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Abstract: Skeletal muscle, the most abundant tissue in the body;, is heterogeneous. This heterogeneity
forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in
different parts of the body. However, these different parts are not always clearly delimitated, and this
often gives rise to gradients within the same muscle and even across the body. During the last decade,
several studies on muscular disorders both in mice and in humans have observed particular distribu-
tion patterns of muscle weakness during disease, indicating that the same mutation can affect muscles
differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside
other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nev-
ertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles
affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, fo-
cusing on phenotypic differences among affected muscles and gradients, characterization techniques,
molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up
by new technologies. This review aims to revive research interest in the diverse disease phenotype
affecting different muscles, in order to pave the way for new therapeutic interventions.

Keywords: sarcoglycanopathies; muscle heterogeneity; muscle diversity; gradients; new technologies

1. Introduction

Skeletal muscle comprises almost 40% of the weight of the body and under normal
conditions can perform multifunctional tasks such as muscle contraction, temperature regu-
lation, energy storing, skeleton protection, and homeostasis maintenance [1-3]. To achieve
this the tissue relies on multinucleated contractile muscle cells, known as myofibers [4].
Myofibers, together with motor neurons, form the muscle functional subunits, which are
repetitive structures with similar functional properties [5]. During development, skeletal
muscle growth is sustained through the fusion of muscle precursor cells. During adulthood,
the muscle stem cells, called satellite cells (S5Cs), remain in a quiescent state beneath the
basal lamina, being activated sporadically to guarantee the physiological turnover caused
by daily life [4]. Despite the fact that all muscles are characterized by almost identical
structures, similar composition, and capacity for regeneration, skeletal muscle is very far
from being a homogeneous tissue.

Numerous studies have tried to address different aspects of muscle heterogeneity,
including muscle fiber specialization [6,7], excitability [8,9], metabolism [10], molecular
pathways [11,12], contraction mechanism [13], and calcium kinetics [14]. This heterogeneity,
seen across each muscle, can be understood by studying the plasticity that allows them
to exert different tasks such as low-intensity activity (e.g., posture), repeated submaximal
contractions (for example, locomotion), or fast and strong maximal contractions (jumping,
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kicking) [15]. However, even if muscles have a great capacity to adapt to changing condi-
tions based on their heterogeneity, not all of them can perform the same functions. Muscles
designed for fast and strong maximal contractions such as triceps cannot become a postural
muscle (characterized by low-intensity activity). Thus, triceps can improve their endurance
after a few weeks of training, but the improvement will not be linear and eventually will
reach a plateau [16]. These limitations are not due to just muscle heterogeneity, given the
different array of the affected muscle fibers, but also due to muscle diversity, whereby each
muscle has its own specific morpho-functional characteristics.

Until now, muscle diversity has been associated with species, gender, and individual
polymorphisms leading to muscle diversification during development [15]. However, there
are still several important issues to address, in order to better understand the physiology
and pathophysiology of the muscle: for example, why during disease muscles carrying the
same genetic mutation degenerate at a different pace.

Indeed, differences in disease severity within different muscles can be observed in
most of the muscular dystrophies such as Duchenne muscular dystrophy [17], desminopa-
thy [18], calpainopathy [19], and dysferlinopathy [20] (Figure 1). However, in the sarcogly-
canopathies, particularly a group of the limb-girdle muscular dystrophies (LGMDs), these
differences are particularly pronounced [21-25]. Interestingly, in all these pathologies there
is a phenotypic gradient based on the degree of disease severity affecting different parts
of the musculature. Thus, the appearance of gradients and their “flow” among different
muscle structures may form the basis of muscle diversity.

Mild

Severe

Healthy thigh Duchenne Muscular Dystrophy Sarcoglycanopathies
Dysferlinopathy Calpainopathy Desminopathy

Muscles: rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), sartorius (S), adductor
longus (AL), adductor magnus (AM), gracillis (G), semi membranosus (SM), semi tendinosus (ST), biceps femoris long head
(BFL) and biceps femoris short head (BFS).

