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Abstract

Hundreds of genetic markers have shown associations with various complex diseases, yet the ‘‘missing heritability’’ remains
alarmingly elusive. Combinatorial interactions may account for a substantial portion of this missing heritability, but their
discoveries have been impeded by computational complexity and genetic heterogeneity. We present BlocBuster, a novel
systems-level approach that efficiently constructs genome-wide, allele-specific networks that accurately segregate
homogenous combinations of genetic factors, tests the associations of these combinations with the given phenotype, and
rigorously validates the results using a series of unbiased validation methods. BlocBuster employs a correlation measure
that is customized for single nucleotide polymorphisms and returns a multi-faceted collection of values that captures
genetic heterogeneity. We applied BlocBuster to analyze psoriasis, discovering a combinatorial pattern with an odds ratio of
3.64 and Bonferroni-corrected p-value of 5.01610216. This pattern was replicated in independent data, reflecting robustness
of the method. In addition to improving prediction of disease susceptibility and broadening our understanding of the
pathogenesis underlying psoriasis, these results demonstrate BlocBuster’s potential for discovering combinatorial genetic
associations within heterogeneous genome-wide data, thereby transcending the limiting ‘‘small effects’’ produced by
individual markers examined in isolation.
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Introduction

Psoriasis is an incurable complex disease that is characterized by

hyperproliferation and aberrant differentiation of the epidermis,

coupled with marked cutaneous inflammation. Environmental

triggers for onset of symptoms have been observed, yet genetic

predisposition is strong and heritability has been estimated at 80%

[1]. This disease appears with dramatic variations between

populations. It is essentially nonexistent in Eskimo and South

American Indian populations, affects 2%–3% of individuals with

European ancestry [2], and has been reported as high as 11.8% in

Kazach’ye, Russia [3].

The strongest known genetic risk factor for psoriasis, PSORS1,

is within the major histocompatibility complex (MHC) region on

chromosome 6 [4–7], a region that has been a primary focus of

psoriatic research spanning at least 40 years [5,8–10]. The area of

interest includes HLA-C, PSORS1C1 (aka SEEK1), PSORS1C2
(aka SPR1), PSORS1C3, CDSN, and several additional genes and

pseudogenes in a ,300-kb region of 6p21.3. A number of

genome-wide association studies (GWAS) focused on psoriasis

have identified associated single nucleotide polymorphisms (SNPs)

in this region, as well as other regions of the genome, e.g., those

reported in [2,11–16]. Table 1 lists a collection of SNPs with odds

ratios of at least 1.4.

Overall, it is estimated that less than 20% of genetic heritability

can be accounted for by previous discoveries [4,17]. Furthermore,

many of these loci have not been replicated using independent

data, suggesting the existence of genetic heterogeneity in the

pathogenesis of this disease, as was implicated in the early work of

Burch and Rowell [18]. Furthermore, there are substantial

uncertainties about the precise contributing mutations that are

captured by linkage disequilibrium (LD) within each of the

associated genomic regions [2]. Importantly, previous research has

indicated that psoriasis arises due to the interactions of multiple

genetic factors [19]; thereby further complicating efforts to

understand this complex disease.

Identifying genetic risk factors and understanding the genetic

basis of complex diseases, such as psoriasis, are central goals of

medicine and biology. While GWAS have identified hundreds of

individual genetic markers associated with complex diseases, it is

clear that a substantial portion of heritability remains unexplained

for the vast majority of these enigmatic phenotypes [20]. The
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susceptibility of complex diseases may be influenced by a

multiplicity of genetic factors, as well as environmental factors.

When considered individually, many contributing genetic factors

may have a small or undetectable effect on the disease, making

them difficult to identify [21,22]. Moreover, the effects of these risk

factors might not be simply additive; they may be compounded

epistatically through sophisticated interactions [23,24]. Standard

GWAS only identify single variants associated with the phenotype

of interest as they lack power to detect epistasis [25]. An additional

impediment to identification of combinatorial genetic interactions

is that the correction for multiple testing would be prohibitively

enormous as the number of tests grows exponentially in the

number of markers considered simultaneously [25]. In fact,

conducting such tests quickly becomes intractable. When the

number of markers is in the hundreds of thousands, or millions,

even just examining every pair of two markers can be computa-

tionally demanding. For example, one million markers can be

paired in 499,999,500,000 unique ways. The computational

challenge increases exponentially for higher-ordered combinations

– examining every combination of three markers requires

examining 1.761017 trios. Consequently, directly testing every

trio or higher-ordered combination is computationally intractable

using currently available resources and will likely remain infeasible

for the foreseeable future [26].

In order to examine pair-wise epistasis involving two SNPs,

several methods have been introduced in which subsets of SNPs

are selected using previously known biological information, and

pair-wise interactions are computed over these subsets [27–29].

For example, Strange et al. tested pair-wise interactions for a set of

SNPs that had each shown associations with psoriasis when tested

independently in standard GWAS, and discovered an interaction

between HLA-C and ERAP [30]. Chen et al. later tested ten SNPs

that had been indicted to be associated with psoriasis, but no

significant epistasis between pairs of SNPs was found [4]. Analyses

examining subsets of SNPs reduce the computational burden but

limit discoveries to these subset selections. On the other hand,

methods such as PLINK’s Fast Epistasis [31] and a statistic

introduced by Wu et al. [32,33] are computationally efficient and

can be used to blindly test all pairs of SNPs. However, these trials

impose hefty multiple testing corrections, resulting with little

progress in this area.

Alternatively, haplotypes have the potential to provide more

power than single SNPs [34–37]. A haplotype is a set of contiguous

allele-specific markers that ideally span a ‘‘haplotype block’’ in

which high LD is exhibited. Haplotype data are not directly

acquired for GWAS as current profiling methods provide

genotypes that specify the two alleles for a given SNP, but are

unable to align the alleles for each of the homologous chromo-

somes. Computational haplotype inference methods are common-

ly employed to phase genotypes into two homologous haplotypes,

each of which possesses a set of contiguous SNP alleles. However,

most computational approaches phase all SNPs supplied within

each region, which may result with the inclusion of un-informative

or even misleading markers.

The HLA-Cw6 haplotype family consisting of HLA-Cw0602—
Cw0613 alleles within PSORS1 has shown strong association with

psoriasis [5,19]. This haplotype is defined by the CCATCCG SNP

alleles at positions 213, 218, 341, 361, 387, 459, and 540 of

NM_002117.4 [5]. Nair et al. [5] completely sequenced the

PSORS1 region for one psoriatic individual and four controls,

genotyped risk alleles in 678 psoriatic families, and employed three

computational haplotype reconstruction methods as well as a

combinatorial analysis to implicate the HLA-Cw6 haplotype as the

most probable source of susceptibility within the PSORS1 locus

for early-onset psoriasis of individuals with European ancestry. It

should be noted that their analysis focused on age of onset and it

only included exons from known protein-coding genes. Non-

coding regions were left unexamined.

It has been demonstrated that complex phenotypes, e.g. human

height [38], may be associated with markers that are not

necessarily in close proximity but rather even span across the

genome. Therefore, it is desirable to explore general combinations

of alleles without imposing restrictions regarding genomic

proximity. A number of approaches have been proposed for

identifying patterns of multiple markers that may be linked or

unlinked, yet interact to contribute to a phenotype of interest. For

example, Chen et al. [4] conducted combinatorial analyses of ten

SNPs that had been previously identified to each have individual

associations with psoriasis. These ten SNPs have been highly

replicated and included a SNP tagging HLA-Cw6. They tested risk

predictions via simple allele counts of multiple markers as well as

weighted combinations and observed that the contribution due to

the HLA-Cw6 SNP was about equal to the contribution of the

other nine SNPs combined. The authors noted the possibility of

overfitting in their weighted approach due to the use of the same

data for model construction and subsequent analysis [4]. More

generally, the limitation to SNPs with previously-identified

associations eradicates the possibility of identifying interacting

factors that exhibit negligible associations when examined in

isolation.

