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Abstract

Hundreds of genetic markers have shown associations with various complex diseases, yet the “missing heritability” remains
alarmingly elusive. Combinatorial interactions may account for a substantial portion of this missing heritability, but their
discoveries have been impeded by computational complexity and genetic heterogeneity. We present BlocBuster, a novel
systems-level approach that efficiently constructs genome-wide, allele-specific networks that accurately segregate
homogenous combinations of genetic factors, tests the associations of these combinations with the given phenotype, and
rigorously validates the results using a series of unbiased validation methods. BlocBuster employs a correlation measure
that is customized for single nucleotide polymorphisms and returns a multi-faceted collection of values that captures
genetic heterogeneity. We applied BlocBuster to analyze psoriasis, discovering a combinatorial pattern with an odds ratio of
3.64 and Bonferroni-corrected p-value of 5.01x10™ ', This pattern was replicated in independent data, reflecting robustness
of the method. In addition to improving prediction of disease susceptibility and broadening our understanding of the
pathogenesis underlying psoriasis, these results demonstrate BlocBuster’s potential for discovering combinatorial genetic
associations within heterogeneous genome-wide data, thereby transcending the limiting “small effects” produced by
individual markers examined in isolation.
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in this region, as well as other regions of the genome, e.g., those
reported in [2,11-16]. Table 1 lists a collection of SNPs with odds
ratios of at least 1.4.

Opverall, it is estimated that less than 20% of genetic heritability

Introduction

Psoriasis is an incurable complex disease that is characterized by
hyperproliferation and aberrant differentiation of the epidermis,

coupled with marked cutaneous inflammation. Environmental
triggers for onset of symptoms have been observed, yet genetic
predisposition is strong and heritability has been estimated at 80%
[1]. This disease appears with dramatic variations between
populations. It is essentially nonexistent in Eskimo and South
American Indian populations, affects 2%—3% of individuals with
European ancestry [2], and has been reported as high as 11.8% in
Kazach’ye, Russia [3].

The strongest known genetic risk factor for psoriasis, PSORSI,
is within the major histocompatibility complex (MHC) region on
chromosome 6 [4-7], a region that has been a primary focus of
psoriatic research spanning at least 40 years [5,8-10]. The area of
interest includes HLA-C, PSORS1C1 (aka SEEKI), PSORS1C2
(aka SPRI), PSORS1C3, CDSN, and several additional genes and
pseudogenes in a ~300-kb region of 6p21.3. A number of
genome-wide association studies (GWAS) focused on psoriasis
have identified associated single nucleotide polymorphisms (SNPs)
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can be accounted for by previous discoveries [4,17]. Furthermore,
many of these loci have not been replicated using independent
data, suggesting the existence of genetic heterogeneity in the
pathogenesis of this disease, as was implicated in the early work of
Burch and Rowell [18]. Furthermore, there are substantial
uncertainties about the precise contributing mutations that are
captured by linkage disequilibrium (LD) within each of the
associated genomic regions [2]. Importantly, previous research has
indicated that psoriasis arises due to the interactions of multiple
genetic factors [19]; thereby further complicating efforts to
understand this complex disease.

Identifying genetic risk factors and understanding the genetic
basis of complex diseases, such as psoriasis, are central goals of
medicine and biology. While GWAS have identified hundreds of
individual genetic markers associated with complex diseases, it is
clear that a substantial portion of heritability remains unexplained
for the vast majority of these enigmatic phenotypes [20]. The
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Author Summary

Most complex diseases arise due to combinations of
genetic factors, yet current genome-wide association
studies (GWAS) typically examine individual genetic
markers in isolation because of the complexity of
considering a prohibitively large number of marker
combinations. Another complication for GWAS stems from
genetic heterogeneity, in which different subsets of
individuals develop a given disease due to different sets
of genetic factors. We present BlocBuster, a network-based
method that addresses these challenges and extracts inter-
correlated genetic markers that manifest significant asso-
ciations with complex diseases. Our analysis of psoriasis
GWAS data revealed a significant combinatorial genetic
pattern, which was validated using stringent computa-
tional tests and replication in independent data. This
pattern is more significant than other previously identified
markers. We also compared Pearson’s correlation coeffi-
cient and observed that it introduced more type | errors
and produced a less structured network than BlocBuster;
the former also broke the combinatorial pattern into
pieces. In addition to improving prediction of disease
susceptibility and broadening our understanding of the
pathogenesis underlying psoriasis, these results demon-
strate BlocBuster’s effectiveness for discovering combina-
torial genetic associations within heterogeneous back-
grounds, thereby transcending the limiting “small effects”
produced by individual markers examined in isolation.