Figure 1. Schematic presentation of thigh human transversal sections: level of damage severity of the muscle groups in

different muscular dystrophies. MRI-based representation of human thigh (middle) transversal sections. Red color: mild

muscle pathology or late disease stage; blue color: severe muscle pathology or early stage of the disease.

During recent years, advances in technological analyses have enabled the characteri-
zation of the muscles’ specialized profiles [26]. Specifically, transcriptomics and single cell
analysis could allow a remarkably detailed characterization of diverse muscles in order to
understand why some muscles resist degeneration.
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In this review, we will focus our attention on the differences among muscles of the
same organism. We will give an overview of the published data on muscle differences,
characterization techniques, molecular signatures, and cell populations, discussing the
possibilities opened up by new technologies. We will also discuss the potential of using
our new understanding of muscle disease diversity for future therapeutic interventions.

2. Sarcoglycanopathies

Within the LGMDs, sarcoglycanopathies show particularly prominent differences among
muscles. This group results from mutations in one of the four genes encoding for the
transmembrane proteins of the sarcoglycan (SG) complex (-, y-, 8-, and (3-sarcoglycan) [22,27].
All sarcoglycanopathies are autosomal recessive disorders and are considered rare diseases
as the worldwide reported frequency is around 1,/200,000-1/350,000 [28,29]. Additionally,
two other sarcoglycans, SGCE and SGCZ, are present in the smooth muscle SG complex, but
mutations in their genes have not been linked to any skeletal muscle disease yet [25]. The
formation of the SG complex begins in the endoplasmic reticulum with the recruitment of the
beta-sarcoglycan subunit [30], followed by the gamma, delta, and alpha subunit incorporation
into the complex. Importantly, the loss of any of these proteins leads to a deficiency of
the whole complex [31]. The role of the SG complex has not been fully elucidated [31-33].
As part of the dystrophin-associated glycoprotein complex (DAGC) that attaches the
cytoskeleton to the extracellular matrix, the complex preserves the membrane stability
against contraction forces [34,35] (Figure 2). Moreover, it might participate in unknown
molecular pathways involved in muscle maintenance, since the loss of sarcoglycans results
in muscle degeneration even without mechanical injury [36,37]. Furthermore, the SG
complex is expressed in both the nervous and muscular system; yet it is only the latter that
is affected in these diseases [38].
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Figure 2. A schematic presentation of the dystrophin-associated glycoprotein complex (DAGC), including its main

components and its localization around cell sarcolemma.
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Clinically, sarcoglycanopathy patients present common traits such as elevated serum
levels of creatine kinase (CK), variable muscle weaknesses (predominantly in the proxi-
mal muscles), calf hypertrophy, difficulties in arising from the floor, and the progressive
loss of ambulation [23]. In the last stages of these diseases, up to 25% of patients need
ventilator support [25] and cardiac involvement is present in as many as fifty percent of
the cases, being more frequent in beta and gamma-sarcoglycanopathy [39,40]. However,
despite their common traits, patients with sarcoglycanopathies have a very heterogeneous
phenotypic profile ranging from severe Duchenne-like phenotype to mild myopathic
changes [22,24,41,42] suggesting a weak correlation between genotype and phenotype.
Indeed, within a large cohort of Chinese patients, a correct prediction of genotype based
on the expression of sarcoglycan proteins was achieved in only 36.0% of patients [43].
Conversely, another study in alpha-sarcoglycan patients described a correlation between
the residual expression of this protein and the severity of the disease [25]. No correlation
for beta or gamma-sarcoglycanopathy patients could be found in the same study even
though a combination of risk factors associated with rapid disease progression in these
patients was identified. The low predictive power of gene mutations suggests that, in
addition to gene mutations, phenotypic heterogeneity likely results from a range of other
indirect and so far unknown factors.

Currently, different strategies have been proposed to prevent muscle degeneration
in sarcoglycanopathies, including cell therapy [44], anti-inflammatory treatments [45], or
gene therapy [46,47]; however, there is still no available cure.

