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Abstract

Background: In recent years, identification of differentially expressed genes and sample clustering have become
hot topics in bioinformatics. Principal Component Analysis (PCA) is a widely used method in gene expression data.
However, it has two limitations: first, the geometric structure hidden in data, e.g., pair-wise distance between data
points, have not been explored. This information can facilitate sample clustering; second, the Principal Components
(PCs) determined by PCA are dense, leading to hard interpretation. However, only a few of genes are related to the
cancer. It is of great significance for the early diagnosis and treatment of cancer to identify a handful of the differentially
expressed genes and find new cancer biomarkers.

Results: In this study, a new method gLSPCA is proposed to integrate both graph Laplacian and sparse constraint into
PCA. gLSPCA on the one hand improves the clustering accuracy by exploring the internal geometric structure of the data,
on the other hand identifies differentially expressed genes by imposing a sparsity constraint on the PCs.

Conclusions: Experiments of gLSPCA and its comparison with existing methods, including Z-SPCA, GPower, PathSPCA,
SPCArt, gLPCA, are performed on real datasets of both pancreatic cancer (PAAD) and head & neck squamous carcinoma
(HNSC). The results demonstrate that gLSPCA is effective in identifying differentially expressed genes and sample
clustering. In addition, the applications of gLSPCA on these datasets provide several new clues for the exploration of
causative factors of PAAD and HNSC.

Keywords: Differentially expressed genes, Gene expression data, Graph Laplacian, Principal component analysis, Sparse
constraint
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Background
In the field of bioinformatics, research on the difference
of expressed genes between cells of different status helps
us understand the functions of genes, and what is more,
isolate disease related genes. This direction of research is
known as identification of differentially expressed genes
[1]. It lays a foundation for further research on the rela-
tionship between cancer and genes in the molecular
level and will improve the efficiency of cancer diagnosis.
Sample clustering of gene expression data is another ap-
plication in bioinformatics [2, 3]. It will facilitate the
searching of new cancer subtype, and consequently helps
the targeted therapy of tumor.
Matrix decomposition is one of the major techniques

to deal with gene expression data [4–8]. At present,
many researchers are interested in data modeling, and
try to select the differentially expressed genes from a
large number of gene expression data [9–12]. It lays a
foundation for further research on the relationship be-
tween cancer and genes in the molecular level and im-
proves the efficiency of cancer diagnosis. Among them,
Principal Component Analysis (PCA) is a basic tool that
has been widely used [6, 7]. The traditional linear PCA
method considers the global Euclidean structure of the
original data, and when the data points are in a manifold
structure, the global Euclidean structure cannot exactly
describe the real distance between data points.
In recent years, manifold learning has made a lot of pro-

gress in theory, algorithm and application [13–16]. The main
idea of manifold learning is to establish a nonlinear mathem-
atical model by means of differential calculus and other
mathematical tools. The inherent nonlinear geometric struc-
ture hidden in the high dimensional data can be revealed by
manifold learning. Thus, we can consider introducing the
manifold learning in the linear PCA method. Motivated by
manifold learning theory, Jiang et al. proposed graph Lapla-
cian PCA (gLPCA) [17]. This method joins a graph Laplacian
to the data representation of original data X. The derived
low dimensional data can be learned with the cluster infor-
mation encoded in graph structureW.
Despite its advantage, the PCA joint with graph Lapla-

cian suffers from the fact that the PCs are typically dense
[18, 19]. In bioinformatics, the gene expression data in-
volved in PCs have much irrelevant or redundant infor-
mation. For the study of the pathogenesis of a disease,
only a small number of genes are significant. This infor-
mation plays an important role in early diagnosis of can-
cer. Hence, the interpretation of the PCs will be
facilitated if the derived PCs are sparse, involving a few
of nonzero elements. Actually, many sparse PCA
methods have been developed. For example, rotation
and thresholding are first derived on running and facial
spots data to find the sparse PCs [20, 21]. Z-SPCA is de-
signed based on iterative elastic net regression [22].