One approach to address this limitation is to consider all

genome-wide SNP states together for each individual and apply a

regression analysis or maximum likelihood estimate over the

genomic similarities between individuals. Yang et al. used this

approach to estimate variance in human height [39], a highly

heritable trait that is associated with hundreds of genetic variants

[40]. This type of approach is advantageous as it dramatically

reduces the burden of multiple testing corrections, with potential

to reduce false-negative signals. On the other hand, for many

Author Summary

Most complex diseases arise due to combinations of
genetic factors, yet current genome-wide association
studies (GWAS) typically examine individual genetic
markers in isolation because of the complexity of
considering a prohibitively large number of marker
combinations. Another complication for GWAS stems from
genetic heterogeneity, in which different subsets of
individuals develop a given disease due to different sets
of genetic factors. We present BlocBuster, a network-based
method that addresses these challenges and extracts inter-
correlated genetic markers that manifest significant asso-
ciations with complex diseases. Our analysis of psoriasis
GWAS data revealed a significant combinatorial genetic
pattern, which was validated using stringent computa-
tional tests and replication in independent data. This
pattern is more significant than other previously identified
markers. We also compared Pearson’s correlation coeffi-
cient and observed that it introduced more type I errors
and produced a less structured network than BlocBuster;
the former also broke the combinatorial pattern into
pieces. In addition to improving prediction of disease
susceptibility and broadening our understanding of the
pathogenesis underlying psoriasis, these results demon-
strate BlocBuster’s effectiveness for discovering combina-
torial genetic associations within heterogeneous back-
grounds, thereby transcending the limiting ‘‘small effects’’
produced by individual markers examined in isolation.
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complex traits the number of causal loci associated with a

phenotype of interest may account for a small or negligible

proportion of variation between individuals. For example, two

individuals might exhibit high genomic similarity due to shared

ancestry dominating the similarity measure; while another two

individuals with less common ancestry, yet sharing a handful of

causal alleles contributing to a given phenotype, might exhibit low

genomic similarity. This problem can be exacerbated by genetic

heterogeneity, as described below. In short, the abstraction of

many hundreds of thousands of variable markers into a similarity

measure that captures a small handful of markers associated with a

particular phenotype could be expected to require extremely large

sample size or the use of previously known information.

Several network construction approaches utilizing known

information have been introduced to capture combinations of

markers with phenotypic associations, such as nested clade analysis

[41], treescanning [42], simulated evaporative cooling networks

[43], SNPrank [44], Hua et al.’s SNP-SNP networks [28],

statistical epistasis networks [45], and Li et al.’s two-step method

[27]. These methods utilize phenotypic information and/or

biological knowledge in construction of networks that are

subsequently explored. Networks that have strong community

structure can be partitioned into clusters, or communities, of nodes

such that there is a high density of edges within each community

and few edges spanning between communities. Many approaches

utilize clustering methods to partition the network, followed by the

use of reference databases – e.g. Gene Ontology [46], KEGG [47],

DAVID [48], or MetaCore – to evaluate gene enrichment for each

community. Due to the assumptions and/or biases that are

introduced during network construction, it is difficult to accurately

evaluate the contributions using enrichment analyses based upon

reference databases.

In addition to the challenges of combinatorial interactions,

another serious issue that is impeding identification of phenotypic

associations in GWAS is that most complex diseases are subject to

genetic heterogeneity, in which different groups of individuals

develop the same disease due to different genetic factors or gene-

by-environment interactions. Heterogeneity can manifest as

different mutations within a single gene or as mutations within

different genes. For example, cystic fibrosis can arise due to more

than 1,000 different mutations within a single gene, CFTR [49],

and retinitis pigmentosa can arise due to specific mutations in any

one of at least 45 different genes [50]. The inability to replicate

psoriatic associations in populations that are distinct from the

original population may be due to heterogeneity [51]. Critically,

heterogeneity has not been adequately quantified nor even

captured by the currently available measures of correlation, which

is one of the most fundamental concepts in statistical analyses of

genetic data. Two commonly adopted correlation measures in the

biomedical domain are Pearson’s correlation coefficient (PCC)

[52] and the linkage disequilibrium measure, r2. Importantly, each

of these popular correlation methods returns a single scalar that

can be crippled by heterogeneity. In fact, all of the correlation

measures that we have examined, including PCC and r2, as well as

dot product and entropy, are global, in that individuals in the

entire group are viewed as a whole, and thus subtle but critical

subgroup structures, which manifest heterogeneity of the individ-

uals in the group, are ignored. Figure 1 illustrates a simple

example for two SNPs, where half of the individuals are perfectly

correlated, while the other individuals are not correlated at all.

PCC and r2 have low values, due to penalization for the

uncorrelated individuals. In short, current correlation measures

treat the correlation for all of the individuals as a whole, and

consequently, fail to accommodate genetic heterogeneity within

the sample studied.

In order to address these pressing challenges, we present

BlocBuster, a systems-level, allele oriented network strategy

designed to generate viable biological hypotheses of epistatic

and/or additive interactions of genetic variations with a holistic

and unbiased approach that honors genetic heterogeneity.

BlocBuster has two key distinctions from the previous approaches.

First, we introduce a significant extension to the custom

correlation coefficient (CCC, ‘‘triple C’’) [53], a metric designed

to capture genetic heterogeneity by computing a multi-faceted

collection of correlation measurements. Each facet independently

captures a single homogeneous type of correlation. Second, we

build an unbiased network of SNP alleles, identify clusters of

correlated alleles within the network, test each entire cluster for

phenotypic association, and rigorously validate the results. During

network construction, we consider all individuals together, without

phenotype labeling, and consider all markers simultaneously,

thereby assessing relationships in toto. In our current implemen-

tation, each bi-allelic SNP is represented by two nodes, one for

each SNP allele, which can be readily extended to multi-allelic

SNPs. CCC is computed for every pair of SNPs, thereby revealing

correlations that arise regardless of genomic distances between the

SNPs. Significant values within the CCC vectors are represented

by edges between the nodes representing the correlated alleles.

After the network is built, we retrieve clusters of inter-correlated

nodes that arise naturally separated from each other and do not

require partitioning. Each of the corresponding patterns of SNP

alleles is then tested for variation between phenotypic groups.

Consequently, BlocBuster extracts patterns of inter-correlated

haploid markers, referred to as blocs. These blocs seamlessly

capture genetic heterogeneity as they are built upon the multi-

faceted CCC metric that treats each pair of SNP alleles

Table 1. Selection of previously identified risk alleles for psoriasis.

ID Chr. Position Risk allele Cases risk allele freq. Controls risk allele freq. OR Closest gene

rs4406273 6 31266090 A 0.259 0.092 3.45 WASF5P

rs34536443 19 10463118 G 0.974 0.953 1.85 TYK2

rs2233278 5 150467189 C 0.090 0.058 1.61 TNIP1

rs9988642 1 67726104 T 0.952 0.929 1.52 IL23R

rs33980500 6 111913262 T 0.108 0.074 1.52 TRAF3IP2

rs12188300 5 158829527 T 0.132 0.095 1.45 IL12B

Shown are the SNP IDs, chromosome, position, risk allele frequencies [14], odds ratio (OR), and closest gene for all markers cited by Tsoi et al. [14] with an OR of at least
1.4. Positions follow Genome Build 37.3, as given by NCBI’s dbSNP website (http://www.ncbi.nlm.nih.gov/projects/SNP/).
doi:10.1371/journal.pcbi.1003766.t001
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independently, thereby avoiding reduction of the correlation value

by subgroups of individuals that lack correlation for the pair of

alleles. An allele-specific network is utilized to eliminate the

merging of both SNP allele states into a single node, which can

lead to false positive signals, as described below. Our approach is

direct and efficient, and scales efficiently to millions of markers

with reasonable computational resources.

In order to ensure accuracy of results, BlocBuster employs a

series of computational validation trials, including two types of

permutation tests, bootstrapping trials, variations of network

density, and visual inspection. These computations economically

screen the results and can be utilized prior to investment in

replication trials using independent data.

Aiming at identification of combinatorial interactions of SNP

alleles underlying pathogenesis of psoriasis, we applied BlocBuster

to genome-wide data for psoriatic cases and normal controls. This

analysis identified a bloc of SNP alleles that is significantly

associated with psoriasis and improves upon previous results by

supplying a precise allelic pattern within the major histocompat-

ibility complex (MHC). This newly identified genetic pattern was

rigorously validated using multiple computational screening tests

and was subsequently replicated in independent data, thereby

ensuring its accuracy and suitability for further research efforts.