3. Contractile and Non-Contractile Tissue Heterogeneity

Skeletal muscle is composed of contractile and non-contractile tissues. The contractile
component, which is the most studied and relevant in terms of mass, consists of a variety
of functionally diverse muscle fiber types [15]. One simplified classification based on
their contraction and metabolic characteristics includes slow twitch oxidative and fast
twitch glycolytic fibers. This fiber type classification distinguishes four main types that can
be easily identified using histochemical staining techniques based on metabolic enzyme
activity, such as succinate dehydrogenase (SDH) or nicotinamide adenine dinucleotide
(NADH) [48]. The relative abundance of any of these fiber types within the muscle may
vary between species and anatomical sites giving place to muscle heterogeneity. This
heterogeneity depends on the myosin variant expressed, which might result in contractile
activity features. As many as 16 different sarcomeric myosin isoforms have been described
so far [15]. Some of these myosins are exclusively expressed in certain muscles. For
example, jaw muscles express myosin heavy chain 16 (MYH16) that cannot be found in the
trunk and limb skeletal muscles. Another source of heterogeneity can be of embryological
origin. Interestingly, head muscles do not derive from somites as trunk and limb muscles
do, but from presomitic cranial mesoderm [49]. However, muscle fiber heterogeneity
is not restricted to myofibrillar proteins [50], metabolic enzymes [48], or developmental
origin [51-53], but it involves also subcellular systems, including transmembrane ionic
fluxes and intracellular calcium signaling [15]. These aspects require more detailed study
to further understand the varying degree of disease severity among different muscles
in sarcoglycanopathies.

In addition to the contractile muscle fibers, a large variety of non-contractile compo-
nents contribute to the muscle organization and function, and might also contribute to
muscle diversity. Among these, the connective tissues, forming tendons, ligaments, the
three fascia layers (endo-, peri-, and epimysium), and the extracellular matrix (ECM) in
general strongly influence muscle function [54]. Nonetheless, after acute muscle injury;,
transient extracellular matrix (ECM) remodeling is essential for normal muscle repair [55].
During disease, an aberrant ECM remodeling process leads to the perpetual stiffening of
the ECM and ultimately creates a barrier that impairs skeletal muscle regeneration, giving
rise to the most typical muscular dystrophy hallmarks: fibrosis and fat deposition [56].
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Collagen is the major structural protein of these non-contractile components, account-
ing for 1-10% of muscle dry weight [57]. At least 28 isoforms of collagen exist across
the body; among them fibrillar types I and III predominate in the adult endo-, peri-, and
epimysium [58]. It is interesting that the perimysium and tendon both contain primarily
type I collagen, and decorin, as the most abundant proteoglycan in both structures [54].
In contrast, epimysium and endomysium contain almost equal amounts of types I and III
collagen and proteoglicans other than decorin. This fact supports the hypothesis that the
perimysium is in continuity with tendons and that is very relevant due to two different
factor. First, that the perimysium is the space where ECM changes mostly take place during
muscle repair and during disease [59], and second, that differences among muscle-tendon
arrangements have been observed along the body. For example, short fascicles are associ-
ated with long thin tendons promoting elastic energy saving, whereas long fascicles are
associated with little or no tendons, favoring the ability of a muscle to produce mechanical
power and control length and position [60]. These observations suggest that tendons, and
the perimysium, may play a role in the development of diverse muscle phenotypes, which
could have direct implications in how we approach sarcoglycanopathies.

Thus, even though the structure and function of connective tissues have been stud-
ied for some muscles [61,62], little is known about the heterogeneity within these non-
contractile tissues, and even less about the morpho-functional features within the transition
areas (e.g., from tendon to perimysium), especially because of the difficulty associated with
isolating these “regions”.

Indeed, it is likely that some degree of diversity of connective tissues exists across the
body, and it may have a potential role in muscle disease modulation.