susceptibility of complex diseases may be influenced by a
multiplicity of genetic factors, as well as environmental factors.
When considered individually, many contributing genetic factors
may have a small or undetectable effect on the disease, making
them difficult to identify [21,22]. Moreover, the effects of these risk
factors might not be simply additive; they may be compounded
epistatically through sophisticated interactions [23,24]. Standard
GWAS only identify single variants associated with the phenotype
of interest as they lack power to detect epistasis [25]. An additional
impediment to identification of combinatorial genetic interactions
is that the correction for multiple testing would be prohibitively
enormous as the number of tests grows exponentially in the
number of markers considered simultancously [25]. In fact,
conducting such tests quickly becomes intractable. When the
number of markers is in the hundreds of thousands, or millions,
even just examining every pair of two markers can be computa-
tionally demanding. For example, one million markers can be
paired in 499,999,500,000 unique ways. The computational
challenge increases exponentially for higher-ordered combinations
— examining every combination of three markers requires
examining 1.7x10" trios. Consequently, directly testing every
trio or higher-ordered combination is computationally intractable
using currently available resources and will likely remain infeasible
for the foreseeable future [26].

In order to examine pair-wise epistasis involving two SNPs,
several methods have been introduced in which subsets of SNPs
are selected using previously known biological information, and
pair-wise interactions are computed over these subsets [27-29].
For example, Strange et al. tested pair-wise interactions for a set of
SNPs that had each shown associations with psoriasis when tested
independently in standard GWAS, and discovered an interaction
between HLA-C and ERAP [30]. Chen et al. later tested ten SNPs
that had been indicted to be associated with psoriasis, but no
significant epistasis between pairs of SNPs was found [4]. Analyses
examining subsets of SNPs reduce the computational burden but
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limit discoveries to these subset selections. On the other hand,
methods such as PLINK’s Fast Epistasis [31] and a statistic
introduced by Wu et al. [32,33] are computationally efficient and
can be used to blindly test all pairs of SNPs. However, these trials
impose hefty multiple testing corrections, resulting with little
progress in this area.

Alternatively, haplotypes have the potential to provide more
power than single SNPs [34-37]. A haplotype is a set of contiguous
allele-specific markers that ideally span a “haplotype block™ in
which high LD is exhibited. Haplotype data are not directly
acquired for GWAS as current profiling methods provide
genotypes that specify the two alleles for a given SNP, but are
unable to align the alleles for each of the homologous chromo-
somes. Computational haplotype inference methods are common-
ly employed to phase genotypes into two homologous haplotypes,
each of which possesses a set of contiguous SNP alleles. However,
most computational approaches phase all SNPs supplied within
each region, which may result with the inclusion of un-informative
or even misleading markers.

The HLA-Cw6 haplotype family consisting of HLA-Cw0602—
Cw0613 alleles within PSORSI has shown strong association with
psoriasis [5,19]. This haplotype 1s defined by the CCATCCG SNP
alleles at positions 213, 218, 341, 361, 387, 459, and 540 of
NM_002117.4 [5]. Nair et al. [5] completely sequenced the
PSORSI region for one psoriatic individual and four controls,
genotyped risk alleles in 678 psoriatic families, and employed three
computational haplotype reconstruction methods as well as a
combinatorial analysis to implicate the HLA-Cw6 haplotype as the
most probable source of susceptibility within the PSORSI locus
for early-onset psoriasis of individuals with European ancestry. It
should be noted that their analysis focused on age of onset and it
only included exons from known protein-coding genes. Non-
coding regions were left unexamined.

