjusting for these confounders 
in time-varying Cox regression analysis, 1 SD higher LV 
mass–wall stress–heart rate product was associated with 
higher HR of major CV events (HR 1.16(95% CI 1.06 to 
1.29)), combined CV death and hospitalised heart failure 
(HR 1.29(95% CI 1.09 to 1.54)) and all-cause mortality 
(HR 1.34(95% CI 1.13 to 1.58), all p<0.01).
Conclusion  In patients with initially mild–moderate 
AS, higher LV mass–wall stress–heart rate product 
was associated with higher mortality and heart 
failure hospitalisation. Our results suggest that higher 
myocardial oxygen demand is contributing to the higher 
adverse event rate reported in AS patients with LV 
hypertrophy.
Trial registration number  NCT000092677;Post-
results.

Introduction
Left ventricular (LV) hypertrophy is a common 
manifestation of subclinical cardiovascular (CV) 
disease that strongly predicts increased risk for 
clinical CV disease including myocardial infarction, 
stroke, heart failure and death both in the general 
population and in patients with hypertension.1 2 
The association of LV hypertrophy with higher CV 
morbidity and mortality is multifactorial and may 
involve reduced myocardial flow reserve, increased 
myocardial oxygen demand, myocardial fibrosis 
and scarring, as well as neuroendocrine activa-
tion, capillary rarefication, increased production 
of proinflammatory cytokines, cellular dysfunction 

and elevated LV ventricular wall stress.3–7 Experi-
mental studies on hypertension in dogs subjected 
to standardised coronary artery ligation demon-
strated that LV hypertrophy was associated with 
increased myocardial infarct size and higher rates 
of ventricular arrhythmias.8 9 However, a subse-
quent study suggested increased myocardial oxygen 
demand rather than the level of LV hypertrophy 
as the principal determinant of myocardial infarct 
size.10 In line with these experimental findings, 
we recently demonstrated that higher myocardial 
oxygen demand, measured indirectly by echocardi-
ography as LV mass–wall stress–heart rate product, 
was indeed associated with higher rates of myocar-
dial infarction and CV mortality in hypertensive 
patients with LV hypertrophy.11 

Traditionally, LV hypertrophy has been regarded 
as an adaptive response that keeps the LV wall 
stress close to normal in aortic valve stenosis 
(AS). However, in older subjects with AS, hyper-
tension often coexists.12 Recent publications have 
demonstrated that both LV adaptation to AS and 
prognosis are influenced by concomitant hyper-
tension.12 13 Furthermore, presence of LV hyper-
trophy or a disproportionately increased LV mass 
in relation to actual haemodynamic load in AS was 
independent of hypertension associated with higher 
rates of heart failure hospitalisation and mortality.14 
Whether higher myocardial oxygen demand may 
contribute to the observed impaired prognosis in AS 
patients with LV hypertrophy is unknown. The aim 
of the present analysis was to test the association of 
higher LV mass–wall stress–heart  rate product, as 
an indirect measure of myocardial oxygen demand, 
with CV events and prognosis in AS patients partic-
ipating in the Simvastatin-Ezetimibe in  AS (SEAS) 
study.

Methods
Study population
The SEAS study was a randomised, double-blind, 
placebo-controlled study performed during the 
years 2002–2008 which assessed the effect of 
combined simvastatin and ezetimibe on AS progres-
sion and CV morbidity and mortality in 1873 
patients with initially asymptomatic, mild-to-mod-
erate AS.13–15 Of these, the core lab received base-
line echocardiograms on 1788. LV mass could be 
assessed in 1730 patients at baseline, and in 1656 of 
these also on at least 1 follow-up echocardiogram. 
Due to lack of end-echocardiography blood pres-
sure measurements, the circumferential end-systolic 
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Table 1  Baseline characteristics of the total study population and in groups with high and normal LV mass–wall stress–heart rate product

Variable All (n=1522)
High LV mass–wall stress–
heart rate product (n=289)

