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Abstract: Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous
animals. The viruses cause millions of infection cases and thousands of deaths every year, thus
making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is
triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive
immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection,
IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In
the current review, we present a general description on recent work regarding different host cells
and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host
immune responses.
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1. Introduction

Influenza A virus (IAV) can infect a wide range of warm-blooded animals, including birds, pigs,
horses, and humans. In humans, the viruses cause respiratory disease and be transmitted by inhalation
of virus-containing dust particles or aerosols [1]. Severe IAV infection can cause lung inflammation
and acute respiratory distress syndrome (ARDS), which may lead to mortality. Thus, causing many
influenza epidemics and pandemics, IAV has been a threat to public health for decades [2].

The virus is an enveloped, segmented, negative-strand RNA virus, belonging to the Orthomyxoviriae
family. The eight viral gene segments encode as many as 18 proteins. Besides polymerase basic 1 (PB1),
PB1-N40, PB1-F2, PB2, polymerase acid (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase
(NA), matrix 1 (M1), matrix 2 (M2), nonstructural protein 1 (NS1) and NS2 (also known as nuclear
export protein, NEP), new viral proteins were recently uncovered, such as PB2-S1 [3], PA-X (product of
ribosomal frameshifting) [4], PA-related proteins PA-N155 and PA-N182 [5], M42 [6], and NS3 [7]. HA,
NA, and M2 proteins constitute surface of the IAV virion, where HA is the most abundant surface
protein. According to the genetic and antigenic diversity of the HA and NA proteins, IAVs were
divided into 18 HA and 11 NA subtypes. H17N10 and H18N11 subtypes were recently identified in
bats [8,9].

1.1. IAV Viral Proteins

HA is a type I glycosylated protein, which is responsible for virus entry to host cell. Functional
HA protein is a homotrimer structurally composed of a stem region and a globular head region in each
monomer. The head region bearing N-acetylneuraminic acid (sialic acid, SA) binding pocket is critical
for receptor attachment, and contains most antigenic determinants. The stem region undergoing
conformational changes is responsible for low pH-triggered membrane fusion [10], and plays an
important role in cross protection against heterosubtypic IAV infection [11]. N38 glycan at this region
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is critical for elicitation of cross-group antibody responses [12]. HA of diverse IAV subtypes that
originated from different species presents distinct receptor-binding preference. For instance, human
viruses prefer binding to SAs attached to cell-surface-associated α-2,6-linked galactose, whereas avian
viruses prefer α-2,3-linked galactose [13–15]. Residue substitutions in the receptor-binding site (RBS)
of HA is crucial in determining receptor-binding properties [16]. For instance, amino acid substitutions
of S138A/G186V/T221P/Q226L within the RBS affected receptor-binding properties of avian H7N9
HA [17], while G186V was reported to be pivotal for the avian-specific strain to acquire human
receptor-binding capacity [18].

NA is a type II glycoprotein with neuraminidase (sialidase) enzymatic activity. Each NA tetramer
consists of four identical polypeptides, and each polypeptide contains an N-terminal, a hydrophobic
membrane domain, a stalk region, and a globular head domain. NA can cleave SA from the mucus,
cell surface, and from viral glycoproteins. While HA mediates virion-SA attachment and fusion,
NA is responsible for terminal SA residues cleavage [19]. N-glycolyl and O-acetyl modification of
SA could reduce binding affinities of both NA and HA [20]. In addition, NA possesses at least two
calcium binding sites [21]. Gene analysis of these Ca2+ binding sites reveals that they are related to NA
thermostability, further suggesting a correlation between NA thermostability and virus adaption [22].
Furthermore, NA is also the major antigenic target of the host humoral immunity, and NA-specific
antibodies function in limiting virus egress via interfering with the sialidase activity have drawn wide
attention for development of antiviral therapies [23,24].

The viral ribonucleoprotein complex (vRNP) is a rod-shaped structure composed of multiple
copies of NP and a single trimeric RNA-dependent RNA polymerase complex (PB1, PB2, and PA)
associated with viral genomic RNA [25]. NP mediates nuclear import of the vRNP complex, the PB1
subunit has the catalytic polymerase activity, the PB2 subunit contributes to cap binding, and the
PA subunit is required for cleavage of the capped oligonucleotides. The complex is required for the
transcription and replication of the viral genome [26]. The structure, functions, and modulation of the
IAV RNA polymerase complex were further discussed by Te Velthuis and Fordor [27]. However, the
mechanism of vRNP assembly remains largely unknown and several host proteins were reported to
be involved during IAV infection [28–30]. Recently, eleuthe roside B1 was demonstrated to be able to
inhibit the vRNP in vitro [31].