It has been demonstrated that complex phenotypes, e.g. human
height [38], may be associated with markers that are not
necessarily in close proximity but rather even span across the
genome. Therefore, it is desirable to explore general combinations
of alleles without imposing restrictions regarding genomic
proximity. A number of approaches have been proposed for
identifying patterns of multiple markers that may be linked or
unlinked, yet interact to contribute to a phenotype of interest. For
example, Chen et al. [4] conducted combinatorial analyses of ten
SNPs that had been previously identified to each have individual
associations with psoriasis. These ten SNPs have been highly
replicated and included a SNP tagging HLA-Cw6. They tested risk
predictions via simple allele counts of multiple markers as well as
weighted combinations and observed that the contribution due to
the HLA-Cw6 SNP was about equal to the contribution of the
other nine SNPs combined. The authors noted the possibility of
overfitting in their weighted approach due to the use of the same
data for model construction and subsequent analysis [4]. More
generally, the limitation to SNPs with previously-identified
associations eradicates the possibility of identifying interacting
factors that exhibit negligible associations when examined in
isolation.

One approach to address this limitation is to consider all
genome-wide SNP states together for each individual and apply a
regression analysis or maximum likelihood estimate over the
genomic similarities between individuals. Yang et al. used this
approach to estimate variance in human height [39], a highly
heritable trait that is associated with hundreds of genetic variants
[40]. This type of approach is advantageous as it dramatically
reduces the burden of multiple testing corrections, with potential
to reduce false-negative signals. On the other hand, for many
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Table 1. Selection of previously identified risk alleles for psoriasis.

ID Chr. Position Risk allele Cases risk allele freq. Controls risk allele freq. OR Closest gene
rs4406273 6 31266090 A 0.259 0.092 3.45 WASF5P
rs34536443 19 10463118 G 0.974 0.953 1.85 TYK2
rs2233278 5 150467189 C 0.090 0.058 1.61 TNIP1
rs9988642 1 67726104 T 0.952 0.929 152 IL23R
rs33980500 6 111913262 T 0.108 0.074 1.52 TRAF3IP2
rs12188300 5 158829527 T 0.132 0.095 1.45 IL12B

doi:10.1371/journal.pcbi.1003766.t001

complex traits the number of causal loci associated with a
phenotype of interest may account for a small or negligible
proportion of variation between individuals. For example, two
individuals might exhibit high genomic similarity due to shared
ancestry dominating the similarity measure; while another two
individuals with less common ancestry, yet sharing a handful of
causal alleles contributing to a given phenotype, might exhibit low
genomic similarity. This problem can be exacerbated by genetic
heterogeneity, as described below. In short, the abstraction of
many hundreds of thousands of variable markers into a similarity
measure that captures a small handful of markers associated with a
particular phenotype could be expected to require extremely large
sample size or the use of previously known information.

Several network construction approaches utilizing known
information have been introduced to capture combinations of
markers with phenotypic associations, such as nested clade analysis
[41], treescanning [42], simulated evaporative cooling networks
[43], SNPrank [44], Hua et al’s SNP-SNP networks [28],
statistical epistasis networks [45], and Li et al.’s two-step method
[27]. These methods utilize phenotypic information and/or
biological knowledge in construction of networks that are
subsequently explored. Networks that have strong community
structure can be partitioned into clusters, or communities, of nodes
such that there is a high density of edges within each community
and few edges spanning between communities. Many approaches
utilize clustering methods to partition the network, followed by the
use of reference databases — e¢.g. Gene Ontology [46], KEGG [47],
DAVID [48], or MetaCore — to evaluate gene enrichment for each
community. Due to the assumptions and/or biases that are
mtroduced during network construction, it is difficult to accurately
evaluate the contributions using enrichment analyses based upon
reference databases.