Normal LV mass–wall stress–
heart rate product (n=1233) P value

Age (years) 67±10 68±9 67±10 0.272

Male (%) 61.1 74.1 58.1 <0.001

Height (m) 1.70±0.09 1.73±0.09 1.70±0.09 <0.001

Weight (kg) 78.0±14.3 84.6±15.3 76.4±13.6 <0.001

Body surface area (m2) 1.89±0.20 1.98±0.20 1.87±0.19 <0.001

Body mass index (kg/m2) 26.8±4.2 28.2±4.5 26.4±4.1 <0.001

Obesity (%) 19.9 30.3 17.4 <0.001

Systolic BP (mm Hg) 148±20 155±20 146±20 <0.001

Diastolic BP (mm Hg) 83±10 85±11 82±10 <0.001

Heart rate (bpm) 66±11 71±13 64±10

Hypertension (%) 83.3 92.1 81.2 <0.001

Atrial fibrillation (%) 9.7 14.9 8.4 0.001

Serum creatinine (µmol/L) 93±16 95±17 93±15 0.017

Haemoglobin (g/L) 139±10 139±12 140±13 0.042

BP, blood pressure; bpm, beats per minute; LV, left ventricular.

stress (CESS) could only be calculated in 1623 patients at base-
line, leaving 1522 patient with data on CESS, heart rate and LV 
mass measured both at the baseline and at least 1 follow-up echo-
cardiogram eligible for the current study population. Sex, age 
and peak aortic jet velocity did not differ significantly between 
eligible and non-eligible patients (all p>0.3), but non-eligible 
patients had a lower likelihood of suffering a primary study 
endpoint (p<0.001).

All patients signed informed consent prior to study enrolment.

Echocardiography
Echocardiography was performed following a standardised 
study protocol at baseline and then annually and before valve 
surgery.14 15 All echocardiographic analysis was performed at 
the SEAS Echocardiography Core Laboratory, and 94% of 
final reading was done by the same experienced reader. The 
time range between the baseline and final echocardiogram was 
2.7–84.4 months.

Quantitative echocardiographic evaluation of the LV and AS 
severity was performed following current guidelines.16 17 LV 
hypertrophy was considered present if LV mass/height2.7>46.7 g/
m2.7 in women and 49.2 g/m2.7 in men, respectively.14 Concen-
tric LV geometry was considered present if relative wall thick-
ness >0.420.16 CESS was calculated by an invasively validated 
method,18 taking mean aortic valve gradient into account. 
Heart rate was measured on the echocardiograms as the average 
over 3 beats in patients in sinus rhythm and over 15 beats in 
patients with atrial fibrillation. Myocardial oxygen demand 
was estimated from the LV mass x CESS x heart rate product 
(LV mass–wall stress–heart  rate product).11 Midwall short-
ening and stress-corrected midwall shortening were calculated 
using previously validated equations.19 Stress-corrected LV 
myocardial oxygen demand was estimated from LV mass–wall 
stress–heart rate product.11 High LV mass–wall stress–heart rate 
product was identified by the upper 95% CI limit calculated 
in a previously collected normotensive New York population 
(>2.13×106 g kdyne/cm2 bpm).20 Aortic valve area adjusted for 
pressure recovery in the aortic root, the energy loss, was calcu-
lated as previously published and used as the primary measure 
of AS severity, to avoid overestimation of severity in patients 
with milder degree of AS.21 LV stroke volume was calculated by 
Doppler and indexed for body surface area. LV diastolic function 

was assessed by peak early and atrial transmitral filling velocities, 
their ratio and left atrial anterior–posterior diameter.