Finally, we compare and contrast our approach with Pearson’s

Correlation Coefficient (PCC) and observe that the PCC network

had substantially weaker community structure, was more likely to

introduce false-positive correlations, and required three times as

much computation time.

Results

In order to discover combinatorial interactions in heterogeneous

samples of a given complex disease, we developed a novel

computational approach, referred to as BlocBuster, which

identifies clusters, or blocs, of correlated SNP alleles and

subsequently tests these blocs for phenotypic associations. Briefly,

an allele-specific network is constructed in which each SNP allele

is represented by a node and edges are placed between pairs of

nodes representing SNP alleles that exhibit significant pair-wise

correlations. In order to address genetic heterogeneity, we utilize a

multi-faceted correlation metric that is customized for SNP data,

referred to as CCC. Note that the CCC computation is conducted

for the entire sample of all individuals and the network

construction is blind to phenotype status. Furthermore, CCC is

computed for every pair of SNPs, providing a holistic systems-level

network. After the network is constructed, groups of nodes that are

connected by edges are easily identified as they are completely

isolated from each other. Then the entire pattern of SNP alleles

represented by each bloc is tested as a whole for association with

the phenotype. These patterns are comprised of specific SNP

alleles and can be considered as a type of haplotype – with two

noteworthy exceptions: (1) only SNP alleles that exhibit inter-

correlations are included and (2) the SNPs are not necessarily

contiguous and are included regardless of genomic position.

In this section, we present the results provided by BlocBuster for

psoriasis GWAS data. These results were carefully validated using

a series of computational trials and these outcomes are over-

viewed. The most significant result is a bloc of 17 SNP alleles that

is strongly associated with psoriasis. We replicated this result by

utilizing independent data and found that the bloc has a stronger

association in the replication data than in the discovery data.

Finally, we compare CCC with a standard correlation metric,

Pearson’s correlation coefficient (PCC), and observe the benefits of

utilizing a metric that is customized specifically for SNP data and

is designed to accommodate heterogeneity.

Network analysis of psoriasis
We used both psoriatic cases and normal controls in the GAIN

General Research Use (GRU) genome-wide data to construct the

BlocBuster network for this complex disease. These data consisted

of 443,020 autosomal SNPs for 929 cases and 681 controls (see

Methods). The correlation between every pair of SNPs was

computed using CCC. We set the number of edges in the network

equal to the number of SNPs, consequently selecting edges with

the highest 443,020 CCC values – see Methods for discussion of

this parameter selection and validation trial results for significance

of this threshold and sensitivity of its value. The network was

comprised of 886,040 nodes as each SNP allele was represented by

a node. Consequently, the average degree of each node in the

network was one. If the edges were uniformly distributed, the

network would consist of 443,020 doubletons, each of which was

comprised of a single edge connecting two nodes; with every node

connected to precisely one other node in the network.

In sharp contrast to a network with uniform distribution, the

observed network exhibited strong community structure. Instead

of doubletons spread across the network, there were a large

percentage of singleton nodes with no incident edges, and many

discrete blocs of densely connected nodes, with each bloc isolated

from one another. Specifically, 631,462 (71.3%) of the nodes were

singletons, and there were 54,425 discrete blocs, ranging from 2 to

313 nodes, with an average of 4.7 nodes per bloc.

Importantly, the blocs arose naturally separated in the network

and there was no need to employ methods such as clustering

strategies to partition the nodes. For each of the 54,425 blocs, the

frequencies of the entire corresponding SNP allele pattern were

tallied and the odds ratio with 95% confidence interval (CI) and

Bonferroni-corrected p-value, based on the G-test of indepen-

dence, were computed between cases and controls (see Methods).

Any individual that was missing more than 5% of the genotypes in

Figure 1. Genotypes for ten individuals for a pair of SNPs. The
first five individuals are perfectly correlated, but the others are not
correlated at all. The absolute value of PCC is 0.3 and r2 returns 0.0, due
to the uncorrelated individuals. CCC supplies four correlation values,
each of which corresponds to a specific type of correlation. These
values are low for three of the possible combinations, but a high value
of 0.7 for the T-G combination was returned.
doi:10.1371/journal.pcbi.1003766.g001
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the bloc was not included in these calculations. Note that other

than these missing genotypes, the entire SNP allele pattern must be

present to be counted in the bloc frequency. This policy assumes

that the entire pattern is required for the phenotypic association

for a given subset of individuals. However, it is possible that one or

more of the SNP alleles in the bloc is not essential. The visual

validation described below facilitates the observation of this

situation, should it arise.

This analysis revealed a single bloc, referred to as ps_1, which

was comprised of 17 SNP alleles and had a significant odds ratio

and CI (Figure 2). Individuals missing more than 5% data for

these 17 SNPs were omitted, leaving sample sizes of 785 cases and

585 controls. This pattern had a ‘‘protective’’ association with

frequencies of 0.179 and 0.265 for the psoriatic cases and controls,

respectively, with an odds ratio of 0.605 (CI: 0.482–0.759).

However, the p-value was not significant after Bonferroni

correction. On the other hand, the alternate alleles for all 17

SNPs comprised a risk pattern that had frequencies of 0.220 and

0.072 for cases and controls, respectively. This risk pattern had an

odds ratio of 3.64 (CI: 2.75–4.80) and Bonferroni-corrected p-

value of 5.01610216. The risk pattern is more significant than the

protective pattern when comparing cases to controls. However,

when considering all individuals together, the protective pattern is

more pronounced (with a frequency of 0.216) than the risk pattern

(with a frequency of 0.157), which is likely the reason that the

protective pattern appeared in the network that was constructed

using all individuals without phenotypic labeling.

Table 2 lists the 17 nodes in ps_1, along with alleles and their

individual frequencies. The SNPs within ps_1 span ,211 kb, from

positions 31054511 to 31265057 in the MHC on chromosome 6.

Two SNPs are located within known genes: rs3130573 in

PSORS1C1 (aka SEEK1) and PSORS1C2 (aka SPR1), and

rs1265078 in CCHCR1 (coiled-coil a-helical rod protein 1, aka

HCR). All three of these genes have been previously associated

with psoriasis [54,55].

Computational validations
In order to evaluate the robustness of our results, we ran five

computational validations: two types of permutation tests, trials in

which we varied the network density, bootstrapping trials, plus

visualization of results. The first series of permutation tests were

conducted to determine a significant G-test score given multiple

tests (see Methods). In these trials, the phenotypic labels of

individuals were permuted prior to computing G-test scores for

each of the 54,425 blocs. Each permutation trial destroys the

associations between genotypes and the phenotype, but maintains

the statistical properties of the whole so that they can be used as

background for this significance analysis. These trials indicated a

G-test score of 23.7 corresponds to a corrected p-value of 0.05. A

G-test score of 24.1 corresponds to the same significance when

using Bonferroni correction, indicating these two approaches for

multiple testing corrections are similar for this study.

The second series of permutation tests were used to remove

inherent correlations among SNP alleles in the data in order to

verify that it is unlikely that type I errors were introduced during

computations of correlations. For each SNP, we randomly shuffled

the genotypes across all individuals. This randomization breaks

inherent correlations while each SNP retains the same allele

frequencies and balance of genotype states as in the original data.

Consequently, it is not expected that there would be significant

correlations within the permuted data. These trials aim to estimate

the highest CCC value that might arise by random chance for

uncorrelated data drawn from these samples. The maximum CCC

value for 9.861010 pairs of SNPs with permuted genotypes was

0.6515. The lowest CCC value representing an edge in the

original network was 0.6949. This result indicates that it is not

likely that there were any edges representing false-positive

correlations in the original network.

In the third validation trial, we varied the density of the network

to test the sensitivity to this parameter. For a given number of

edges n, the highest n CCC values were determined and the

corresponding SNP allele pairs were connected by edges in the

network. We constructed networks with 50,000 to 500,000 edges,

in increments of 50,000, and tracked ps_1 within these networks.