Good results on biological and regular multivariate data
have been achieved by this method. D’Aspremont et al.
designed two methods, called DSPCA [23] and
PathSPCA [24]. DSPCA finds sparse PCs via semi-definite
program (SDP) while PathSPCA directly identifies the non-
zero elements one by one. Shen and Huang designed a
method called sPCA-rSVD which solves the problem based
on low-rank matrix factorization [25]. Sigg and Buhmann
considered expectation-maximization (EM) to solve a sparse
probabilistic generative model, we call this method as
EMSPCA [26]. Journée et al. designed a series of algorithms
based on L0 and L1-norm to extract single unit or block unit
PCs (GPowerL0, GPowerL1, GPowerL0,m, GPowerL1,m,)
on random data and gene expression data to compute the
sparse PCs [27]. Lai et al. rewrote the traditional PCA into
multilinear regression and sparse regression forms (MSPCA)
to deal with tensor data [28]. Motivated by rotation and trun-
cation of PCA basis, Hu et al. proposed an efficient method
called SPCArt [29]. Zhao et al. divided the sparse PCA prob-
lem into several sub-problems and gave a series of closed-
form solutions to compute it. This method is named as block
coordinate descent sparse PCA (BCD-SPCA) [30].
Recently, Nie et al. demonstrated that L2,1-norm applying

on a matrix can induce sparsity in row [18, 31]. L2,1-norm is

defined as kXk2;1 ¼
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1x

2
ij

q
¼Pn

i¼1kxik2 , where
xi is the i-th row of X. Actually L2,1-norm first computes
L2-norm of the row vector xi and then calculates L1-norm
of the resulting L2-norms b(X) = (‖x1‖2, ‖x

2‖2, ...‖x
m‖2). Zero

rows in X can be achieved through the effect of L2,1-norm.
Thus, considering manifold learning has little effect on iden-
tification of differentially expressed genes, the introduction of
L2,1-norm to PCA is feasible and effective. Furthermore, as
we will show, when the problem is solved iteratively, L2,1-
norm can be formulated into a trace form, consequently we
can optimize it compatibly with the graph Laplacian.
In this paper, we consider introducing sparsity constraint

and graph Laplacian to PCA. A novel method called PCA via
joint graph Laplacian and sparse constraint (gLSPCA) is pro-
posed. It not only encodes with the internal geometric struc-
ture for clustering purpose, but also imposes sparse
constraint on traditional PCA to improve interpretability. As
a result, on one hand our method can be applied for sample
clustering; on the other hand, it can identify a few of differen-
tially expressed genes. The contributions of this paper can be
enumerated as follows:

(i) We proposed a novel method called gLSPCA which
simultaneously learns the internal geometric structure
and improves the interpretability of PCs. gLSPCA on
the one hand can identify differentially expressed genes,
on the other hand can be applied for sample clustering.

(ii) The optimization and convergence analysis of
gLSPCA are provided.
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(iii)The proposed gLSPCA is effective in identifying
differentially expressed genes and sample clusters,
as demonstrated by experimental results on PAAD
and HNSC datasets. gLSPCA provides a tool that is
helpful for the study of the pathogenesis of cancer,
and the clustering application on samples provides
a basis for early diagnosis of cancer.

In what follows, the proposed method and the algorithm
for this method are introduced in Methodology section.
The properties and convergence analysis of this method
are included. Extensive experiments for differentially
expressed genes identification and sample clustering are
conducted in the section of Results and Discussion, where
related sparse PCA methods are compared with our
method. The paper is concluded in the section of
Conclusions.