Study endpoints
The primary endpoint was major CV events, a composite of 
aortic valve events (combined aortic valve replacement, CV 
death and hospitalisation for heart failure due to progression 
of AS) and ischaemic CV events (combined coronary artery 
bypass grafting, non-fatal myocardial infarction, hospitalisation 
for unstable angina pectoris, percutaneous coronary interven-
tion  and non-haemorrhagic stroke).15 All-cause mortality was 
a tertiary study endpoint. We also assessed hospitalisation for 
heart failure, combined CV death and hospitalisation for heart 
failure and combined all-cause mortality and hospitalisation for 
heart failure in the present analysis. All endpoints in the SEAS 
study were adjudicated by an independent committee.15

Statistical analyses
Statistical analyses were done using IBM SPSS  V.25. Data are 
presented as mean ± SD for continuous variables and as percent-
ages for categorical variables. Groups of patients with high and 
normal LV mass–wall stress–heart rate product were compared 
using unpaired Student’s t-test and χ2 test, as appropriate. Clini-
cally relevant covariables of high LV mass–wall stress–heart rate 
product identified in univariable logistic regression analysis 
were included in the multivariable model and reported as OR 
and 95% CI.12–15 Hosmer-Lemeshow test was used to assess the 
goodness-of-fit for the model. The association of high versus 
normal baseline LV mass–wall stress–heart  rate product with 
outcome was assessed by Kaplan-Meier plots and log rank test. 
The association of 1 SD higher in-study LV mass–wall stress–
heart  rate with HRs of study endpoints was assessed in unad-
justed and adjusted time-varying Cox regression models and 
reported as HRs and 95% CI. In the secondary model, prevalent 
atrial fibrillation and use of beta-blocker treatment at baseline 
and time-varying left atrial diameter, stroke volume index and 
serum creatinine were added. The incremental predictive value 
of LV mass–wall stress–heart  rate product over its composites 
was assessed by comparison of global  χ2 values in sequential 
Cox models including LV mass, CESS and heart rate as indi-
vidual variables and the LV mass–wall stress–heart rate product, 
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Table 2  Echocardiographic findings at baseline in the total study population and in groups of patients with high or normal LV mass–wall stress–
heart rate product

Variable All (n=1522)
High LV mass–wall stress–
heart rate product (n=289)

Normal LV mass–wall stress–
heart rate product (n=1233) P value

LV end-diastolic diameter (cm) 5.03±0.63 5.55±0.59 4.91±0.57 <0.001

LV end-systolic diameter (cm) 3.19±0.56 3.75±0.51 3.06±0.48 <0.001

Interventricular septal thickness (cm) 1.15±0.28 1.32±0.30 1.11±0.25 <0.001

Posterior wall thickness (cm) 0.89±0.19 0.98±0.19 0.86±0.18 <0.001

LV ejection fraction (%) 67±6 62±6 68±6 <0.001

Relative wall thickness 0.36±0.09 0.35±0.08 0.36±0.09 0.716

LV mass index (g/m2.7) 45.5±14.4 59.9±15.6 42.1±11.8 <0.001

LV hypertrophy (%) 34.4 74.6 24.9 <0.001

Concentric LV geometry (%) 18.7 18.7 18.7 0.990

Midwall shortening (%) 17.0±3.3 15.3±2.9 17.4±3.2 <0.001

Circumferential end-systolic stress (dyne/cm2) 129±35 158±38 122±31

Stress-corrected midwall shortening (%) 97±19 91±18 99±19 <0.001

LV mass–wall stress–heart rate product (g kdyne/
cm2 bpm)

1.6×106±0.7×106 2.8×106±0.7×106 1.3×106±0.4×106

Peak aortic jet velocity (m/s) 3.08±0.54 3.20±0.56 3.05±0.53 <0.001

Peak aortic valve gradient (mm Hg) 39±14 42±14 38±13 <0.001

Mean aortic valve gradient (mm Hg) 23±9 25±9 22±8 <0.001

Energy loss (cm2) 1.50±0.66 1.54±0.65 1.49±0.67 0.210

Energy loss index (cm2/m2) 0.90±0.46 0.84±0.36 0.91±0.48 0.009

Severe AS (%) 19.9 20.4 17.8 0.329

Stroke volume index (mL/m2) 45±13 46±13 45±13 0.188

Left atrial diameter (cm) 3.74±0.66 3.97±0.68 3.69±0.64 <0.001

Peak early mitral filling velocity (m/s) 0.75±0.23 0.73±0.23 0.75±0.23 0.146

Peak atrial mitral filling velocity (m/s) 0.83±0.25 0.86±0.25 0.83±0.25 0.045

Peak early/peak atrial mitral filling velocity ratio 0.93±0.35 0.89±0.39 0.94±0.34 0.050

Deceleration time (ms) 227±76 223±78 228±76 0.305

AS, aortic valve stenosis; LV, left ventricular.