The CCC thresholds for edge placement for these trials varied

from 0.7501 (for 50,000 edges) to 0.6906 (for 500,000 edges),

which is substantially higher than the maximum CCC value of

0.6515 that was produced during the permutation trials, indicating

that it is not likely that false positives arose during these trials.

The sparse networks with no more than 300,000 edges did not

include ps_1. The 350,000 edge network possessed a bloc with 16

of the 17 nodes in ps_1; node 6 was not included in this bloc. The

association of this bloc was similar to the original 17-node bloc as it

had frequencies of 0.218 and 0.071 for cases and controls,

respectively, with an odds ratio of 3.64 (CI: 2.83–4.67) and

Bonferroni corrected p-value of 1.81610223. The 400,000 edge

network possessed the entire 17-node bloc. The 450,000 edge

network added another node to the bloc, rs2442736. This bloc had

frequencies of 0.137 and 0.039 for the cases and controls,

respectively, with an odds ratio of 3.91 (CI: 2.81–5.45) and

Bonferroni-corrected p-value of 1.10610214. For the 500,000

edge network, the bloc grew to 30 nodes, had frequencies of 0.020

and 0.006, and an odds ratio of 3.32 (CI:1.54–7.19). The p-value

was not significant after correcting for multiple testing. Table S1

lists these 30 SNP alleles. Overall, ps_1 was significant for a range

of network densities. However, when the network grew to a half

million edges, this bloc grew substantially, its frequency fell to less

than two percent, and it exhibited a weaker association with the

phenotype.

Figure 2. Plot of 17-node bloc, ps_1. Each node represents a SNP
allele and each edge represents a significant correlation between the
SNP alleles representing its endpoints. The pattern corresponding to
this bloc exhibited a risk association with psoriasis, with an odds ratio of
3.64 (CI: 2.75–4.80) and Bonferroni-corrected p-value of 5.01610216 in
the discovery data and odds ratio of 3.86 (CI: 2.98–5.01) and Bonferroni-
corrected p-value of 1.81610225 in the validation data.
doi:10.1371/journal.pcbi.1003766.g002
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In our fourth validation, we tested the sensitivity of the selection of

individuals with a series of bootstrapping trials. This resampling

technique evaluates the stability of results computed over a sample

drawn from a population and has been shown to be more accurate

than methods that are based on asymptotic approximation or

normality assumptions [56]. We conducted 1,000 bootstrapping trials

in which we randomly selected half of the cases and half of the

controls and computed the odds ratios and 95% confidence interval

for ps_1. Over the 1,000 computations, the odds ratios had a mean of

3.66 with CI: 3.64–3.69. This result is slightly better than the results

found for the entire dataset, and the confidence interval is tighter, as it

was based on 1,000 trials. The average p-value was 2.91610211,

which is larger than the original result, likely due to the fact that these

trials each had half of the original sample size. Overall, these results

indicate robustness to sample selection as randomly selected subsets of

the individuals yield strong phenotypic associations.

Finally, we extracted the genotypes for the SNPs corresponding

to ps_1, and plotted them for visual inspection, as shown in

Figure 3. These plots illustrate the variation of the genotypes

across psoriatic cases and controls.

Replication in independent data
We tested the identified bloc ps_1 using the GAIN Autoimmune

Disease Only (ADO) data. These data consisted of 443,020 genotype

states for 439 psoriatic cases and 728 controls. For these data, the

frequencies of the entire ps_1 bloc were 0.260 and 0.083, with an odds

ratio of 3.86 (CI: 2.98–5.01) and p-value of 1.81610225. Note that only

one bloc was tested, so there was no correction for multiple testing.

These results are even stronger than those for the discovery data,

demonstrating the validity of the association of this bloc with psoriasis.

Comparison between CCC and PCC
In our analysis, we found that the linkage disequilibrium

measure, r2, required many thousands times more computation

time than CCC or PCC, and is not practical for studies involving

large numbers of SNPs. Accordingly, in this section we disregard

r2 and focus on comparisons between PCC with CCC. Due to

computational demands, we used the 30,178 SNPs from

chromosome 6 for the following trials. We first computed all

pair-wise correlations using both metrics and compared the

network structures that each produced. Second, we ran permu-

tation trials and compared the numbers of false positives produced

by each method, as well as average computation time. Third, we

extracted the clusters in the PCC network that possessed the SNPs

in ps_1 and compared differences in the results.

First, we created two networks for the SNPs using each of the

correlation metrics. BlocBuster networks possess two nodes for

each SNP thereby capturing allele-specific correlations. In

comparison, PCC does not return the alleles associated with a

correlation, so only one node was used to specify each SNP. In

order to compare the two methods, we built a CCC network with

only one node per SNP and placed an edge between a SNP pair if

any of the four allele-specific CCC facets exceeded the threshold.

Setting the number of edges equal to the number of SNPs for

chromosome 6 corresponded to thresholds of 0.6990 and 0.7350

for CCC and PCC, respectively.

These two networks were compared for community structure.

Strong community structure in a network opposes uniform edge

distribution and is instead exemplified by clusters of tightly

interconnected nodes such that few edges connect these clusters

[57]. Overall, the CCC network had substantially stronger

community structure than the PCC network as the edges in the

latter were more dispersed throughout the network, as summa-

rized in Table 3. In particular, the CCC network had only 934

doubletons while the PCC network possessed 2,550 of these

dispersed edges. Furthermore, the CCC network possessed

substantially higher percentages of nodes that were singletons

than the PCC network (49.73% vs. 29.25%). Consequently, all of

Table 2. Description of SNP alleles corresponding to the nodes in ps_1.

Node # Risk Allele Freq. Cases Freq. Controls OR rsID Chr. Position

1 G 0.431 0.324 1.58 rs3130573 31106268

2 C 0.421 0.300 1.70 rs1265078 31112602

3 T 0.394 0.266 1.79 rs3130467 31187075

4 C 0.391 0.260 1.83 rs3130517 31190303

5 T 0.381 0.252 1.83 rs3130713 31205617

6 T 0.530 0.438 1.45 rs3130685 31206206

7 C 0.360 0.233 1.85 rs2394895 31206979

8 A 0.469 0.346 1.67 rs3130955 31054511

9 A 0.516 0.413 1.52 rs9263967 31186245

10 T 0.404 0.256 1.97 rs2844627 31229462

11 T 0.298 0.150 2.41 rs12191877 31252925

12 C 0.513 0.401 1.57 rs2524163 31259579

13 A 0.513 0.405 1.55 rs2243868 31261276

14 C 0.341 0.208 1.97 rs2894207 31263751

15 A 0.296 0.154 2.31 rs9468933 31265057

16 G 0.424 0.288 1.82 rs7773175 31240959

17 A 0.404 0.291 1.65 rs9380237 31264392

All SNPs are located on chromosome 6. The node numbers correspond to the numbers in Figures 2 and 4. Shown are the frequencies of the risk alleles for psoriatic
cases and controls, odds ratio (OR) for each individual SNP, SNP IDs, and chromosomal positions, where rsID is the dbSNP assigned reference SNP identification number
and positions are for Genome Build 37.3, as given by NCBI’s dbSNP website (http://www.ncbi.nlm.nih.gov/projects/SNP/).
doi:10.1371/journal.pcbi.1003766.t002
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the edges in the CCC network were concentrated over about half

of the network nodes, while the PCC edges were spread over about

70% of the nodes. Finally, the largest cluster in the CCC network

contained 290 nodes with 2,400 edges, while the largest in the

PCC network was comprised of 410 nodes and 2,402 edges. These

clusters possessed almost exactly the same number of edges, yet the

PCC cluster was comprised of substantially more nodes and was

notably less dense. Overall, despite the fact that the networks

possessed the same numbers of nodes and edges, the edges were

more highly concentrated into fewer clusters in the CCC network

and more dispersed in the PCC network.