Methodology
Mathematical definition
Above all, we define some notations which will be fre-
quently used in following sections. (1) The input data
matrix is denoted by X = (x1, ..., xn) ∈ℝ

m × n, where n is the
number of samples and m is the number of variables, i.e.,
genes in the gene expression data. (2) The new subspace
of projected data points is denoted by H =ℝn × k and the
principal direction is denoted by U = (u1, ..., uk) ∈ℝ

m × k.
(3) The Frobenius norm is denoted as ‖X‖F. (4) The L2,1-

norm is denoted as kXk2;1 ¼
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1x

2
ij

q
¼Pn

i¼1

kxik2. (4) The trace of matrix Z is denoted as Tr(Z).

The classical PCA and Graph-Laplacian PCA
In this subsection, we briefly review the classical PCA
and gLPCA. PCA finds the new subspace of projected
data points H and principal direction U by solving the
following optimization problem [7]:

min
U;H

X−UHT
�� ��2

F s:t: HTH ¼ I: ð1Þ

In gene expression data, each column xi is a linearized
vector of sample. The basic PCA model cannot recover
non-linear structure of data. gLPCA incorporates the
geometric manifold information to find the non-linear
structure of data [7]. Considering H is the embedding
matrix, the gLPCA is formulated as follows:

min
U;H

X−UHT
�� ��2

F þ αTr HTLH
� �

s:t: HTH

¼ I; ð2Þ

where L =D −W is the graph Laplacian matrix. D =
diag (d1, ..., dn) is a diagonal matrix whose elements are
column or row sums of W (W is a symmetric

nonnegative weight matrix). It can be expressed as di = ∑
jWij. The definition of Wij is listed as follows:

Wij ¼ f 1 if xi∈Nk x j
� �

or x j∈Nk xið Þ;
0 otherwise;

ð3Þ

where Nk(xi) is the k nearest neighbours of xi [24]. The
authors also presented a robust version to improve the
robustness of this method. Since our paper focuses on
the sparsity of the gLPCA method, we will not elaborate
this robust version further.

The proposed method: PCA via joint graph Laplacian and
sparse regularization (gLSPCA)
Recently, sparse representation has been widely applied
in the field of bioinformatics. It decomposes a set of
high-dimensional data into a series of linear combina-
tions of low dimensional codes, and hopes the combin-
ation coefficients to be zero as much as possible. The
PCA suffers from the fact that the PCs are typically
dense. The interpretation of the PCs might be facilitated
if the idea of sparse constraint has been utilized. We
consider introducing L2,1-norm constraint on the PCs H
to improve the interpretability of PCA based method.
Since the L2,1-norm can induce sparsity in rows, the PCs
can be sparser and more easily explained [25]. Then, the
quality of the decomposition is improved. The proposed
method (gLSPCA) solves the following minimization
problem:

min
U;H

X−UHT
�� ��2

F þ αTr HTLH
� �

þ γ Hk k2;1 s:t: HTH
¼ I; ð4Þ

where α and γ are scalar parameters to balance the
weights of graph Laplacian and sparse constraint
respectively.

Optimization
It is hard to obtain a closed solution from Eq. (4). Thus,
we solve the problem via iterative optimization. The so-
lution of U is obtained by calculating partial derivatives
at first. Then, the solution of H can be obtained by per-
forming eigen-decomposition, after these two variables
U and H are integrated into one variable H to substitute
the original objective function. Obtaining convergence
after a number of iterations, we finally get the PCs with
internal geometry and sparsity which were ignored in
previous studies. Firstly, following an optimization tech-
nique of L2,1-norm [25, 26], the optimization of original
problem can be approximated by the following problem:
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min
U;H

X−UHT
�� ��2

F þ αTr HTLH
� �

þ γTr HTDH
� �

s:t: HTH
¼ I; ð5Þ

where D is a diagonal matrix with elements:

Dii ¼ 1
2 hik k2

: ð6Þ

Then, to get the solution of U, we fix H and the deriva-
tive of ℒ(U,H,D) respect to U is