Table 3  Covariables of high LV mass–wall stress–heart rate product

Variable OR (95% CI) P value

Male sex 1.90 (1.35 to 2.68) <0.001

Hypertension 3.40 (1.99 to 5.82) <0.001

Body mass index (kg/m2) 1.07 (1.03 to 1.11) 0.001

LV ejection fraction (%) 0.87 (0.85 to 0.89) <0.001

Peak aortic jet velocity (m/s) 2.05 (1.53 to 2.73) 0.002

Left atrial diameter (cm) 1.61 (1.24 to 2.90) <0.001

Peak early/atrial mitral velocity ratio 0.60 (0.38 to 0.96) 0.035

Multivariable logistic regression analysis in the total study population.
LV, left ventricular.

respectively. A two-tailed p<0.05 was considered statistically 
significant in all analyses.

Results
A high LV mass–wall stress–heart  rate product was found in 
19% of the study population at baseline. The group with high 
LV mass–wall stress–heart rate product included more men and 
patients with obesity and hypertension than those with normal 
LV mass–wall stress–heart  rate product (table 1), and also had 
higher prevalence of atrial fibrillation and LV hypertrophy, 
lower LV systolic function and more severe AS, while age and LV 
diastolic filling was comparable in the two groups (table 2). In 
multivariable logistic regression analysis, presence of hyperten-
sion, male sex, lower LV ejection fraction and peak early/peak 
atrial transmitral velocity ratio, and higher body mass index and 

peak aortic jet velocity were all independently associated with 
presence of high LV mass–wall stress–heart  rate product (all 
p<0.001) (table 3).

Prognostic significance of LV mass–wall stress–heart rate 
product
During a median of 4.3-year follow-up, the group with high LV 
mass–wall stress–heart rate product at baseline had higher rates 
of major CV events and higher all-cause mortality compared 
with those with normal LV mass–wall stress–heart rate product 
at baseline (both p<0.01) (figure 1). In unadjusted time-varying 
Cox regression, 1 SD higher in-study LV mass–wall stress–
heart  rate product was associated with a 23% higher HR of 
major CV events, a 50% higher HR of CV death, a 33% higher 
HR of all-cause mortality and a 60% higher HR of heart failure 
hospitalisation (all p<0.001) (table 4). The associations of high 
LV mass–wall stress–heart  rate product remained significantly 
associated with mortality and combined mortality and hospital-
ised heart failure after adjustment for sex, hypertension, age and 
time-varying body mass index, LV hypertrophy, LV ejection frac-
tion and peak aortic jet velocity, while the association with hospi-
talised heart failure was explained by the covariables (table 4, 
model 1). Adding prevalent atrial fibrillation and beta-blocker 
use at baseline, and time-varying left atrial diameter, Doppler 
stroke volume index and serum creatinine as covariables in a 
second model did not change the results (table 4, model 2). The 
yield (global χ2 value) of the primary Cox model did not differ 
significantly when LV mass, CESS and heart rate at baseline 
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Figure 1  Association of high LV mass–wall stress–heart rate product with HRs of major cardiovascular events (A) and all-cause mortality (B) in the 
study population. Kaplan-Meier plots.

Table 4  Associations of in-study LV mass–wall stress–heart rate product with HRs of study outcomes

Study outcome
Unadjusted
HR (95% CI) P value

Adjusted model 1*
HR (95% CI) P value

Adjusted model 2†
HR (95% CI) P value

Primary endpoint (n=456) 1.23 (1.14 to 1.32) <0.001 1.16 (1.06 to 1.29) 0.002 1.16 (1.05 to 1.29) 0.002

Heart failure hospitalisation (n=53) 1.60 (1.37 to 1.87) <0.001 1.18 (0.94 to 1.50) 0.162 n.a.