In our second comparison we ran ten permutation trials in

which genotypes were randomly reordered over the individuals as

previously described, computing CCC and PCC on each of the

permuted datasets. The maximum PCC value for the entire

networks ranged from 0.7068 to 1.0000 over the ten trials, with an

average of 0.8534. Despite the fact that true correlations should

have been eliminated from the data, there were a total of seven

edges with PCC values of 1.0000. The maximum CCC values

ranged from 0.6474 to 0.6492, with an average of 0.6483. These

results suggest that CCC is less likely than PCC to produce

spurious edges. It also indicates that the original PCC network

might have possessed false positive edges as the threshold was

0.7350, while it is unlikely that the original CCC network

possessed false positive edges with its threshold of 0.6990.

These trials also provided an opportunity to compare average

computation time requirements. The CCC trials averaged

135 minutes and PCC averaged 402 minutes per trial; the former

was three times faster than the latter.

Finally, the clusters in the PCC network possessing the SNPs in

bloc ps_1 were examined. Twelve of the 17 SNPs in ps_1
comprised one cluster in the PCC network, two additional SNPs

were connected together as a doubleton, and the other three were

singletons, as shown in Figure 4. As shown in the figure, there

were only 19 significant PCC correlations amongst these 17 SNPs,

whereas there were 39 significant CCC correlations. This result

demonstrates an example in which CCC identified a larger pattern

with strong inter-correlations than those identified using PCC.

Discussion

Psoriasis is a common complex disease that has been extensively

studied and several GWAS have been previously conducted [2,11–

16]. Individual SNPs associated with psoriasis [14] with odds ratios

as high as 3.45 have been identified (Table 1). By employing an

unbiased, allele-specific network approach, BlocBuster identified a

bloc, ps_1, consisting of a combination of 17 SNP alleles that are

highly inter-correlated and exhibit a psoriatic risk association as a

whole with an odds ratio of 3.64 (CI: 2.75–4.80) and Bonferroni-

corrected p-value of 5.01610216 in the discovery data. This bloc

had an odds ratio of 3.86 (CI: 2.98–5.01) and p-value of

1.81610225 in the validation data. BlocBuster’s success in

replicating a 17-SNP allele pattern in independent data reflects

the robustness of the approach. In the network, each edge within

the bloc represents a strong allele-specific correlation that is not

Figure 3. Genotype states of (a) 929 psoriatic cases and (b) 681
controls for bloc ps_1. (Best viewed in color.) Each row represents an
individual and each column represents a SNP. Dark blue represents a
homozygote for the protective allele, light blue represents a
heterozygote, red represents a homozygote for the risk allele, and
white indicates missing data. Individuals (rows) were rearranged using
TSP+k [77] in order to place similar individuals near each other and
enhance visualization of patterns.
doi:10.1371/journal.pcbi.1003766.g003
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weakened by genetic heterogeneity. As shown in Figure 2, the 17

SNP alleles are densely interconnected with high pairwise CCC

correlations, while none exhibit such correlations for any other

SNP allele outside the bloc. The use of a multi-faceted correlation

metric and the retention of allele-specific information in network

construction are key factors in BlocBuster’s replication success.

Node 1 of ps_1 corresponds to SNP rs3130573, which is in the

overlapping region of the PSORS1C1 (aka SEEK1) and

PSORS1C2 (aka SPR1) genes. Both of these genes have been

previously indicted to be associated with psoriasis [54]. Node 2

corresponds to rs1265078 in CCHCR1 (coiled-coil a-helical rod

protein 1, aka HCR). CCHCR1 has been observed to have

differential expression in psoriatic lesions when compared with

either normal skin or eczema lesions [55]. It has been suggested

that this gene is involved in the regulation of keratinocyte

proliferation and may play a central role in the progression of

psoriatic lesions [55]. The other SNPs in ps_1 lie in intergenic

regions as shown in Figure 5. Node 16 corresponds to rs7773175,

which is upstream from HLA-C, a gene that has been associated

with psoriasis over decades of research efforts [5,15,30,58–60].

Node 11, rs12191877, was previously identified in a psoriasis

GWAS conducted by Nair et al. [16]. In general, some of these

SNP alleles might be directly involved in protein or regulatory

variations underlying the pathogenesis of psoriasis and some might

only hitch-hike along with causal variants. Further research is

needed to discern these roles. Importantly, the results presented

provide a highly defined pattern of SNP alleles to support such

research.

The 17 SNPs in ps_1 span a 211 kb region of chromosome 6, as

shown in Figure 5. This region is within the Major Histocompat-

ibility Complex (MHC) [61]. The MHC is a distinctive region of

the genome and plays a fundamental role in human immune

function. It has exceptionally high polymorphism [62] and

possesses the greatest gene density in the genome [61]. Many

MHC genes encode cell-surface antigens that mediate leukocyte

interactions and they are associated with more than 100 human

diseases, including common diseases such as diabetes, asthma,

rheumatoid arthritis, as well as psoriasis, yielding strong selective

pressures [63]. On the other hand, this region displays a

heterozygote advantage by producing an enhanced immunocom-

petence; and diversity of these genes also increases fitness at the

population level [64]. Several studies suggest there exist olfaction-

mediated mate selection for increasing this diversity [65–70].

There exist hundreds of different alleles for the MHC genes [71]

and each allele might appear on several different haplotype

backgrounds as they may have arisen in various cycles of

frequency fluctuations that arose during the balancing selection

acting upon these genes throughout human history [62]. Indeed,

the associated bloc lies within an exceptionally diverse genomic

region and the occurrence of 17 SNP alleles in a single pattern

with strong psoriatic association provides precise information for

focusing future investigations.

Our network-based result is advantageous over the results from

conventional GWAS. As shown in Table 2, the highest odds ratio

for any single SNP in ps_1 is 2.41 (SNP rs12191877). In contrast,

the entire bloc as one unit exhibited odds ratios of 3.64 and 3.86

for the discovery and validation data, respectively. These results

illuminate the discriminative power of combinatorial patterns and

the capability of this approach for transcending single-marker

methods. While the cardinality of the actual causal mutations

which are tagged by the SNPs in ps_1 may be less than 17 due to

LD, recognition of multiple SNP alleles may reveal combinatorial

interconnection among these SNPs underlying the etiology of

psoriasis and tightens the fingerprint of the causal mutations,

providing a fine-scaled pattern for future explorations of under-

lying genetic factors.

BlocBuster utilizes stringent validation procedures to efficiently

weed out uninformative results to reduce resources that may have

otherwise ensued in follow-up studies. These validation trials

Figure 4. Plot of PCC edges for the 17 SNPs in the ps_1 bloc.
BlocBuster connected these 17 nodes into a single connected
component, while PCC separated them into disconnected components.
Overall, PCC identified 19 pair-wise correlations and CCC identified 39
correlations amongst these SNPs, as represented by edges in this plot
and Figure 2.
doi:10.1371/journal.pcbi.1003766.g004

Table 3. Comparisons between PCC and CCC.

% of Nodes that were Singletons # of Doubletons Average Cluster Size Largest Cluster (# of nodes/# of edges)

PCC CCC PCC CCC PCC CCC PCC CCC

29.25% 49.73% 2,550 934 3.89 5.38 410/2,402 290/2,400

Networks were constructed for chromosome 6 using PCC and CCC to determine edge placements. The number of nodes and number of edges were the same for the
PCC and CCC networks. Shown are the percentages of nodes that were singletons (nodes with no adjacent edges), number of doubletons (two nodes connected by an
edge and isolated from other nodes), average number of nodes per cluster, and the number of nodes and edges in the largest cluster. Overall, the CCC network
exhibited stronger community structure than the PCC network.
doi:10.1371/journal.pcbi.1003766.t003
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scrutinize blocs identified within the discovery data by examining

their properties; specifically the robustness of the pattern and the

improbability that it possesses type I errors or captures an

incomplete and misleading portion of the data.

The permutation tests in which genotypes were randomly

reordered indicated that it is highly unlikely an edge in the

BlocBuster network appeared by random chance. On the other

hand, PCC produced spurious edges and was not as capable to

discern true correlations from noise, presumably due to its

inherent inability of capturing genetic heterogeneity. Consequent-

ly, seven edges with PCC values of 1.0000 were computed from

the permuted data in which correlations should have been

eliminated.