∂ℒ U;H;Dð Þ
∂U

¼ −2XHþ 2U; ð7Þ

By setting the derivative of U to zero, we have

U ¼ XH: ð8Þ
Substituting the solutions of U into Eq. (5), we have

Tr X−XHHT
� �

X−XHHT
� �T þ αTr HTLH

� �þ γTr HTDH
� �

¼ −Tr HTXTXH
� �þ Xk k2F þ αTr HTLH

� �þ γTr HTDH
� �

¼ Tr HT −XTXþ αLþ γD
� �

H
� �þ Xk k2F :

ð9Þ
Therefore, Eq. (8) is equivalent to the following problem:

ℓ Hð Þ ¼ min
HTH¼I

Tr HTAH
� �

; ð10Þ

where A = −XTX + αL + γD. Thus, the optimal H is the
eigenvectors corresponding to the first k smallest eigen-
values of the matrix A.
In the following, for convenience of parameter setting,

we transform A to another equivalent form. We use ηk to
denote the largest eigenvalue of matrix XTX − γD. For
Laplacian matrix L, we use ηs to represent the largest
eigenvalue of L. We then set

α ¼ β
1−β

ηk
ηs

; ð11Þ

so that the tuning of α becomes the tuning of β. Thus,
(4) can be rewritten as follows:

min
H

Tr HT 1−βð Þ I−
XTXþ γD

ηk

� �
þ β

L
ηs

� 	
H s:t: HTH ¼ I:

ð12Þ
In this way, the solution of H can be obtained by com-
puting the first k smallest eigenvalues of matrix A1:

A1 ¼ 1−βð Þ I−
XTXþ γD

ηk

� �
þ β

L
ηs
: ð12Þ

The range of β is 0≤ β≤ 1. In particular, when β= 0 and γ=
0, gLSPCA degrades to classical PCA. When β= 1 and γ= 0,

it equals to Laplacian Embedding (LE). We summarize the al-
gorithm of the proposed gLSPCA approach in Algorithm 1.

Input: Data matrix X = (x1, ..., xn) ∈ R
m × n, parameters γ and β.

Output: Matrix U and H.

1: Initialize D = In × n;

2: repeat

Construct weight matrix W;
Compute the diagonal matrix D, graph Laplacian L;
Compute H by the eigenvectors corresponding to the first k smallest
eigenvalues of matrix A1;
Compute the optimal U according to Eq. (8);
Compute diagonal matrix D according to Eq. (6);

Until converges

Convergence analysis
We would like to show the objective value does not
increase in each iteration of the proposed gLSPCA
algorithm. Firstly, a simple lemma is provided [32].

Lemma 1. For any non-zero vectors a,b ∈ℝm:

ak k2−
ak k22

2 bk k2
≤ bk k2−

bk k22
2 bk k2

: ð14Þ

The convergence analysis of gLSPCA is summarized as
Theorem 1.

Theorem 1: The optimization procedure of the
proposed gLSPCA algorithm will monotonically
decrease the objective function in each iteration.

Proof. Following the algorithm of gLSPCA, when we fix
Dt in the t-th iteration and optimize Ut + 1, Ht + 1, we
have:

X−Utþ1 Htþ1
� �T��� ���2

F
þ αTr Htþ1

� �T
LHtþ1


 �
þ γTr Htþ1DtHtþ1

� �
≤ X−Ut Htð ÞT
��� ���2

F
þ αTr Htð ÞTLHt


 �
þ γTr HtDtHtð Þ:

ð15Þ
Since kHk2;1 ¼

Pn
i¼1khik2, this inequality indicates

X−Utþ1 Htþ1
� �T��� ���2

F
þ αTr Htþ1

� �T
LHtþ1


 �
þ γ

Xn
i¼1

htþ1
i

�� ��2
2

2 ht
i

�� ��
2

− htþ1
i

�� ��
2

 !