M1 and M2 are encoded by the M gene on segment 7 of the viral genome [32]. The conserved
M1 bears a positively charged nuclear localization sequence (NLS) motif RKLKR, which is essential
for membrane binding, virus replication, nuclear export of the vRNPs, and self-polymerization [33].
M2 is a type III integral transmembrane proton channel, structurally containing three domains: an
amino-terminal ectodomain, a transmembrane domain, and a cytoplasmic domain [34]. It is essential
for uncoating the vRNP complex within the endosome, the process of which is essential for viral
entry [35]. Moreover, in its retrograde migration route from the membrane to the cytoplasm, M2 was
shown to prevent endosome fusion with the lysosome, suggesting new roles of the protein in the host
cytoplasm after infection [36].

NS1, structurally composed of an N-terminal dsRNA binding domain and a C-terminal effector
domain, plays important roles in control of viral RNA synthesis, viral mRNA splicing, and virus particle
morphogenesis during the virus life cycle [37,38]. It is also considered as the key factor to antagonize
host immune system [39], since it could inhibit activation of retinoic acid-inducible gene-I proteins
(RIG-I), interferon-inducible RNA-dependent protein kinase (PKR), and 2′-5′-oligoadenylate synthetase
of the innate immunity via blocking nuclear export of host messenger RNAs (mRNAs) [40–42]. The
mechanism underlying is revealed by determination of crystal structure of the NS1 and nuclear
RNA export factor 1-nuclear transport factor 2-related export protein 1 (NXF1-NXT1) complex that
NS1 could prevent mRNA export through the nuclear pore complex via binding of NXF1-NXT1 to
nucleoporins [43]. Conserved RNA secondary structures at RNA positions 82-148 and 497-564 are
essential for NS1 protein expression, thus affecting viral reproduction and virus–host interaction
processes [44]. A detailed description of structure and function of the NS1 was reviewed by Han
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and his colleagues [45]. NS2, also known as NEP, contains a nuclear export signal and is responsible
for chromosome region maintenance 1 (Crm1)-dependent nuclear export of RNPs in the infected
cells [46,47]. Crm1 contains leucin-rich nuclear export signals (NES1 and NES2) [47,48], which are
important for the NS2Crm1 interaction [46,48]. In addition, interaction of CHD3 and NES1 was
identified to be important in the NS2-mediated vRNP nuclear export [49].

1.2. Antigenic Shift and Antigenic Drift

Genome reassortment often occurs when two or more IAV strains infect a single host cell. This
phenomenon is refereed as antigenic shift, resulting in novel progeny viruses with new HA and/or
NA that are immunologically naïve to the human immune system [50,51]. On the other hand, lack
of proof-reading function of viral RNA polymerase results in accumulated point mutations during
successive replication of the viral genome. This phenomenon is refereed as antigenic drift [52]. The
two mechanisms provide IAVs the ability to evolve rapidly as well as to evade host immunity, thus
resulting in generation of viral strains which are highly pathogenic and/or can cross species barriers.

Since the “Spanish influenza” pandemic in 1918–1919, despite application of updating licensed
vaccines and drugs, seasonal and pandemic influenza still cause millions of infection cases each year and
remains a worldwide public-health concern. Most seasonal IAV infections are minimally symptomatic,
while severe infection causes damage to host immune responses, thus resulting in lung inflammation
and injury [53]. The virus itself, IAV–host interaction, as well as a need for next-generation IAV
prevention and control strategies attract extensive attention worldwide. Understanding the virus–host
interaction can facilitate investigation of antiviral measures. Therefore, in the current review, we
summarized and discussed recent development in our understanding of IAV–host immune interaction
and how IAV antagonizes different immune responses to achieve a successful infection.

2. Influenza A Virus Host Adaption and Life Cycle

2.1. Influenza A Virus Host Switch Events

IAVs can infect a broad spectrum of host species, including both wild and domestic birds, as
well as many mammalian species. The virus is capable of interspecies transmission to new species.
However, no interspecies transmission of the bat IAVs has been reported so far [54]. Furthermore,
the high frequency of mutations and recombination increases the risk of IAV adaptation in humans.
Besides three pandemic subtypes (H1N1, H2N2, and H3N2), other subtypes, including H5N1, H5N6,
H7N7, H7N9, N9N2, and H10N8 could cross the species barrier and cause human infections [55–58].
Several effect factors are essential in IAV host switch events, including the receptor-binding properties
of HA [16], as well as cellular receptors [59–62]. Long and his colleagues summarized the role of host
factors in IAVs adaption to humans, and the review is recommended here for further reading [63].

Noteworthy is the fact that most phylogenetically diverse IAVs with different origins could
successfully replicate in swine [64]. Since pigs have both SA α-2,6 and SA α-2,3 galactose receptors [65],
they can serve as a suitable mixing reservoir for both human and avian IAVs, thus raising global
concern on periodic zoonotic infections. Take the emergence of influenza A (H1N1) pdm09 (pH1N1)
and influenza A (H3N2) A/Canada/1158/2006 strains for instance, both strains are swine-origin IAVs
and were the consequence of adaption and reassortment of several swine lineages [66,67]. Furthermore,
some genes of these strains originated from avian IAVs [68].