In another validation, the genotype states of the identified blocs

were plotted for visual inspection, as shown in Figure 3, to ensure

the captured pattern is not misleading. The exceptional diversity

characteristic of this region is apparent in the figure. However,

note in these plots that the psoriatic cases have a smaller

percentage of individuals that are mostly homozygous for the

protective alleles (predominantly dark blue rows in Figure 3) and a

substantially larger percentage of individuals that are mostly

homozygous for the risk alleles (predominantly red rows).

BlocBuster compares the frequencies of each bloc between cases

and controls, so it was necessary to correct for multiple testing. We

employed two approaches for this task, Bonferroni correction and

permutations of phenotypic labels, and observed that the

theoretical and empirical approaches yielded similar thresholds

for this study.

Finally, the association of the bloc was confirmed in an

independent dataset of 439 psoriatic cases and 728 controls with

even higher significances than the original dataset. Replication in

independent data addresses another concern in GWAS: popula-

tion stratification. Population stratification arises when a subset of

individuals in the sample share some common ancestry and are

overrepresented in either the cases or controls. In these scenarios,

alleles associated with their ancestry might appear to be associated

with the phenotype. In order to avoid this issue, samples are

commonly chosen with as much population homogeneity as

possible. Note that bootstrapping trials may be useful to flag

potential stratification as they empirically quantify the sensitivity of

the results to the selections of the samples. High variability of the

test statistic over bootstrapping trials might represent population

stratification. More formally, various statistical methods that utilize

reference panels have been applied to test for stratification.

However, Campbell et al. [72] demonstrated that these measures

might not be adequate and showed that neither structured

associations nor genomic control was able to correct for a false

positive association of the LCT gene with human height. This

association is believed to be false positive as it has not been

validated. In general, testing on independent data is valuable for

addressing the possibility of population stratification within

GWAS. In this study, bootstrapping trials yield a tight confidence

interval. Furthermore, replication in independent data provides an

even stronger association than what was found using the original

data. Taken together, it is not likely that population stratification

inflated the association of ps_1 with psoriasis. These results

indicate this is a bona fide genetic pattern that is strongly

associated with psoriasis.

BlocBuster is fundamentally different from standard network

approaches in several ways. First, it introduces an extension of the

CCC metric [73]. CCC is unique in that it computes a multi-

faceted collection of correlation values, thereby accommodating

heterogeneity. This accommodation is continued through network

construction by expanding the network scaffolding. Note that in

Figure 5. Map of the ps_1 bloc on chromosome 6. Genes are represented by: (A) C6orf15, (B) PSORS1C1, (C) CDSN, (D) PSORS1C2, (E) CCHCR1, (F)
TCF19, (G) POU5F1, (H) PSORS1C3, (I) HCG27, (J) HLA_C, (K) USP8P1, (L) RPL3P2, and (M) WASF5P. Two SNPs are within known genes: rs3130573 in
PSORS1C1 and PSORS1C2, and rs1265078 in CCHCR1. Shown are chromosomal positions (in Mb) according to Genome Build 37.3, as given by NCBI’s
dbSNP website (http://www.ncbi.nlm.nih.gov/projects/SNP/).
doi:10.1371/journal.pcbi.1003766.g005
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general, the degree of heterogeneity and the number of identified

interacting markers can oppose each other during searches for

associations. As the number of identified markers is increased, the

pattern becomes increasingly refined. On one hand, this specificity

has more power to pinpoint individuals bearing an epistatic

pattern that contributes to the phenotype. On the other hand, if

this pattern partially overlaps with another associated epistatic

pattern, inclusion of markers that are not common to both

patterns can weaken associations with the phenotype. For this

reason, heterogeneity should be integrally accommodated

throughout the analysis, as is done by BlocBuster.

Second, the networks created by other methods typically are

comprised of a single connected component that must be

partitioned using some type of clustering strategy. It is not clear

which clustering strategy is the most appropriate and selections of

parameters, e.g. numbers of clusters, can introduce bias and/or

error. In contrast, BlocBuster networks are comprised of discrete

components that are not connected to one another, so there is no

ambiguity about how to separate them. Third, traditional

approaches do not provide specific information regarding the

genetic patterns that have variations between populations, while

BlocBuster explicitly defines these allelic patterns as well as the

relevant statistics. Finally, many other methods rely upon matrices

comprised of similarities between pairs of individuals while

BlocBuster is based upon correlations between SNP alleles, not

individuals. On a related note, BlocBuster supplies a different type

of information than the LD structure captured by tools such as

Haploview [74], as it captures correlations that have potential to

span any genomic distance while omitting uncorrelated markers,

and it supplies the specific alleles that are correlated, not just the

SNPs.

When compared with Pearson’s correlation coefficient (PCC),

CCC identified more than twice as many correlations for the 17

SNPs in ps_1 and PCC split this bloc into pieces. More generally,

PCC was more likely to introduce type I errors, and the PCC

network had lower community structure than the corresponding

CCC network, with the edges more dispersed throughout the

network. As a practical consideration, PCC required three times as

much computation time.

BlocBuster is a computationally efficient approach for GWAS.

In general, direct identification of combinations of three or more

inter-correlated markers is infeasible for GWAS due to the

extremely large number of combinations. Given a pairwise

correlation metric that can be quickly computed, network methods

are efficient alternatives as they compute all pairwise correlations

and build a network with potential to render higher-ordered inter-

correlations. CCC is a straight-forward and simple metric and

computations for the dataset of 1,610 individuals and 443,020

SNPs required a total of about 54 days. We ran the analysis on a

cluster of 45 processors, which produced the results in less than a

day and a half. At this rate, scaling up to 3,000,000 SNPs would

require approximately 490 days of computation on a single CPU,

which can be performed in parallel in a reasonable amount of

time, given adequate resources (e.g. about five days on a cluster of

100 processors). Extraction of the blocs from the network using a

breadth-first search and evaluating the associations of these blocs

required only four minutes of computation time on a single

processor.

BlocBuster expands upon the previous CCC implementation

[73] in several key ways. First, the previous approach was unable

to accommodate missing data. Note that imputation of missing

data prior to computing correlations can generate false positive

signals. Such imputations are based upon the assumption of LD

between missing and identified markers [75]. While imputation

can be useful for association studies in which each SNP is

considered individually, errors introduced are biased toward

inflated LD, which is a property captured by correlation measures.

Consequently, the previous CCC implementation required

elimination of all SNPs containing any missing data, which can

lead to a significant loss of information. An advantage of requiring

complete data is that there are only three possible states for each

biallelic SNP genotype and the previous implementation leveraged

this property with an encoding and table look-up method that

increased computational efficiency. This approach is not practical

for more than three states, thereby occluding extension to

accommodate missing data or multi-allelic data. In view of these

limitations, the CCC algorithm introduced for BlocBuster is an

entirely different approach and employs a simple tallying method

that is similar to Plink’s Fast Epistasis implementation [31]. This

substitution has yielded some loss of computational speed.

However, BlocBuster’s CCC is still three times faster than

Pearson’s correlation coefficient (PCC) and retention of SNPs

with small percentages of missing values is a valuable property.

Furthermore, BlocBuster can be readily extended to analyze multi-

allelic data. It should be noted that missing data may yield

unexpected results when combinations of SNPs are analyzed and

BlocBuster incorporates several mechanisms to flag any potential

issues (see Methods). A second key difference is that the previous

CCC implementation built two separate networks for cases and

controls and correlations were computed for each group

separately. This strategy can facilitate identification of subtle

patterns. However, spurious correlations arising in one group’s

data might not appear in the other group, subsequently

confounding tests of statistical significance of case/control

associations. Third, the previous CCC approach did not include

any type of validation methods. While replication using indepen-

dent datasets is ideal, suitable data are often expensive to obtain.

This situation is especially problematic for endophenotypes, such

as gene and protein expression, in which it is unlikely that another

lab would have produced such data independently. It can also be

an issue for well-studied phenotypes due to population-level

variations across independent studies. BlocBuster provides a series

of validation trials for efficient yet rigorous screening of results,

thereby weeding out weak associations prior to further invest-

ments. In addition to these key differences, BlocBuster is a fully

developed software package and the C++ source code is freely

available. Using this package we have identified a novel

combinatorial genetic pattern that is significantly associated with

psoriasis, improving upon previous results by providing a genetic

fingerprint of 17 SNP alleles that supplies specific information

along a 211 kb span in the MHC region. This pattern was

extensively computationally validated and confirmed in indepen-

dent data.