In addition to the challenges of combinatorial interactions,
another serious issue that is impeding identification of phenotypic
associations in GWAS is that most complex diseases are subject to
genetic heterogeneity, in which different groups of individuals
develop the same disease due to different genetic factors or gene-
by-environment interactions. Heterogeneity can manifest as
different mutations within a single gene or as mutations within
different genes. For example, cystic fibrosis can arise due to more
than 1,000 different mutations within a single gene, CFTR [49],
and retinitis pigmentosa can arise due to specific mutations in any
one of at least 45 different genes [50]. The inability to replicate
psoriatic associations in populations that are distinct from the
original population may be due to heterogeneity [51]. Ciritically,
heterogeneity has not been adequately quantified nor even
captured by the currently available measures of correlation, which
is one of the most fundamental concepts in statistical analyses of
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Shown are the SNP IDs, chromosome, position, risk allele frequencies [14], odds ratio (OR), and closest gene for all markers cited by Tsoi et al. [14] with an OR of at least
1.4. Positions follow Genome Build 37.3, as given by NCBI's dbSNP website (http://www.ncbi.nlm.nih.gov/projects/SNP/).

genetic data. Two commonly adopted correlation measures in the
biomedical domain are Pearson’s correlation coefficient (PCC)
[52] and the linkage disequilibrium measure, . Importantly, each
of these popular correlation methods returns a single scalar that
can be crippled by heterogeneity. In fact, all of the correlation
measures that we have examined, including PCC and 7%, as well as
dot product and entropy, are global, in that individuals in the
entire group are viewed as a whole, and thus subtle but critical
subgroup structures, which manifest heterogeneity of the individ-
uals in the group, are ignored. Figure 1 illustrates a simple
example for two SNPs, where half of the individuals are perfectly
correlated, while the other individuals are not correlated at all.
PCC and 7* have low values, due to penalization for the
uncorrelated individuals. In short, current correlation measures
treat the correlation for all of the individuals as a whole, and
consequently, fail to accommodate genetic heterogeneity within
the sample studied.

In order to address these pressing challenges, we present
BlocBuster, a systems-level, allele oriented network strategy
designed to generate viable biological hypotheses of epistatic
and/or additive interactions of genetic variations with a holistic
and unbiased approach that honors genetic heterogeneity.
BlocBuster has two key distinctions from the previous approaches.
First, we introduce a significant extension to the custom
correlation coefficient (CCC, “triple C”) [53], a metric designed
to capture genetic heterogeneity by computing a multi-faceted
collection of correlation measurements. Each facet independently
captures a single homogeneous type of correlation. Second, we
build an unbiased network of SNP alleles, identify clusters of
correlated alleles within the network, test each entire cluster for
phenotypic association, and rigorously validate the results. During
network construction, we consider all individuals together, without
phenotype labeling, and consider all markers simultaneously,
thereby assessing relationships in foto. In our current implemen-
tation, each bi-allelic SNP is represented by two nodes, one for
each SNP allele, which can be readily extended to multi-allelic
SNPs. CCC is computed for every pair of SNPs, thereby revealing
correlations that arise regardless of genomic distances between the
SNPs. Significant values within the CCC vectors are represented
by edges between the nodes representing the correlated alleles.
After the network is built, we retrieve clusters of inter-correlated
nodes that arise naturally separated from each other and do not
require partitioning. Each of the corresponding patterns of SNP
alleles is then tested for variation between phenotypic groups.
Consequently, BlocBuster extracts patterns of inter-correlated
haploid markers, referred to as blocs. These blocs seamlessly
capture genetic heterogeneity as they are built upon the multi-
faceted CCC metric that treats each pair of SNP alleles
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Figure 1. Genotypes for ten individuals for a pair of SNPs. The
first five individuals are perfectly correlated, but the others are not
correlated at all. The absolute value of PCC is 0.3 and r? returns 0.0, due
to the uncorrelated individuals. CCC supplies four correlation values,
each of which corresponds to a specific type of correlation. These
values are low for three of the possible combinations, but a high value
of 0.7 for the T-G combination was returned.
doi:10.1371/journal.pcbi.1003766.9g001

independently, thereby avoiding reduction of the correlation value
by subgroups of individuals that lack correlation for the pair of
alleles. An allele-specific network is utilized to eliminate the
merging of both SNP allele states into a single node, which can
lead to false positive signals, as described below. Our approach is
direct and efficient, and scales efficiently to millions of markers
with reasonable computational resources.

In order to ensure accuracy of results, BlocBuster employs a
series of computational validation trials, including two types of
permutation tests, bootstrapping trials, variations of network
density, and visual inspection. These computations economically
screen the results and can be utilized prior to investment in
replication trials using independent data.