≤ X−Ut Htð ÞT
��� ���2

F
þ αTr Htð ÞTLHt


 �
þ γ

Xn
i¼1

ht
i

�� ��2
2

2 ht
i

�� ��
2

− htþ1
i

�� ��
2

 !
:

ð16Þ
According to Lemma 1, we know that

htþ1
i

�� ��2
2

2 ht
i

�� ��
2

− htþ1
i

�� ��
2≥

ht
i

�� ��2
2

2 ht
i

�� ��
2

− ht
i

�� ��
2: ð17Þ

Thus, we have the following result.
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X−Utþ1 Htþ1
� �T��� ���2

F
þ αTr Htþ1

� �T
LHtþ1


 �
þ γ Htþ1
�� ��

2;1

≤ X−Ut Htð ÞT
��� ���2

F
þ αTr Htð ÞTLHt


 �
þ γ Htk k2;1:

ð18Þ

This inequality proves that the objective function of (4)
will monotonically decrease in each iteration.

Results and discussion
The primary goal of our method is to improve the
sparsity of gLPCA because the PCs of this method are
dense. We evaluate the performance of the proposed
method with the other five related methods, including
four sparse PCA methods: Z-SPCA [22], GPower [27],
PathSPCA [24], SPCArt [29], and a graph Laplacian
PCA method: gLPCA [17]. There are two deflation algo-
rithms and two block algorithms for GPower. In prac-
tice, the results of the four algorithms are not different
significantly. We choose one of these algorithms as com-
parison method in our experiments. The experiments
are mainly divided into two aspects:

(i) Identifying differentially expressed genes. The joint
effect of sparse constraint and graph Laplacian in
our method can be evaluated by the identification
of differentially expressed genes. Firstly, the new
oncogenes can be found in these discovered
differentially expressed genes. Then, the function
and interacting proteins network analysis of these
new oncogenes are given. Finally, pathway analysis
explains the combined biological processes of the
identified differentially expressed genes.

(ii) Tumour sample clustering. Since the sparse PCs are
encoded with the internal geometric structure for
clustering purpose, tumour sample clustering can
be used to evaluate how well it works. Clustering
the data according to the similarity of each data
point provides a basis for accurate subtype of
cancer.

Experimental settings
We set r = 2 to be the number of reduced dimensions.
The similarity matrix is constructed by k-nearest neigh-
bour graph with Gaussian kernel, where we set k = 5 and
the σ of Gaussian kernel to be 1. We set λ to infinity as
the parameter value of Z-SPCA method, thus soft
thresholding can be conducted to compute the sparse
PCs for the gene expression data with high dimension
and small sample. For GPower and PathSPCA method,
we use the default parameter values suggested by the au-
thors. For SPCArt method, we set λ� ¼ 1=

ffiffiffiffi
m

p
to guar-

antee the sparsity and avoid truncating to zero vectors.
For our method, the best parameters are selected in the

range of β = (0.1, ..., 0.9) and γ = (10−30, ..., 1030). We re-
port the best results with the optimal parameters for all
compared methods.

Datasets
The details of the two datasets used in our experiments
are described in Table 1. The dataset of pancreatic
cancer (PAAD) and head and neck squamous carcinoma
(HNSC) are downloaded from The Cancer Genome
Atlas (TCGA). This database is an open comprehensive
multi-dimensional map of the key genomic changes in
33 types of cancer dataset. These two datasets have
thousands of genes but only a small number of samples.
Much irrelevant or redundant information is contained
in such gene expression data. The following experiments
on identification of differentially expressed genes and
tumour sample clustering are particularly important in
the cancer study.

Identifying differentially expressed genes
In bioinformatics, the PCs involve a large number of
genes. In cancer study, only a small number of genes are
significant for early diagnosis of cancer and accurate
subtype of cancer. These genes can be defined as
differentially expressed genes. We can analyze the
identified differentially expressed genes to evaluate the
effectiveness of the sparsity constraint in our method.
Firstly, we compute the scores for all genes in

descending order. Then, the index set of differentially
expressed genes is formed by the corresponding indices.
To be fair, all methods extract the largest 100 values.
The extracted genes with high scores in data
representation can be deemed as differentially expressed
genes. We match the selected differentially expressed
genes to the pathogenic genes of PAAD and HNSC
published on GeneCards. The public available website of
GeneCards is http://www.genecards.org/, which is an
open, integrative database that provides comprehensive,
useful information on all predicted and annotated
human genes [33].
Matching results of each method on PAAD and HNSC

datasets are listed in an additional file (see Additional file 1).
Additional file 1 shows the differentially expressed genes
identified by all compared methods, as well as the relative
scores of each gene associated with the disease. The unique
genes of each method are also marked in bold in this file.
These unique genes are the differentially expressed genes