4. Cell Population Heterogeneity

Another factor that may contribute to muscle diversity is the heterogeneity of cell
populations within the muscle. Indeed, muscle homeostasis is maintained through the
cooperative actions of a variety of cell populations [4]. Among these populations, muscle
stem cells, otherwise known as satellite cells [63], are responsible for myofiber growth
upon activation and fusion. In addition to satellite cells, other mesenchymal stem cells
found within the muscle, such as adult bone marrow derived cells [64], fibroadipogenic
progenitors (FAPs) [65], mesoangioblasts [66], pericytes [67], and PW1* interstitial cells
(PICs) [68] can contribute to muscle growth and regeneration. Furthermore, during these
processes, the activity of stem cells is supported by various resident and infiltrating immune
cells [59,69], which help the fibers to regenerate following acute damage or in preparing
the local environment for the growth and deposition of ECM during disease. Indeed, the
activity of the immune system is necessary to counteract muscle degeneration in a mouse
model of LGMD-R4 [70]. Another important issue to be considered for understanding
these interactions in sarcoglycanopathies, as well as in other muscular dystrophies, is the
regulation of the migration abilities of the different cell populations which might represent
an important modulation factor [71,72].

Previous studies have described the heterogeneity of some stem cell populations,
especially satellite cells. The heterogeneity of satellite cells has been described in [73],
and is reflected by gene expression profiles or cell surface markers [74-76], as well as by
their differentiation capabilities [77,78]. Likewise, other interstitial cell populations such as
FAPs, isolated in mouse as lin™ Scal®, showed different levels of specific markers, such
as Vcam1 and Tie2, depending on the context of the damage; acute or chronic injury [79].
Thus, single-cell gene expression profiling of skeletal muscle-derived cells has emerged
as a very useful tool [80]. In addition, the work by Giordani and colleagues [81] took
advantage of mass cytometry and transcriptomic profiling to reveal understudied muscle
cell populations, thereby adding further complexity and highlighting the importance
of uncovering new (sub)populations. Similarly, in the context of sarcoglycanopathies,
Camps and colleagues [82] used single-cell technology to reveal, once again, an extensive
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heterogeneity among interstitial muscle cells. In particular, this study reports differences in
adipogenic interstitial cells directly related to dystrophic muscles.

These interesting discoveries have raised the question as to whether additional cell
subpopulations or different arrays of the already identified cell populations might be
involved in muscle diversity and gradient. Indeed, we wonder whether an eventual
gradient distribution of these cells may be conditioned by this context. Hence, since
not all muscles respond equally to the same mutation, we believe that mouse models of
sarcoglycanopathies might represent an extremely important source of different contexts
in which to investigate cell population heterogeneity and their network interactions.

5. Gradients and Sarcoglycanopathies

Muscles are apparently well-defined structures delimitated by their connective layers.
However, due to their heterogeneity; it is likely that they are characterized by a gradient
flow rather than as homogeneous single structures. In sarcoglycanopathies, these well-
defined structures were clearly described in the work of Tasca and colleagues [21]. They
showed unequivocally that muscles behaving totally differently coexist in the same leg
compartment. In fact, spared or even hypertrophied muscles such as gracilis, sartorious,
and rectus femoris can be observed, in proximity to the degenerating thigh adductors and
posterior thigh muscles, which are the most severely affected muscles in these diseases
(Figure 1).

Nonetheless, in the same study, considering the whole-body tissue musculature, these
diverse muscles that seem to work as delimitated defined structures showed an evident
proximo-distal gradient [21], recognized by the gradual change in disease severity from
proximal to distal parts. This idea was supported by the observation that the distal leg
compartment displays a normal or relatively preserved MRI, whereas the proximal limb
muscles show a degenerated pattern. Indeed, this gradient was observed also within the
same muscles, such as the quadriceps, where the distal part was spared while the proximal
part degenerated.

Interestingly, the idea of a gradient along the musculature becomes more apparent
when the body is studied from an architectural and geometrical point of view [60,83-85].
Previous studies have demonstrated a proximo-distal gradient in limb muscles as the reflec-
tion of the best compromise between energy saving, function, and architecture. Proximal
limb muscles, such as the hip extensors, have long, parallel fibers that provide mechanical
power, fast contraction, and precise control of joint positions to overcome gravity and move
the body’s center of mass during locomotion. On the other hand, muscles with smaller
mass, shorter fibers, higher pennation angles, and long compliant tendons are generally
located distally within terrestrial limbs [60,83]. The collagen concentration also contributes
to the above gradient, since the proximal part of the limbs contains less collagen than the
distal [84].