CV death (n=63) 1.50 (1.31 to 1.77) <0.001 1.42 (1.14 to 1.79) 0.002 n.a.

Combined CV death and hospitalised HF (n=105) 1.49 (1.34 to 1.66) <0.001 1.29 (1.09 to 1.54) 0.004 1.33 (1.11 to 1.60) 0.002

All-cause mortality (n=121) 1.33 (1.17 to 1.51) <0.001 1.34 (1.13 to 1.58) 0.001 1.36 (1.15 to 1.62) <0.001

Combined all-cause mortality and hospitalised HF (n=153) 1.40 (1.26 to 1.56) <0.001 1.29 (1.12 to 1.49) <0.001 1.32 (1.14 to 1.53) <0.001

Non-fatal myocardial infarction (n=26) 1.40 (1.07 to 1.83) 0.016 n.a. n.a.

Unadjusted and adjusted time-varying Cox regression models. Results of 1 SD higher in-study LV mass–wall stress–heart rate are presented as HR and 95% CI.
*Adjusted for sex, baseline hypertension and age, and time-varying body mass index, LV hypertrophy, LV ejection fraction and peak jet velocity.
†Adjusted also for prevalent atrial fibrillation use of beta-blocker treatment at baseline and time-varying left atrial diameter, stroke volume index and serum creatinine.
CV, cardiovascular; HF, heart failure; LV, left ventricular; n.a., not applicable.

were included as individual variables compared with when the 
LV mass–wall stress–heart rate product at baseline was included 
(p=0.876), demonstrating that the prognostic information of 
the LV mass–wall stress–heart rate product was fully explained 
by the composites.

Discussion
LV mass–wall stress–heart rate product and outcome
The present hypothesis-generating analysis from the large, 
prospective SEAS study extend previous evidence in hyperten-
sive patients with LV hypertrophy,3 11 suggesting increased LV 
myocardial oxygen demand as a major demand-side predisposi-
tion to myocardial ischaemia and subsequent CV events in AS. 
Although concomitant coronary artery disease is an important 
cause of myocardial ischaemia, it is not a prerequisite.22 In LV 
hypertrophy caused by hypertension or severe AS, myocardial 
ischaemia has been demonstrated in absence of stenotic coro-
nary artery disease.22–24 Although LV mass–wall stress–heart rate 
product was typically higher in patients with LV hypertrophy and 
the majority of these patients had concomitant hypertension, the 
associations with higher HRs of all-cause mortality and major 
CV events were independent of presence of LV hypertrophy, as 
well as independent of concomitant hypertension, higher body 
mass index and AS severity, all well-documented prognosticators 
in AS.13–15 21

LV mass–wall stress–heart rate product and LV systolic 
dysfunction
The transition from compensated LV hypertrophy to conges-
tive heart failure in AS is driven by progressive cardiomyocyte 
death and myocardial fibrosis.25 Using contrast echocardiog-
raphy, Galiuto et al found that myocardial hypoperfusion was 
associated with cardiomyocyte apoptosis in myocardial biopsies 

from patients with severe AS.24 In a study using late gadolinium 
enhancement cardiac MRI, Dweck et al found that among 
patients with moderate and severe AS, fibrosis was particularly 
present in the LV midwall in patients with higher LV mass, and 
associated with impaired prognosis.4 In line with these observa-
tions, patients with high LV mass–wall stress–heart rate product 
in the present study population had significantly lower LV 
midwall shortening, probably reflecting more advanced myocar-
dial disease in this group.