Two caveats of our approach should be noted. First, BlocBuster

is not designed to identify a marker that is independent in its

association with a phenotype. There must be at least two

correlated markers with a combination that exhibits association

for recognition by this approach. For this reason, studies should

employ standard single-marker association tests in addition to

BlocBuster. Second, BlocBuster is diligent in removing false

positives and consequently may miss true signals. However, this

quality ensures the usefulness of the identified blocs for assessing

risk and exploring pathogenesis.

GWAS are prevalent for phenotypes of scientific interest and

future advances hinge on embracing the complexities of combi-

natorial interactions. Previous approaches for identifying combi-

natorial patterns presented biases as they relied upon known

information and previous correlation measures were weakened by
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heterogeneity. BlocBuster’s multi-faceted approach and allele-

specific network efficiently accommodate heterogeneity. The

benefits of this accommodation are highlighted by the comparisons

with Pearson’s correlation coefficient, which clearly demonstrate

higher accuracy and reduced type I errors for our approach.

Looking forward, BlocBuster’s efficient selection of correlated

markers will further increase the value of this approach as genetic

data become increasingly affordable and dense.

Materials and Methods

Psoriasis datasets
The genotyping of samples was provided through the Genetic

Association Information Network (GAIN). The datasets used for

the analyses described in this manuscript were obtained from the

GAIN Database at http://view.ncbi.nlm.nih.gov/dbgap-

controlled through dbGaP accession number phs000019.v1.p1.c1,

General Research Use (GRU) and Autoimmune Disease Only

(ADO). Perlegen 500K chips were utilized for both studies.

The GRU dataset included 451,724 SNPs for 1,683 individuals.

The removal of mitochondrial DNA and the X and Y

chromosome SNPs resulted with 443,020 autosomal SNPs. We

removed the children as well as the individuals that did not pass

quality control (defined by the original study). We checked this

extracted data for percentages of missing values and found that

each of the 1,610 individuals and each of the 443,020 SNPs had

no more than 10% missing data. In total, 929 and 681 of these

individuals were labeled as psoriatic cases and normal controls,

respectively.

The ADO data consisted of 451,724 genotypes for each of 1,214

individuals. We removed the individuals that did not pass

previously defined QC, leaving 1,167 individuals. We removed

SNPs from the mitochondrial DNA and X and Y chromosomes,

leaving 443,020 SNPs. Three of these SNPs possessed between

10% and 20% missing data and the rest had less than 10% missing

values. None of the 1,167 individuals had more than 10% missing

data. The final dataset included 439 cases and 728 controls.

BlocBuster
CCC. Our open-source code is available at www.blocbuster.

org or by contacting the first author. BlocBuster is a network

model that employs a custom correlation coefficient (CCC) [73].

High efficiency is achieved by computing a simple calculation that

returns a vector of four values for each SNP pair. Briefly, let A and

a represent the two alleles at the first SNP, and B and b represent

the two alleles at the second SNP. There are four allelic

combinations defined by these two SNPs: AB, Ab, aB, and ab.

Each of these four combinations is evaluated independently of

each other, providing a vector of four values that are utilized for

network construction as described below.

Note that missing data should not be imputed prior to

computing correlations as imputation errors are biased toward

inflated LD. On the other hand, the retention of SNPs with

missing data can yield unexpected consequences when combina-

tions of SNPs are analyzed. For example, two SNPs with 20%

missing data could results with up to 40% of the individuals

missing one genotype value, and these individuals should not be

included in an assessment of correlation between the two SNPs.

Furthermore, when assessing associations for a combination of

SNP alleles, the inclusion of individuals with excessive missing data

for the combination can yield misleading results. BlocBuster

employs several mechanisms to flag potential issues that might

arise. BlocBuster omits individuals with missing genotypes for

either of the SNPs in the given pair when computing CCC and

warnings are printed out whenever a pair of SNPs possesses more

than a user-defined percentage of individuals with missing data.

Furthermore, each bloc identified as exhibiting a significant

association (see Statistical Analyses below) has the actual sample

sizes utilized in the analysis printed out. Finally, all individuals are

included in the visual inspection of the bloc (to be described

shortly), with the missing genotypes represented by white cells.

These mechanisms ensure that each pattern is correctly repre-

sented without imposing risks of imputation errors contributing to

misleading associations.

Network construction. Standard SNP networks consist of n
nodes, where n is equal to the number of SNPs. Consequently, the

allele states that exhibit correlations are lost in the network

abstraction (Figure 6). To overcome this loss of information, each

BlocBuster network is constructed with 2n nodes and each SNP is

represented by two nodes, one for each of its alleles (the current

implementation assumes biallelic SNPs). This strategy supplies the

actual alleles contributing to a pattern, not just the SNPs, and

enables allele-specific testing of patterns. It may also reduce

erroneous merging of distinct patterns into a single bloc, as shown

in Figure 6.

CCC is computed for each pair of SNPs, providing a vector of

four values for each computation, with each value representing

each of the possible SNP allele combinations, as described above.

Then the n highest CCC values are represented by edges in the

network. Note that it is possible for one pair of SNPs to have more

than one edge in the network and it is not uncommon to observe a

high correlation between an allele pair as well as mirrored

correlation between their alternate alleles. On the other hand,

mirrored correlations may not exist, as demonstrated in Figure 1.

The two nodes representing the SNP alleles for each high

correlation are connected with an edge. The resultant network is

comprised of 2n nodes and n edges, representing the n highest

CCC values over all pairs of SNPs, resulting with an average node

degree of one. If the edges were uniformly distributed, the network

would consist of 443,020 doubletons, each of which was comprised

of a single edge connecting two nodes; with every node connected

to precisely one other node in the network. The choice of this

number of edges is somewhat arbitrary, but any smaller number of

edges would make it impossible for every node in the network to

be connected to at least one other node, and a larger number of

edges would result with a less stringent CCC threshold. The

second set of permutation trials indicated that the network density

could be substantially increased with low risk of introducing false-

positive edges, so the number of edges could be increased.

However, increasing the number of edges yields non-decreasing

bloc size and non-increasing frequencies of the bloc pattern. In

essence, the use of a stringent CCC threshold captures only the

strongest of correlations, thereby facilitating the discovery of strong

genetic patterns within the data.

Bloc extraction. We have observed that BlocBuster networks

built from biological data consist of large numbers of singleton

nodes (with no edges) and discrete blocs of nodes with relatively

high densities of edges. Consequently, no clustering methods or

other types of partitioning are required to separate the network. It

is straight-forward to deterministically extract the blocs with a

breadth-first search of the network. The SNP allele pattern that

corresponds to each bloc is then tested for associations between

two sets of individuals, with those that exhibit significant

associations being reported to the user.

Software. Our open source software is freely available at

www.blocbuster.org or by contacting the first author. The code

was written in C++ and implemented and tested on a LINUX

platform.
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Statistical Analyses
G-test and odds ratio. An underlying entailment of most

existing network approaches is that correlations are transitive. For

example, when grouping markers into clusters, where for three

markers, A, B and C, in one cluster, if A is correlated with B and B is

correlated with C, then A is implied to be correlated with C.

However, this hidden assumption might not be valid, or even

problematic, as different subsets of individuals may be contributing to

each of the correlations. Consider the case where individuals bearing

both A and B or bearing both B and C are at high risk for the disease,

but individuals with only A and C are not at increased risk. Such a

case would violate transitivity. For this reason, BlocBuster tests each

of these patterns by tallying the frequencies of the bloc in its entirety.

Furthermore, because we are interested in identifying associations

with complex phenotypes, we compare the frequencies between

phenotypic groups. Such tests are not straightforward for existing

network approaches as current correlation metrics only indicate

which pairs of SNPs are correlated and do not supply which alleles of

the SNP pairs contribute to the correlations.