With the development of gene sequencing technology, machine learning (ML) facilitated with large
genomic datasets are used in prediction about sequence changes in newly invaded viruses from other
animal hosts, take the “Batch-Learning Self-Organizing Map (BLSOM)” method for instance [69]. ML is
also applied in characterization of distinct host tropism protein signatures [70], and prediction of amino
acid changes for interspecies transmission [71]. These studies provided measures in identification
of potential high-risk strains. In addition, the nucleotides and dinucleotide compositions of viruses
play important roles in prediction of viral host species [72]. Combining gene sequencing technology
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and ML methods, researchers applied large IAV genomic datasets to analyze species selection bias
of IAV mono-/dinucleotide composition and predict human-adaptive swine or avian IAVs [73,74].
The application of multi-disciplinary subjects would provide useful information for prediction of
pandemic influenza.

2.2. Life Cycle of Influenza A Virus

In general, the life cycle of the IAV is generally divided into four steps: virus entry into the host
cell, transcription and replication of the viral genome, assembly, and virus budding. Though alveolar
epithelial cell is the primary target cell for IAVs, different IAV subtypes have different patterns of viral
attachment (PVA). For human IAVs, Alveolar type II epithelial cells, as well as immune cells such as
alveolar macrophages and dendritic cells, are major target cells for an established infection [75,76].
Two seasonal IAVs and pandemic H1N1 virus, preferred to attach to ciliated epithelial cells and goblet
cells in the upper respiratory tract (URT), and avian IAVs, take H5N1 for instance, attached seldom to
these cells [77]. In the lower respiratory tract (LRT), human IAV H1N1 and H3N2 attached to more cell
types than avian IAV H5N1, a highly pathogenic avian IAV (HPAIV) strain. However, H5N1 could
bind to type II pneumocytes [78]. Considering the fact that metabolism in the type II pneumocytes is
quite active, infection of HPAIVs is more likely to cause severe pneumonia [78]. Other research on low
pathogenic avian IAVs (LPAIVs), which generally do not cause severe pneumonia, showed that these
viruses usually attach to human submucosal gland cells, thus can be cleared by the mucus [79].

IAV infection starts from recognition of SA by HA protein, though in vitro research claimed that
these N-linked glycans were not essential for virus entry [80]. The cleavage of HA precursor protein
HA0 into HA1 (containing receptor binding domain) and HA2 (containing fusion peptide) in low pH
environment during HA transport is critical for virion internalization [81]. Some research showed that
type II transmembrane serine protease such as transmembrane protease serine 2 (TMPRSS2), human
airway trypsin-like protease (HAT), transmembrane protease serine 4 (TMPRSS4), Homo sapiens serine
protease DESC1 and Homo sapiens transmembrane protease, serine 13 (MSPL) can cleave human and
avian IAV HA proteins at an arginine residue [82]. In addition, for avian IAVs, HA0 of HPAIVs can be
cleaved by subtilisin-like protease, while that of LPAIVs is cleaved by trypsin-like proteases [83] or
thrombin [84]. Therefore, in avian IAVs, the cleavage sites are considered to be the major determinants
for virus virulence [85], and RNA folding in the cleavage region could be an important factor for
virulence determination [86,87].

Proteins in the vRNP complex contain different nuclear localization signals (NLSs), thus helping
the vRNP complex to enter the host cell nucleus via active transport, take the Crm1-dependent pathway
for instance [88]. The acidic environment of the endosome also activates M2 ion channel, hence
acidifies the viral core, resulting in entrance of vRNP complex into the host cell [34]. Replication
of viral genome does not require a primer but a full-length complementary RNA (cRNA), which is
essential for the newly formed vRNP complex. The viral RNA polymerases first bind to the 3′ end
and the 5′ end of the segmented viral RNA and cRNA, respectively, then start replication with the
help of the 5′ cap of host pre-mRNAs via a PB1-PB2-mediated “cap snatching” mechanism [27,89].
The conserved segment-specific nucleotides at the 3′ and 5′ ends of the viral genome could modulate
genome expression and replication during infection [90]. In addition, dephosphorylation at a specific
position of the H1N1 NS1 protein results in attenuated virus replication [91].

Mature viral mRNAs are transported to the cytoplasm by a “daisy-chain” complex and translated
subsequently [88,92]. New synthesis of HA occurs on the rough endoplasmic reticulum (ER).
Glycosylation and palmitoylation of the protein are completed later in the Golgi [93,94]. After synthesis
and maturation of NA and M2 proteins, the trans-Golgi network (TGN), together with coat protein I
(COPI) complex and GTPase Rab proteins, transport the newly synthesized HA, NA, and M2 proteins
to the apical plasma membrane (PM). These proteins then assemble with viral genomic segments. The
virions are finally closed and M1 and M2 proteins mediate virion budding from the apical side of the
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cells [28,95–98]. NA protein cleavages the SA residues, which allows the virions to be released from
the plasma membrane [99].