LV mass–wall stress–heart rate product: relation to symptoms 
and CV risk factors
Previous studies have found concomitant hypertension in AS 
to be associated with higher combined valvuloarterial LV load 
and to influence LV adaptation and prognosis.13 26 Earlier devel-
opment of AS-related symptoms has also been suggested in 
patients with combined AS and hypertension.27 The presence 
of LV hypertrophy was independently associated with onset of 
cardinal symptoms in a prospective study of 622 patients with 
AS by Pellikka et al.28 In a study of 58 patients with severe AS, 
Hansson et al used 11C-acetate positron emission tomography 
and cardiac magnetic resonance for measurement of myocar-
dial oxygen consumption and myocardial external efficiency, 
respectively.29 However, myocardial oxygen consumption and 
myocardial external efficiency did not discriminate between 
asymptomatic and symptomatic patients. The present results add 
to this knowledge by demonstrating that concomitant hyperten-
sion was more common in AS patients with high LV mass–wall 
stress–heart rate product, suggesting that high myocardial oxygen 
demand in combined hypertension and AS may contribute to 
the observed earlier onset of heart failure symptoms and higher 
mortality in these patients.13 14 27 In line with previous findings in 
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Key messages

What is already known on this subject?
►► Presence of hypertension in aortic valve stenosis (AS) is 
associated with higher left ventricular (LV) mass and wall 
stress and predicts higher risk of ischaemic cardiovascular 
events and higher mortality. Increased LV mass, wall 
stress and heart rate all lead to increased LV myocardial 
oxygen demand in AS, which may predispose to myocardial 
ischaemia even in the absence of coronary artery disease. In 
hypertension, reduction of LV mass–wall stress–heart rate 
product by atenolol treatment was associated with improved 
prognosis.

What might this study add?
►► The present study demonstrates that higher LV mass–wall 
stress–heart rate product, an indirect measure of myocardial 
oxygen demand, was associated with earlier onset of heart 
failure symptoms and increased mortality, independent 
of presence of other prognosticators in AS including LV 
hypertrophy, hypertension, stenosis severity, sex, age, body 
mass index and LV ejection fraction.

How might this impact on clinical practice?
►► AS patients with high LV mass–wall stress–heart rate 
product are at increased risk for death and heart failure 
hospitalisation. Based on studies in hypertension, treatment 
with a beta-blocker may be initiated in asymptomatic AS 
patients with hypertension to reduce LV mass–wall stress–
heart rate product and thereby myocardial oxygen demand to 
reduce risk for adverse events.

hypertension, use of beta-blocker treatment in AS was associated 
with lower HRs for these adverse outcomes.11 30

Study limitations
The SEAS study excluded patients with diabetes, renal failure 
and known coronary artery disease.15 Thus, the results should be 
applied with caution in less selected groups of AS patients. The 
prospective SEAS study was performed during the years 2002–
2008, and the imaging protocol did not include mitral annulus 
velocities by spectral tissue Doppler or recording of tricuspid 
regurgitation by continuous wave Doppler, as recommended by 
current guidelines on assessment of LV diastolic function. The 
assessment of the associations of LV mass–wall stress–heart rate 
product with LV diastolic dysfunction was therefore limited. 
Finally, coronary artery disease was not systematically assessed 
in the SEAS study. In particular, diagnosis of myocardial isch-
aemia by cardiac MRI, positron emission tomography, contrast 
stress echocardiography or exercise testing was not performed. 
The association of LV mass–wall stress–heart rate product as an 
indirect measure of myocardial oxygen demand could therefore 
not be compared with direct assessment of myocardial oxygen 
consumption by positron emission tomography.29

Conclusion
In mostly hypertensive AS patients without known CV disease 
or diabetes participating in the SEAS study, higher LV mass–wall 
stress–heart  rate product, an indirect measure of myocardial 
oxygen demand, was associated with higher all-cause mortality 
and higher HR for CV events, independent of well-known 
prognosticators in AS including stenosis severity and presence 

of LV hypertrophy and hypertension. Whether higher myocar-
dial oxygen demand assessed by LV mass–wall stress–heart rate 
product contributes to impaired prognosis through induction of 
chronic myocardial ischaemia should be tested in future studies 
using modern non-invasive imaging methods for assessment of 
myocardial perfusion.
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