Since the networks were blindly built using a combination of

the data for all of the individuals, it could be expected that most

blocs are common at the population level, with no association to

the phenotype. However, because CCC accommodates genetic

heterogeneity, it might also be expected that some of these blocs

exhibit significant association with the phenotype status, which is

one type of heterogeneity. Three metrics were used to evaluate

the significance of these patterns: odds ratio, Bonferroni-

corrected p-value based on the G-test of independence, and

corrected p-value based on permutation trials. These metrics

were computed for all blocs that were possessed by at least ten

individuals in the entire sample. Individuals that have more than

5% missing genotype values for the SNPs in a given bloc were not

included in the computations. However, these individuals were

included in the plots of genotype values for visual inspections, as

described below.

The odds ratio was computed as OR = ad/bc, where a and b equal

the numbers of the bloc of interest possessed by the cases and controls,

respectively. Each individual possesses two allelic combinations that

include the SNPs in the bloc. The sum of the combinations that are

not identical to the given bloc is represented by c for the cases and by

d for the controls. (Stated in another way, the odds ratio is equal to

p(1-q)/q(1-p), where p and q equal the frequencies of the bloc for cases

and controls, respectively.) The 95% confidence interval is defined as

e ‘ [ln(OR)+/21.96 sqrt(1/a+1/b+1/c+1/d)], where ln(OR) equals

the natural log of ad/bc and sqrt is the square root.

G-test is a maximum likelihood statistical significance test

which converges to the chi-squared distribution more accu-

rately than Pearson’s chi-squared test [76]. The p-value of

significance corresponding to the G-test score, with Bonferroni

correction for multiple testing, was used for evaluating each

bloc. We used the following formula for the G-test of

independence:

G~2
X

i

Oi
:ln(Oi=Ei)

where Oi and Ei equal the observed and expected number of

entire bloc patterns in subset i. The expected numbers of blocs

were computed using the observed numbers of blocs as a 262

table, where the null hypothesis is that the relative proportions

of each variable are independent of each other. The summation

is over four subsets (corresponding to the four cells of the 262

table), and ‘ln’ denotes the natural logarithm.

Permutation trials for multiple testing corrections. In

addition to using Bonferroni correction, an empirical approach

via permutation trials was employed. We permuted the

phenotype labels across the samples, tallied the numbers of

carriers of each bloc for each of these randomized groups of

individuals, and computed the G-test scores. There were 1,000

permutations and all 54,425 blocs in the original network were

tested for each permutation. For each permutation, the

individuals were randomly assigned into groups of 929 and

681 individuals and the bloc frequencies in these two groups

were compared.

Validation
In order to ensure the robustness of our results, we employed a

series of validation trials, as follows.

Permutation trials for assessing type I errors. Permutation

trials were utilized to test whether significant correlations might

have arisen in the data by random chance. In these trials the

genotypes of the individuals were randomly shuffled for each

SNP. Consequently, each SNP had its original allele and

genotype frequencies; the only change was that the inherent

‘‘correlations’’ between pairs of SNPs had been removed by

randomly rearranging the genotypes across individuals. After

each randomization, the CCC values for every pair of SNPs were

computed. These trials indicated the likelihood that type I errors

arose during computations of correlations; such errors would

create false-positive edges in the network.

Variation of network density. To test the robustness of

the blocs to variation of network density, we built a series of

networks with n edges representing the n highest CCC values.

We varied n from 50,000 to 500,000 edges, at 50,000

increments, and tracked the bloc of interest through these

varying densities.

Bootstrapping trials. Bootstrapping trials were employed in

which we randomly selected half of the cases and half of the

controls and computed the odds ratios and p-values for the bloc of

interest. These randomized trials were repeated 1,000 times, with

the odds ratio and p-value recorded for each trial. The means and

the 95% confidence intervals over the 1,000 trials for each of these

statistics were computed.

Visual inspection. The genotype values for the significant

bloc were plotted for the psoriatic cases and controls for visual

Figure 6. Comparison of SNP network construction methods.
The network in (a) represents each SNP by a single node, as is done by
previous approaches, and the network in (b) employs a node for each of
the SNP alleles. Allele ‘A’ for SNP 1 is correlated with allele ‘b’ of SNP 2,
and allele ‘B’ of SNP 2 is correlated with allele ‘C’ of SNP 3. Allelic
information is lost in a standard network (a), resulting with an incorrect
linking of allele 1A with 3C. The BlocBuster approach also enables allele-
specific testing of bloc patterns.
doi:10.1371/journal.pcbi.1003766.g006
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inspection. We utilized our previously developed rearrangement

clustering method, TSP+k [77], to reorder the individuals (rows)

and place similar individuals near each other. Briefly, the genotype

values for the SNPs for each bloc were extracted from the data and

converted to an instance of the Traveling Salesman Problem (TSP)

[78] in which each individual was represented as a city. We

inserted three dummy cities to facilitate three clusters and solved

the optimal ordering of the cities using NEOS’s [79] Concorde

solver (www.tsp.gatech.edu/concorde.html). The individuals were

reordered using this solution. Using this ordering of individuals,

the genotypes were color-encoded with dark blue, light blue, red,

and white representing homozygote for the protective allele,

heterozygote, homozygote for the risk allele, and missing data,

respectively. The matrices of genotypic values were plotted for the

cases and controls, as shown in Figure 3.

Replication in independent data. We tested the identified

psoriasis bloc for phenotypic association in an independent data set,

the Genetic Association Information Network (GAIN) Autoimmune

Disease Only (ADO) data. These data are described at the beginning

of this section.

Supporting Information

Table S1 List of SNP alleles in 30-node bloc from
500,000 edge network.
(DOC)
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66. Janeš D, Klun I, Vidan-Jeras B, Jeras M, Kreft S (2010) Infuence of MHC on

odour perception of 43 chemicals and body odour. Cent Eur J Biol 5: 324–330.

doi:10.2478/s11535-010-0020-6.

67. Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate

preferences in humans. Proc Biol Sci 260: 245–249. doi:10.1098/

rspb.1995.0087.

68. Jacob S, McClintock MK, Zelano B, Ober C (2002) Paternally inherited HLA

alleles are associated with women’s choice of male odor. Nat Genet 30: 175–179.

doi:10.1038/ng830.

69. Santos PSC, Schinemann JA, Gabardo J, Bicalho M da G (2005) New evidence

that the MHC influences odor perception in humans: a study with 58 Southern

Brazilian students. Horm Behav 47: 384–388. doi:10.1016/j.yh-

beh.2004.11.005.

70. Ober C, Weitkamp LR, Cox N, Dytch H, Kostyu D, et al. (1997) HLA and mate

choice in humans. Am J Hum Genet 61: 497–504. doi:10.1086/515511.

71. Meyer D, Thomson G (2001) How selection shapes variation of the human

major histocompatibility complex: a review. Ann Hum Genet 65: 1–26.

doi:10.1046/j.1469-1809.2001.6510001.x.

72. Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, et al. (2005)

Demonstrating stratification in a European American population. Nat Genet 37:

868–872. doi:10.1038/ng1607.

73. Climer S, Yang W, de las Fuentes L, Davila-Roman VG, Gu CC (2014) A

custom correlation coefficient (CCC) approach for fast identification of multi-

SNP association patterns in genome-wide SNPs data. Genet Epidemiol In press.

74. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and

visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

doi:10.1093/bioinformatics/bth457.

75. Halperin E, Stephan DA (2009) SNP imputation in association studies. Nat

Biotechnol 27: 349–351. doi:10.1038/nbt0409-349.

76. Sokal RR, Rohlf FJ (1994) Biometry: The Principles and Practice of Statistics in

Biological Research. 3rd ed. San Francisco: Freeman & Co.

77. Climer S, Zhang W (2006) Rearrangement Clustering: Pitfalls, remedies, and

applications. J Mach Learn Res 7: 919–943.

78. Cook WJ (2011) In Pursuit of the Traveling Salesman: Mathematics at the

Limits of Computation. Princeton: Princeton University Press.

79. Czyzyk J, Mesnier MP, More JJ (1998) The NEOS Server. IEEE Comput Sci

Eng 5: 68–75. doi:10.1109/99.714603.

Allele-Specific Network Reveals Interaction

PLOS Computational Biology | www.ploscompbiol.org 14 September 2014 | Volume 10 | Issue 9 | e1003766