Since IAV has a relatively small genome, host machinery is required in order to accomplish
the viral life cycle. To uncover host dependency factors that are necessary for IAV replication,
numerous large-scale RNA interference (RNAi) screens and genome-wide CRISPR/Cas 9 screen were
performed [29,100–103]. For instance, SON DNA binding protein was important for IAV virion
trafficking in an early infection stage and CDC-like kinase 1 facilitated AIV replication [29]. USP47
facilitated viral entry, whereas TNFSF12 (APRIL) and TNFSF12-TNFSF13 (TWEPRIL) helped with viral
replication [101]. Using genome-wide CRISPR/Cas9 screen, several genes of sialic acid biosynthesis and
related glycosylation pathways were involved with H5N1 infection [102], and WDR7, CCDC115, and
TMEM199 were essential for viral entry and regulation of V-type ATPase assembly [103]. Furthermore,
single-cell transcriptome sequencing (RNA-seq) was applied to explore host–virus interactions,
revealing a correlation between defective viral genomes and virus-induced host transcriptional
programs [104]. These data provide valuable information for developing host-targeted therapeutics.

3. Host Immune Responses Against IAV Infection

Host immune system functions immediately after detection of the virus. Host mucosal immune
system (MIS), induced after virus invasion, serves as the first line to prevent IAV from adhering to
the susceptible cells. In the URT, mucosal response is induced in the naso-associated lymphoid tissues
(NALT), while in the LRT, it occurs in bronchus-associated lymphoid tissues (BALT). Host innate
immunity, including phagocytic cells, interferons (IFNs), proinflammatory cytokines, etc., applies multiple
mechanisms in defending IAV infection [105]. Host adaptive immunity, mediated by B lymphocytes and
T lymphocytes, together with other immune mechanisms, reacts specifically to neutralize and eliminate
the virus. On the other hand, to establish a successful infection, IAVs also employ a plethora of strategies
to avoid being detected or being cleared by the host immunity. Notable strategies include regulation
of IFN signaling [106], inhibition of cytokine expressions [107,108], modulation of apoptosis [109–111],
interference of autophagy [112], and effects on antibody production [113]. The IAV–host immunity
interaction was summarized by several reviews [114,115].

3.1. Immune Cells Involved in IAV Infection

Upon detection of infection, innate effector cells, including natural killer (NK) cells, neutrophils,
and dendritic cells (DCs), etc., are recruited to the infected sites. NK cells are large granular lymphocytes,
making up 10% of the resident lymphocytes in the lung. After recruitment from the blood, NK cells
interact with DCs and macrophages to secret various cytokines and restrict infection via lysis of the
IAV-infected cells. The lysis process is mediated by interaction between NK receptors p46 (most
NKp46) and IAV HA protein expressed by the infected cell [116,117]. Interestingly, liver NK cells other
than lung NK cells possessed a memory phenotype to protect mice against subsequent IAV infection,
though the lung NK cells are important in control of primary IAV infection [118]. However, NK cells
are also shown to exacerbate IAV pathology, since depletion of NK cells led to increased resistance to
high dose H1N1 infection in mice [119,120]. The contribution of NK cells to anti-IAV defense in mouse
models was later shown to be strain and dose dependent. In addition, the host genetic background
also played an important role [121].

Neutrophils are key innate immune cells recruited to infection sites by cellular migration
through vascular endothelium. They function in clearance of pathogens via phagocytosis, producing
extracellular traps, and degranulation [122]. In addition, they also regulate adaptive immunity via
guiding influenza specific CD8+ T cells to the infection sites [123].

The function of dendritic cells (DCs) is to monitor invading pathogens. After IAV infection, the
conventional DCs migrate from lung to lymph nodes through interaction between CCR7 and its ligand,
and present antigens to T cells [124,125]. One study based on a mouse model showed that, during
IAV infection, immature and mature DCs were specialized in IAV HA processing, since both types
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of DCs could present one epitope of H1N1 HA (HA amino acids 107–119), whereas another epitope
(HA amino acids 302–313) could only be processed by mature DCs [126]. The complex role of DCs in
initiation of robust immunity against IAV infection is reviewed by Waithman and Mintern [127].

T cells and B cells are critical components in adaptive immunity against IAV infection. CD8+

T cells differentiate into cytotoxic T lymphocytes (CTLs) and defend IAV infection via producing
cytokines and effector molecules, and cytotoxic effects (i.e., lysis) of infected cells mediated by MHC
class I. CD4+ T cells target IAV-infected epithelial cells through binding with MHC class II molecules
and contribute to B cell activation thus consequently promote antibody production. The activation of T
cells and B cells in IAV infection will be exposited in Section 3.5.

3.2. Activation of Innate Immunity in IAV Infection

The reaction of innate immunity is nonspecific. It is triggered by recognition of pathogen
associated molecular patterns (PAMPs) via host pathogen recognition receptors (PRRs). Toll-like
receptors (TLRs), retinoic acid-inducible gene-I proteins (RIG-I), and NOD-like receptors are common
PRRs, the activation of which leads to activation of innate immune signaling and further production of
cytokines as well as other antiviral molecules.