In sarcoglycanopathies, the existence of these proximo-distal gradients reflected both
in muscle pathological features and in the musculo-tendinous architecture suggest a pos-
sible unexplored relationship between the non-contractile elements such as the tendon-
perimysium and muscle resistance (Figure 3).
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Figure 3. Proximo-distal pattern of muscles affected in sarcoglycanopathies and proximo-distal pattern in tendon architec-
ture. Schematic presentation of human sarcoglycanopathy-affected muscle pattern with the magnification of Scheme.

6. Muscle Diversity: Evidence from Murine Models

Muscle heterogeneity, as well as many other aspects of muscle physiology, have been
widely studied in mouse models (see Table 1) [86,87]. However, mouse models do not
always reflect the human dystrophic outcome due to mutations.
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Table 1. Summary of sarcoglycanopathies mouse models.

Name Mutation Target Sarcoglycan References Phenotype Heart Involvement
Alpha-Sarcoglycan Knock Out Missense r;:gst;on (H77C) Alpha Kobuke et al. 2008 [88] Progressive muscle degeneration No
Alpha-Sarcoglycan Knock Out Sgca (I;Zig;s’g(?:sgene Alpha Kobayashi et al. 2008 [89] No dystrophic symptoms but fatigue No
Alpha-Sarcoglycan Knock Out Deletion Exon 2-3 Alpha Duclos et al. 1998 [90] Progressive muscle degeneration No
Alpha-Sarcoglycan Knock Out Deletion Exon 1-2 Alpha Liu et al. 1999 [91] Progressive muscle degeneration No

Duclos et al. 1998 [90]
Alpha-Sarcoglycaan.nock Out Sgca/Ragl/il2rg Knock out Alpha Mombaerts et al. 1992 [92] Progressive muscle degeneration No
Immuno Deficient
Cao et al. 1995 [93]

Beta-Sarcoglycan Knock Out Deletion exon 3-6 Beta Durbeej et al. 2000 [94] Progressive muscle degeneration Yes

Beta-Sarcoglycan Knock Out Disruption exon 2 Beta Araishi et al. 1999 [95] Muscle. degeneration and hind Yes—Old age
limb hypertrophy

Beta-Sarcoglycan Knock Out Sgcb /Rag?2/yc Knock out Beta Giovannelli et al. [70] Exacerbated dystrophic phenotype Yes

Beta-Sarcoglycan Knock In Missense rr;(t(z)irtllzn TIS3RKI Beta Henriques et al. 2018 [96] No symptoms No

Gamma-Sarcoglycan Knock Out Deletion exon 2 Gamma Hack AA et al. 1998 [97] Progressive muscle degeneration Yes

Gamma-Sarcoglycan Knock Out 521AT Single nucleotide Gamma Demonbreun et al. 2020 [98] Progressive muscle degeneration Yes

deletion Exon 6
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Among the approaches that have been used to highlight the differences among mus-
cles, it is important to mention the study by Straub and colleagues [99]. In 1997, they
looked for differences between congenital muscular dystrophy and Duchenne muscular
dystrophy, since the genetic mutations in these two dystrophies affected components of
the same complex (dystrophin-associated glycoprotein complex), and yet showed different
levels of severity. They injected Evans blue dye into the blood stream of mice. This dye can
enter into skeletal muscle fibers when the sarcolemma is disrupted, as happens in these
dystrophies. Interestingly, they observed that some muscles, but not all of them, were
blue colored in both mouse models, but with different disease-specific patterns. They also
showed that some muscles were resistant to sarcolemma disruption in a disease-specific
pattern, demonstrating that in muscular dystrophies muscles differ in how severely they
are affected by the same mutation.

In this regard, another study to be mentioned is the one by Sasaoka et al. [100], where
they focused on understanding the hypertrophy phenomenon taking place in gamma-
sarcoglycanopathy and other dystrophies. To this aim, they took the entire lower part of
the hind limb and cut transversal sections, upon decalcification, to observe all the muscles
of the leg together in the same section. They showed clear differences in fiber structure and
cross-sectional areas among muscles within the same hind limb section.