Table 1 Summary of the two datasets

Data
sets

Number of class distribution

Samples Genes Normal disease

PAAD 180 20,502 4 176

HNSC 418 20,502 20 398
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Fig. 1 Overlap among the differentially expressed genes identified by the compared methods
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that one method can identify while the other methods
cannot.
To visualize the overlap among the differentially

expressed genes identified by the methods, we send the
results to OmicsBean to generate a Venn diagram.
OmicsBean is a multi-group data analysis system, and its
public address is http://www.omicsbean.com:88/. The
overlap result of the differentially expressed genes identi-
fied by the methods is visualized by Venn diagram in
Fig. 1. In this figure, (a) is the overlap result on PAAD
dataset and (b) is the overlap result on HNSC dataset.
The left coordinate represents the different permutations
and combinations of various methods. The right coord-
inate represents the number of unique genes that are ex-
cavated by one method (only one method on the left
coordinate) or the same genes by several methods (mul-
tiple methods on the left coordinate).
From Fig. 1, it can be concluded that the number of

unique gene mined by GPower on the two datasets is
the most. But it also loses a large number of important
genes, which can be seen from the results of the
Additional file 1. These missing genes lead to a poor
overall effect in identifying differentially expressed genes.
There are also a few unique genes mined by PathSPCA.
But the scores of these genes are not high enough, they
are not important pathogenic genes. Thus, there is no
further research of these genes. gLSPCA finds two
unique genes in each dataset, and these genes are highly
related to disease. These genes can be defined as the
new oncogenes identified by our method. It is necessary
to carry out further studies on these genes and their
detailed analysis is discussed in the next subsection.
Here, we first detect the efficiency of the identified

differentially expressed genes. The identification
accuracy (IA) and the total relevance scores (TRS) of
these genes are listed in Table 2. The best results are in
bold. The IA is defined as follows:

IA ¼ Σn
i¼1ψ gs; gn

� �
n

� 100%; ð19Þ

where ψ(x, y) = 1 if x = y and ψ(x, y) = 0 otherwise. gs is
the selected genes from our method and gn represents
the pathogenic genes of disease from GeneCards.
Larger IA indicates the identification performance of
differentially expressed genes is better. TRS denotes
the total relevance scores of all identified differentially
expressed genes, which is computed by GeneCards.
From this table, it can be concluded that gLSPCA has

higher IA and TRS results than the other methods over
the two datasets. The results of Z-SPCA, SPCArt and
gLPCA methods are relatively stable, while those of
GPower and PathSPCA methods are unstable. The IA
result of PathSPCA on HNSC equals to that of gLSPCA,
but the result on PAAD dataset is the worst. Since the
differentially expressed genes identified by our method
have higher correlation with disease, the TRS of
PathSPCA is lower than gLSPCA. For GPower method,
the IA and TRS performances have much difference on
the two datasets. It shows that the adaptability of GPo-
wer to different datasets is not satisfactory. From the
above discussion, we can conclude that the proposed
method gLSPCA performs better than the other
methods on identifying differentially expressed genes.