Toll-like receptors are responsible for sensing pathogens at cell membranes, endosomes, and
lysosome [128]. TLR3 and TLR7 are shown to be involved in IAV detection at endosomes [105].
TLR3 recognizes double stranded RNA (dsRNA) which may be released by cellular stress and cell
death [105] and unidentified RNA structures in phagocytosed cells infected with IAVs [129]. In
macrophages and dendritic cells, TLR3 interacted with TIR-domain-containing adapter, then activated
the serine-threonine kinase IκKε (IKKε) and TANK binding kinase 1 (TBK1) to phosphorylate interferon
regulatory factor 3 (IRF3), the process of which further led to expression of IFN-β [130]. In addition, an
over-reacting TLR3 activation promoted IAV pathogenesis, which could be reduced by a single-stranded
oligonucleotide (ssON) functioning as a TLR3 inhibitor, resulting in restrained viral loads both in vitro
and in vivo [131]. TLR7 recognizes single stranded RNA (ssRNA). In plasmacytoid dendritic cells
(pDCs), after activation of TLR7 during IAV infection, IRF7 or nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) were activated via myeloid differentiation factor 88 (MyD88) to induce
type I IFNs [132]. In avian macrophages, activation of TLR7 produced pro-inflammatory molecules
such as interleukin (IL)-1β [133]. In addition, in mouse models, TLR7 played an important role in
activation of NK cells [134]. It was also shown to be involved in development of adaptive immunity to
prevent IAV infection [135,136].

RIG-I recognizes ssRNAs and transcriptional products of IAVs, which triggers activation of the
caspase activation and recruitment domains (CARDs) via dephosphorylation or ubiquitination by E3
ligases, resulting in activation of transcription factors including IRFs and NF-κB [137]. OTUB1 played
an essential role in regulation of RIG-I [138]. In addition, melanoma differentiation-associated gene 5
(MDA5) was also involved in sensing transcriptional products of IAVs in the cytoplasm [139].

For NOD-like receptor family, pyrin domain containing 3 (NLRP3) and NLR apoptosis inhibitory
protein 5 were activated after IAV infection [140]. IAV M2 ion channel and PB1-F2 were involved in
activation of NLRP3 inflammasome and stimulate IL-1β secretion subsequently [141,142]. The role of
the NLRP3 inflammasome in regulation of anti-IAV responses is discussed in detail by Sarvestani and
his colleagues [143]. Delayed oseltamivir and sirolimus combined treatment could suppress NLRP3
inflammasome mediated secretion of IL-1β and IL-18, resulting in attenuation of H1N1-induced lung
injury [144].

3.3. The Host Interferon (IFN) Response in IAV Infection

After detecting viral components, transcription factors including NF-κB and IRFs are activated,
leading to transcription of IFNs and pro-inflammatory cytokines. IFNs bind to receptors, resulting in
upregulation of multiple interferon-stimulated genes (ISGs) [145]. It is well known that type I IFNs
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(IFN-α and IFN-β) and type III IFNs (IFN-λ 1-4) play critical roles in antiviral responses. Mice failed to
restrict non-pathogenic IAV when both type I and type III IFN receptors were knocked out [146].

The expressed IFNs consequentially bind to different receptors. Type I IFNs interact with IFN-α/β

receptors (IFNAR), whereas type III IFNs interact with IFN-λ receptors (IFNLR). Janus kinase-signal
transducer and activator of transcription (JAK-STAT) signaling pathway is then activated, resulting
in transcription of numerous IFN-stimulated genes (ISGs) [147,148]. Though IFN-λs share many
characteristics such as expression patterns, signaling pathways, etc. with type I IFNs, they are the first
IFNs produced at the infected epithelial sites to block virus spread [149]. Furthermore, IFN-λs served
an important role in programming DCs to direct effective T cell immunity against IAV infection [150].