Aiming at identification of combinatorial interactions of SNP
alleles underlying pathogenesis of psoriasis, we applied BlocBuster
to genome-wide data for psoriatic cases and normal controls. This
analysis identified a bloc of SNP alleles that is significantly
associated with psoriasis and improves upon previous results by
supplying a precise allelic pattern within the major histocompat-
ibility complex (MHC). This newly identified genetic pattern was
rigorously validated using multiple computational screening tests
and was subsequently replicated in independent data, thereby
ensuring its accuracy and suitability for further research efforts.
Finally, we compare and contrast our approach with Pearson’s
Clorrelation Coeflicient (PCC) and observe that the PCC network
had substantially weaker community structure, was more likely to
introduce false-positive correlations, and required three times as
much computation time.

Results

In order to discover combinatorial interactions in heterogeneous
samples of a given complex disease, we developed a novel
computational approach, referred to as BlocBuster, which
identifies clusters, or blocs, of correlated SNP alleles and
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subsequently tests these blocs for phenotypic associations. Briefly,
an allele-specific network is constructed in which each SNP allele
is represented by a node and edges are placed between pairs of
nodes representing SNP alleles that exhibit significant pair-wise
correlations. In order to address genetic heterogeneity, we utilize a
multi-faceted correlation metric that is customized for SNP data,
referred to as CCC. Note that the CCC computation is conducted
for the entire sample of all individuals and the network
construction is blind to phenotype status. Furthermore, CCC is
computed for every pair of SNPs, providing a holistic systems-level
network. After the network is constructed, groups of nodes that are
connected by edges are easily identified as they are completely
isolated from each other. Then the entire pattern of SNP alleles
represented by each bloc is tested as a whole for association with
the phenotype. These patterns are comprised of specific SNP
alleles and can be considered as a type of haplotype — with two
noteworthy exceptions: (1) only SNP alleles that exhibit inter-
correlations are included and (2) the SNPs are not necessarily
contiguous and are included regardless of genomic position.

In this section, we present the results provided by BlocBuster for
psoriasis GWAS data. These results were carefully validated using
a series of computational trials and these outcomes are over-
viewed. The most significant result is a bloc of 17 SNP alleles that
1s strongly associated with psoriasis. We replicated this result by
utilizing independent data and found that the bloc has a stronger
association in the replication data than in the discovery data.
Finally, we compare CCC with a standard correlation metric,
Pearson’s correlation coefficient (PCC), and observe the benefits of
utilizing a metric that is customized specifically for SNP data and
is designed to accommodate heterogeneity.

Network analysis of psoriasis

We used both psoriatic cases and normal controls in the GAIN
General Research Use (GRU) genome-wide data to construct the
BlocBuster network for this complex disease. These data consisted
of 443,020 autosomal SNPs for 929 cases and 681 controls (see
Methods). The correlation between every pair of SNPs was
computed using CGCC. We set the number of edges in the network
equal to the number of SNPs, consequently selecting edges with
the highest 443,020 CCC values — see Methods for discussion of
this parameter selection and validation trial results for significance
of this threshold and sensitivity of its value. The network was
comprised of 886,040 nodes as each SNP allele was represented by
a node. Consequently, the average degree of each node in the
network was one. If the edges were uniformly distributed, the
network would consist of 443,020 doubletons, each of which was
comprised of a single edge connecting two nodes; with every node
connected to precisely one other node in the network.

In sharp contrast to a network with uniform distribution, the
observed network exhibited strong community structure. Instead
of doubletons spread across the network, there were a large
percentage of singleton nodes with no incident edges, and many
discrete blocs of densely connected nodes, with each bloc isolated
from one another. Specifically, 631,462 (71.3%) of the nodes were
singletons, and there were 54,425 discrete blocs, ranging from 2 to
313 nodes, with an average of 4.7 nodes per bloc.

Importantly, the blocs arose naturally separated in the network
and there was no need to employ methods such as clustering
strategies to partition the nodes. For each of the 54,425 blocs, the
frequencies of the entire corresponding SNP allele pattern were
tallied and the odds ratio with 95% confidence interval (CI) and
Bonferroni-corrected p-value, based on the G-test of indepen-
dence, were computed between cases and controls (see Methods).
Any individual that was missing more than 5% of the genotypes in
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the bloc was not included in these calculations. Note that other
than these missing genotypes, the entire SNP allele pattern must be
present to be counted in the bloc frequency. This policy assumes
that the entire pattern is required for the phenotypic association
for a given subset of individuals. However, it is possible that one or
more of the SNP alleles in the bloc is not essential. The visual
validation described below facilitates the observation of this
situation, should it arise.