The hypertrophy of some muscles is a common feature in the sarcoglycanopathies,
but also in other dystrophies such as Duchenne muscular dystrophy, with which it shares
remarkably similar gene expression profiles, including inflammatory and structural remod-
eling processes [86,100,101]. The MRI technique has been used to show hind limb muscle
differences in humans [21], however, due to the small size of mouse muscles it is difficult
to interpret the results. Hence, the use of MRI techniques to study muscle differences in
mouse models has not been extensively reported upon [102,103].

On other hand, in recent years, studies of gene expression profiles have been particu-
larly successful in exploring muscle diversity and heterogeneity. Transcriptomic profiles
have been used to study fiber types [104], confirming that differences in fiber types are
likely regulated by multiple signaling pathways and transcription factors rather than by
a single “master” switch [105]. Another study of transcriptomic profiles evaluated the
differences among wild type muscles and found more than 50% differentially expressed
transcripts [26].

7. Conclusions and Future Perspectives

Skeletal muscle heterogeneity enables multitask functions and over the past century
has been the focus of numerous studies and efforts to characterize it. This heterogeneity
encompasses a broad range of characteristics, including fiber type, embryogenic origin,
metabolism, calcium kinetics, architecture, excitability, and cell populations. However,
not all muscles of the body can accomplish all the functions that the whole coordinated
musculature can perform, and this forms the basis of muscle diversity.

Muscle diversity is reminiscent of that in the skin. Thus, in the same way the skin
differs between the palm of the hand and that on the face, the muscle heterogeneity is
reflected in the distinct parts of the body through its diversity. Furthermore, diversity
occurring along different tissues may determine and influence a specific area.

A suitable example of that diversity could be seen in sarcoglycanopathies, where the
pelvic muscles and shoulder limbs are known to be preferentially affected. Even though all
muscles in these pathologies have the same genetic mutation, not all of them react equally to
the same genetic background, as is also the case in other muscular dystrophies. Considering
also that muscle degeneration occurs even without physical activity in these diseases, it
is conceivable that a variety of unknown molecular pathways and cell (sub)populations
are taking part in mediating the different muscle phenotypes and behaviors. Therefore,
we believe that the current classification of muscles, which does not take into account this
phenomenon, is not exhaustive, and it should be revised in the near future when more
molecular pathways and cell populations are unveiled. Understanding the complexity of
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muscular diversity will no doubt allow the development of novel ways to interfere with
muscular diseases.

Furthermore, the authors of this review believe that further studies are required
to characterize the non-contractile (connective) tissues, as part of the muscles. Indeed,
the ECM, one of the components of the muscle and the place where the most important
changes during muscle pathology occurs, deserves to be further explored. In the context of
muscular diseases and, especially in sarcoglycanopathies, a proximo-distal gradient along
the muscles can be observed. The most severely affected muscles of this gradient have as a
hallmark a huge accumulation of ECM (fibrosis). On the other hand, muscles contributing
to the proximo-distal gradient within sarcoglycanopathies are interestingly also part of
another proximo-distal gradient: an architectural one. Proximal muscles have longer fibers,
shorter tendons, and less collagen (in terms of relative mass) than distal muscles, which
have shorter fibers, bigger tendons, and more collagen. Hence, it is plausible that some of
the unknown molecular pathways of muscular resistance observed in sarcoglycanopathies
involve the ECM and its diversity.

In order to address these outstanding issues it is therefore necessary to improve muscle
characterization studies by taking advantage of new technologies such as RNA bulk and
single cell sequencing which should help in understanding the borders of these gradients,
the muscle tissue diversity, as well as the principal actors in these complex and diverse
muscular niches.
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Abbreviations

CK Creatine kinase

DAGC Dystrophin-associated glycoprotein complex
ECM Extracellular matrix

FAPs Fibro-adipogenic progenitors

LGMD Limb girdle muscular dystrophy
LGMD-R4 Beta-sarcoglycanopathy

MRI Magnetic resonance imaging

MYH16 Myosin heavy chain 16

NADH Nicotinamide adenine dinucleotide reduced form
PICs PW1" interstitial cells

SCs Satellite cells

SG Sarcoglycan

SHD Succinate dehydrogenase

SCGE Sarcoglycan subtype E

SCGZ Sarcoglycan subtype Z
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