ISGs encode various antiviral proteins functioning in different ways to defend IAV infection. For
instance, MxA GTPase from the Mx family could retain viral genome from entry to the cytoplasm
via blocking the function of IAV NP. In addition, in vitro research found that avian IAVs were more
sensitive to MxA than human IAVs [151,152]. Cholesterol 25-hydroxylase (CH25H) were identified
to block IAV entry via altering the cellular membrane properties to interfere with viral fusion, and
amplified the activation of immune cells [153]. Guanylate-binding protein 3 (GBP3) of IFN-inducible
GTPases inhibited IAV replication via binding to the viral polymerase complex [154]. Members of
the tripartite motif-containing (TRIM) family are also involved in cellular anti-IAV processes. For
instance, TRIM14 could interact with IAV NP for ubiquitination and proteasomal degradation, thus
restricting IAV replication in a type I IFN and NF-κB independent manner [155]. TRIM22 degraded
IAV NP via polyubiquitination, thus resulting in inhibition of IAV infection [156]. TRIM 25 regulated
the re-localization of RIG-I and was responsible for RIG-I ubiquitination as well as RIG-I-mediated
IFN production [157]. TRIM32 recognized IAV PB1 protein and reduced its polymerase activity [158].
TRIM41 targeted NP for ubiquitination and degradation in vitro [159]. For further reading on other
ISGs, several reviews regarding IFN responses during IAV infection are recommended here [160,161].
A general description of activation of innate immunity and IFN signaling pathway after IAV infection
is illustrated in Figure 1.
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Figure 1. Schematic diagram for activation of innate immune responses and interferon (IFN) signaling
pathway after influenza A virus (IAV) infection. Intracellular detection conducted by pathogen
recognition receptors (PRRs), including retinoic acid-inducible gene-I proteins (RIG-I), melanoma
differentiation-associated gene 5 (MDA5), and toll-like receptors (TLRs), activate transcription factors
such as IRFs and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), resulting in
expression of IFNs and interferon-stimulated genes (ISGs).
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In order to counter IFN-stimulated antiviral proteins, IAV viral proteins apply multiple strategies.
For instance, HA protein was shown to trigger ubiquitination of IFNAR to attenuate the type I IFN
signaling pathway [162]. The follow-up work showed that poly (ADP-ribose) polymerase 1 (PARP1)
functions as an interacting partner of HA protein to mediate the HA-induced IFNAR degradation [163].
NS1 is the most important IFNs antagonist protein via mechanisms including inhibition of the
TRIM25-mediated RIG-I ubiquitination, suppression of protein kinase R (PKR), phosphorylation of
IκB kinases (IKK) α and β in the NF-κB pathway, interruption of the phosphorylation of STAT1,
STAT2, and STAT3 [39,115], and degradation of OTUB1 [138]. Phosphorylation of NS1 is crucial
for its function of antagonizing IFN-β expression, since dephosphorylation at position 73 and 83 of
the protein induced a high level of IFN-β [91]. Non-structural protein PB1-F2, identified from a+1
open reading frame (ORF) of PB1 gene segment [164], is multifunctional in deregulation of type I
interferon [165,166]. It counteracted RLR-mediated activation of IFN pathway not only by targeting
mitochondrial MAVS [115,165,167], but also by binding to the DEAD-box helicase DDX3 to induce
proteasome-dependent degradation [166]. Furthermore, PB1-F2 interacted with mitochondrial Tu
translation elongation factor (TUFM) to mediate formation of autophagosome, thus inducing complete
mitophagy, which is critical for MAVS degradation [167]. Novel PA-X protein could also modulate
innate immune responses. A review regarding the function of NS1 and PA-X proteins in antagonizing
host innate immunity is recommended here [114].

3.4. Autophagy

Though autophagy is essential for cellular metabolism and homeostasis, it also plays important
roles in innate immune responses against pathogen infection. For cellular homeostasis, the mTOR
pathway is one of the most conserved autophagic pathways. The mTOR complex 1 (MTORC1)
negatively regulates the ULK1 kinase activity, thus affecting the autophagy induction [168]. c-Jun
N-terminal protein kinase 1 (JNK1) disrupts the Bcl-2/Beclin-1 complex through phosphorylation, thus
regulating the autophagy induction [169,170]. JNK1 is also reported to upregulate Beclin-1 expression
through phosphorylation of transcription factor c-Jun in vitro [171].

In contrast to the autophagic pathways for cellular metabolism and homeostasis, less is known
about autophagosome formation after IAV infection [172]. To restrict infection of multiple viruses
including IAVs, TRIM23 is essential to mediate autophagy via its RING E3 ligase and ADP-ribosylation
factor (ARF) GTPase activity [173]. Beclin-1 and TUFM-regulated autophagy also inhibited IAV
replication [112]. In HeLa cells and A549 cells, IAV infection activated JNK1 to induce autophagosome
formation and TGF-β-activated kinase 1 might contribute to the process [174,175]. Furthermore,
autophagy was involved in maintaining memory B cells to counteract IAV infection [176].

IAV also utilizes autophagy to complete its life cycle. NS1 protein is proposed to suppress
JNK1-mediated autophagy induction [174]. M2 could also block autophagosome maturation and
mediate microtubule-associated protein 1 light chain 3 (LC3)-bound membrane redistribution, thus
allowing filamentous budding of IAV [177–179]. Circ-GATAD2A (GATA zinc finger domain containing
2A), induced by IAV infection, could inhibit autophagy and promote IAV replication [180]. For a
comprehensive reading on IAV-induced apoptosis, a review is recommended here [181].

3.5. Adaptive Immunity against IAV Infection

Upon detection of IAVs, DCs trigger production of IFNs and cytokines, which in turns assist
maturation of the DCs into antigen presenting cells (APCs), and initiate T cell immune responses.
Through the activation of Ag-bearing DCs, naïve CD4+ T cells differentiate into Th1, Th2, Th7,
regulatory T cells (Treg cells), follicular helper T cells, and killer cells. Th1 and follicular helper T cells
are the most abundant CD4+ T helper cells. They can secret antiviral cytokines, regulate CD8+ T cell
differentiation, promote B cell activation, and maintain immunological memory [182,183]. Th17 cells
induced pulmonary pathogenesis and could decrease mortality of IAV-infected mice [184,185]. In
addition, γδT cells, expanding in the late stage of IAV infection with a T cell receptor (TCR)-independent
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manner, could efficient eliminate IAV-infected airway epithelial cells, resulting in lower viral titers [186].
New surrogate markers CD49d and CD11a were used to explore the kinetics of IAV-specific CD4 T
cells responses, revealing endogenous CD4 T cell response to primary IAV infection is predominantly
composed of T-bet+ cells [187].