This analysis revealed a single bloc, referred to as ps_I, which
was comprised of 17 SNP alleles and had a significant odds ratio
and CI (Figure 2). Individuals missing more than 5% data for
these 17 SNPs were omitted, leaving sample sizes of 785 cases and
585 controls. This pattern had a “protective” association with
frequencies of 0.179 and 0.265 for the psoriatic cases and controls,
respectively, with an odds ratio of 0.605 (CI: 0.482-0.759).
However, the p-value was not significant after Bonferroni
correction. On the other hand, the alternate alleles for all 17
SNPs comprised a risk pattern that had frequencies of 0.220 and
0.072 for cases and controls, respectively. This risk pattern had an
odds ratio of 3.64 (CI: 2.75-4.80) and Bonferroni-corrected p-
value of 5.01 x107'®, The risk pattern is more significant than the
protective pattern when comparing cases to controls. However,
when considering all individuals together, the protective pattern is
more pronounced (with a frequency of 0.216) than the risk pattern
(with a frequency of 0.157), which is likely the reason that the
protective pattern appeared in the network that was constructed
using all individuals without phenotypic labeling.

Table 2 lists the 17 nodes in ps_1I, along with alleles and their
individual frequencies. The SNPs within ps_I span ~211 kb, from
positions 31054511 to 31265057 in the MHC on chromosome 6.
Two SNPs are located within known genes: rs3130573 in
PSORSI1CI (aka SEEKI) and PSORSIC2 (aka SPRI), and
rs1265078 in CCHCRI (coiled-coil a-helical rod protein 1, aka
HCR). All three of these genes have been previously associated
with psoriasis [54,55].

Computational validations

In order to evaluate the robustness of our results, we ran five
computational validations: two types of permutation tests, trials in
which we varied the network density, bootstrapping trials, plus
visualization of results. The first series of permutation tests were
conducted to determine a significant G-test score given multiple
tests (see Methods). In these trials, the phenotypic labels of
individuals were permuted prior to computing G-test scores for
each of the 54,425 blocs. Each permutation trial destroys the
associations between genotypes and the phenotype, but maintains
the statistical properties of the whole so that they can be used as
background for this significance analysis. These trials indicated a
G-test score of 23.7 corresponds to a corrected p-value of 0.05. A
G-test score of 24.1 corresponds to the same significance when
using Bonferroni correction, indicating these two approaches for
multiple testing corrections are similar for this study.

The second series of permutation tests were used to remove
inherent correlations among SNP alleles in the data in order to
verify that it is unlikely that type I errors were introduced during
computations of correlations. For each SNP, we randomly shuffled
the genotypes across all individuals. This randomization breaks
inherent correlations while each SNP retains the same allele
frequencies and balance of genotype states as in the original data.
Consequently, it is not expected that there would be significant
correlations within the permuted data. These trials aim to estimate
the highest CCC value that might arise by random chance for
uncorrelated data drawn from these samples. The maximum CCC
value for 9.8x10'° pairs of SNPs with permuted genotypes was
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Figure 2. Plot of 17-node bloc, ps_7. Each node represents a SNP
allele and each edge represents a significant correlation between the
SNP alleles representing its endpoints. The pattern corresponding to
this bloc exhibited a risk association with psoriasis, with an odds ratio of
3.64 (Cl: 2.75-4.80) and Bonferroni-corrected p-value of 5.01 %x10" "% in
the discovery data and odds ratio of 3.86 (Cl: 2.98-5.01) and Bonferroni-
corrected p-value of 1.81x10~2° in the validation data.
doi:10.1371/journal.pcbi.1003766.9002

0.6515. The lowest CCC value representing an edge in the
original network was 0.6949. This result indicates that it is not
likely that there were any edges representing false-positive
correlations in the original network.

In the third validation trial, we varied the density of t