CD8+ T cells are major components for virus clearance in adaptive immunity. After activated by
DCs, CD8+ T cells undergo rapid expansion, differentiation, and migration to the infected sites. In
general, to establish effective primary cytotoxic T lymphocyte (CTL) responses, CD4+ T cells play an
essential role, with a mouse model as an exception [188]. CTLs produce cytotoxic granules containing
perforin and granzymes (GrA and GrB) to induce apoptosis and interrupt IAV replication [189]. In
addition, CTLs produce cytokines, such as TNF, FASL, and TRAIL, which recruit death receptors to
induce apoptosis [190]. In addition, IL16 deficiency enhanced the Th1 and CTL responses upon IAV
infection [191]. Furthermore, as CD8+ cells could last for two years in murine models, IAV-specific
memory CTLs reacted specific to epitopes in conserved IAV proteins [192]. In the nasal epithelia, they
could prevent the spread of the virus from the URT to the lung [193]. To establish memory CD8+ T cells,
autophagy plays an important role [194], while the function of CD4+ T cells in memory CTL responses
is “context-dependent”. A recent study showed that CD4+ T cells promoted IAV-specific CTL memory
at the initial priming stage of viral infection [195]. Grant and her colleagues summarized and discussed
the importance of CD8+ T cell immunity against IAVs [192], and this review is recommended for
further reading.

With the help of CD40 ligand (CD40L), CD4+ cells contribute to B cell activation [183]. With the
help of memory T cells, naïve B cells could reduce morbidity and promote recovery on heterosubtypic
infection [196]. For different types of antibodies, IgG could inhibit pathogenesis, while IgA functions
in blocking IAV transmission [197]. In addition, IAV-specific antibody-dependent cell-mediated
cytotoxicity (CDCC) also plays a role in cross-protection against IAV infection. A general description
of adaptive immunity against primary IAV infection is illustrated in Figure 2.

Antigenic shift and drift, resulting in reassorted and mutated HA and/or NA, are responsible for
AIV escaping from host immunity [50–52]. Furthermore, additional glycosylation on H5 HA could
also induce virus escape from neutralizing antibodies [198].

3.6. Apoptosis against IAV Infection

Apoptosis represents programmed single cell death that occurs in cell physiological remodeling,
cell proliferation, or immune response to invading pathogens [199]. Besides prototypical changes, cells
undergoing apoptosis can be detected through DNA and biochemical assays, take the TUNEL and in
situ end-labeling (ISEL) techniques for instance. Two primary pathways are involved in activation of
apoptosis: the intrinsic or mitochondrial pathway, and the extrinsic or death receptor pathway.

3.6.1. The Intrinsic and Extrinsic Apoptosis Pathway

The intrinsic pathway is also known as “the mitochondrial pathway”, which operates in response
to various intracellular stress. Several factors such as nitric oxide (NO), cytochrome c, and second
mitochondria-derived activator of caspases (SMAC) can activate this pathway, and the key player of this
pathway is proteins in the bcl-2 family, which are activated by stress signals and then release apoptotic
factors via destabilizing the mitochondrial membrane [200,201], resulting in release of mitochondrial
cytochrome c. Cytochrome c then binds to apoptosis protease activating factor-1 (APAF-1) and forms a
complex with pro-caspase 9 (then cleaved into caspase 9), the function of which is to cleave its effector
pro-caspase 3 [202]. In addition, SMAC, localizing in the cytosol, could initiate activation of caspase 9
via blocking the activity of IAP [203]. The extrinsic pathway is regulated by extracellular ligands acting
on transmembrane “death receptors”: the first apoptosis signal (FAS) receptor-FAS ligand (FASR/FASL)
and the TNF-αTNF receptor 1 (TNFα/TNFR1) [199]. In the FASR/FASL model, FAS ligand binds to
its receptor FASR [204], forming the death-inducing signaling complex (DISC) with pro-caspase 8,
resulting in activation of caspase 8 and downstream activation of other caspases (caspase-3, caspase-6,
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and caspase-7) [199]. In the TNFα/TNFR1 pathway, TNFR1-associated death domain protein (TRADD)
is activated after binding of TNFα to TNFR1, leading to recruitment of FADD and receptor interacting
protein (RIP) [205]. FADD then associates with pro-caspase 8 to form the DISC, resulting in activation
of caspase 8 and apoptosis.
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3.6.2. Apoptosis after IAV Infection

During IAV infection, viruses modulate host apoptotic responses in a time-dependent manner [206].
For instance, in order to earn enough time for replication and virion formation, IAV inhibited apoptosis
via upregulating the anti-apoptotic phophoinositide-3-kinase-protein kinase B (PI3K-AKT) pathway at
the beginning of infection. However, in the later phase of infection, the virus suppressed this pathway
to upregulate the pro-apoptotic p53 pathway, thus allowing successful release of virions [207].

Several viral proteins are involved in regulation of host apoptosis. NP protein induces host
apoptosis to favor viral replication through interaction with ring finger 43 (RNF43) [208], apoptotic
inhibitor 5 (API5) [209], or clusterin [111]. PB1-F2 also induced apoptosis and promoted viral replication
through dysregulating mitochondrial potential [206]. Furthermore, M1 promoted apoptosis by binding
to heat shock protein 70, thus activating caspase and the subsequent apoptosis [210]. In addition, NS1
expression was reported to induce apoptosis in MDCK and HeLa cells [211]. However, mutant IAV
lacking the NS1 gene could induce apoptosis in cultured cells [212]. The function of NS1 in inhibiting
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apoptosis may be explained by its ability to inhibit type I IFN [213,214]. These data demonstrate
sophisticated mechanisms of IAV in regulating host apoptosis. Furthermore, the role of these viral
proteins in apoptosis suggests that these proteins may present suitable targets for anti-IAV therapies.
A comprehensive review on influenza A virus-induced apoptosis discussed by Ampomah and Lim is
recommended here [181]. In addition, recent in vitro research found that apoptosis was induced at
early IAV infection stage, while later the cell death pathway was shifted to pyroptosis. The switch
process was promoted by the type I IFN-mediated JAK-STAT signaling pathway through expression of
the Bcl-xL gene [215].

4. Perspectives

During IAV infection, multiple immune systems coordinate together to protect the host.
Accordingly, viruses antagonize the immune system through multiple measures to establish a successful
infection. Considering the high frequencies in genome mutations and recombination, vaccination is
the most effective way to defend against the viruses via inducing cross-protective antibodies and/or
enhancing immune responses. Several studies in vaccine development have tried to enhance host
immune responses. For instance, vaccine candidate containing HA targeted to chemokine receptor
(porcine MIP1α) was shown to enhance T cell responses, resulting in a strong and cross-reactive
cellular immunity in vaccinated pigs [216]. Another example is an attempt to intranasally administer a
polyanhydride nano vaccine (IAV-nanovax), which could promote robust lung-resident germinal center
(GC) B cells with lung-localized IAV-specific antibody responses as well as lung-resident memory
CD4+ and CD8+ T cell responses [217].

For anti-IAV drugs, currently, NA inhibitors (RelenzaTM and TamifluTM) are applied clinically as
anti-influenza drugs [218]. These drugs inhibit the activity of NA by preventing viral budding [21].
In addition, cap-dependent endonuclease inhibitor (Baloxavir Marboxil) targeting PA is also applied
against influenza A and B virus infection [219]. Our progressing understanding of the IAV life cycle of
the virus and IAV–host interaction could contribute to anti-influenza drug design.

Since the recognition of HA protein to SA linked glycoproteins is the first step in IAV infection,
effective blocking of the interaction between viral HA and SA receptor serves as a favorable target in
drug design [220,221]. Favipiravir, a nucleotide analogue that selectively inhibits the RNA-dependent
RNA polymerase, is licensed in Japan to be applied against emerging influenza viruses resistant to
other antivirals [222,223]. Oleanolic acid (OA), a kind of pentacyclic triterpene natural product, and its
analogues, as well as its derivatives, were shown to bind to HA, thus blocking the attachment of IAVs
to MDCK cells [224–226]. PVF-tet is a peptide-based HA inhibitor, which was shown to sequester HA
into amphisome (fusion of late endosome with autophagosome) and protected mice from the lethal
IAV infection [227].

New effective drugs targeting the polymerase would be a promising strategy against IAV infection,
since they would directly reduce or eliminate viral replication. Numerous sites, including the
cap-binding site [228], the endonuclease [229,230], and PA-PB1 inter-subunit interface [231] can serve
as potential targeting sites for new drug design. Coumarin compounds, including Eleutheroside
B1, Isofraxidin, Fraxin, Esculetin, Fraxetin, and Scoparone, were investigated for their antiviral and
anti-inflammatory activities against influenza virus in vitro [31].

Other candidates, such as Naproxen, a non-steroidal anti-inflammatory drug, was shown to target
NP protein at residues F209 and Y148, thus antagonizes the CRM1-mediated nuclear export of NP. It
is suggested to have a broad-spectrum anti-influenza activity [232]. Verdinexor (KPT-335), a novel
orally bioavailable drug, blocks CRM1-mediated nuclear export of NP and repress NF-κB activation,
thus reducing cytokine production and eliminating virus-associated immunopathology [233]. For
further reading on candidate anti-IV therapeutics, a review summarized by Davidson is recommended
here [234].



Viruses 2020, 12, 376 12 of 23

With the increasing knowledge obtained through massive investigations on host immunity against
IAV infection, promoting host immune responses not limited to antibody enhancement would have
good prospects not only for vaccine design, but also for development of novel antiviral agents.
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