Function and interacting proteins network analysis
To detect the correlation between identified oncogenes
with disease, we summarize the functions of these genes
in Tables 3 and 4. Table 3 lists the function of
differentially expressed genes on PAAD dataset identified
by gLSPCA but not the other methods. The relevance
score of PPY on PAAD indicates that it is an important
virulence gene of PAAD. Published article has proved that
PPY responses to a mixed meal in PAAD [34]. Thus, the
medical study of PAAD is based on the biological changes

Table 2 Results on identification accuracy (IA) and total relevance
score (TRS) of six methods on PAAD and HNSC dataset

Methods PAAD HNSC

IA TRS IA TRS

Z-SPCA 77.00 901.67 53.00 540.91

GPower 77.00 922.27 43.00 378.70

PathSPCA 61.00 682.56 60.00 579.06

SPCArt 77.00 901.67 53.00 540.91

gLPCA 75.00 878.39 50.00 513.94

gLSPCA 80.00 927.70 60.00 591.31

Table 3 The function of differentially expressed genes on PAAD
dataset identified by gLSPCA but not the other methods

Gene
name

Function Relevance
score

PPY This gene encodes a member of the
neuropeptide Y (NPY) family of peptides.

21.13

CD24 This gene encodes a sialoglycoprotein that is
expressed on mature granulocytes and B
cells and modulates growth and differentiation
signals to these cells.

8.27

Table 4 The function of differentially expressed genes on HNSC
dataset identified by gLSPCA but not the other methods

Gene
name

Function Relevance
score

HSPA1A
This intronless gene encodes a 70 kDa heat
shock protein which is a member of the heat
shock protein 70 family.

7.67

COL6A1 The collagens are a superfamily of proteins
that play a role in maintaining the integrity of
various tissues.

4.05

Feng et al. BMC Bioinformatics 2019, 20(Suppl 22):716 Page 7 of 11
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of PPY. CD24 as a potential oncogene interferes the RNA
treatment of PAAD cancer cells has been studied [35].
And its relevance score with PAAD is 8.27. Table 4 lists
the functions and relevance scores of the differentially
expressed genes on HNSC dataset identified by gLSPCA
but not the other methods. The high relevance scores
reflect the close relationship between HSPA1A, COL6A1
and HNSC. But there are few biological researches on this
issue, which provides a great space to study it.
Since these genes belong to protein coding genes, it is

useful to send them to GeneCards for finding the
interacting proteins network. We find three interacting
proteins networks. The results can be found in Fig. 2,
where (a) is the interacting proteins network of PPY, (b)
is HSPA1A and (c) is COL6A1. Each graph shows the
most significant five interacting genes. In this figure,
each network node represents proteins result by a single
and protein-coding gene locus. The edges in this figure

are the protein-protein associations. These associative
proteins jointly promote a shared function, which does
not necessarily mean they are binding each other in
physics. The specific known interactions are explained in
this figure. The graph of protein networks are helpful to
carry out a deeper biological study of these differentially
expressed genes.

Pathway analysis
The combined biological processes of the identified
differentially expressed genes can be explained by
pathways. Pathways help us understand the advanced
functions of organisms and biological systems at the
molecular level. We send these genes to KEGG: http://
www.kegg.jp/. The pathways of highest overlap on these
two datasets are presented in additional file [36]. The
pathway of focal adhesion plays an essential role in
biological processes. This pathway is discovered from

Fig. 2 The interacting proteins network of the identified differentially expressed genesGraphical presentation of the interacting proteins network
of the differentially expressed genes identified by gLSPCA but not the other compared methods.
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the identified differentially expressed genes of gLSPCA
on PAAD dataset. The published article concludes that
the modification of focal adhesion and integration might
be a novel therapeutic approach for the treatment of
pancreatic cancer [37]. The pathway of ECM-receptor
interaction is identified by the result of gLSPCA on
HNSC dataset. The extracellular matrix (ECM) is made
up of various structural and functional macromolecules,
and it also plays a vital role in tissue and organ morpho-
genesis, as well as the holding of cell and tissue struc-
ture. Shim et al. hypothesize the over expression of
cortical protein leads to the degradation of ECM in
HNSC [38]. Researches show the biological system in
these pathways is an important part for the study of
PAAD and HNSC.

Tumour sample clustering results
Sample clustering based on gene expression data is
helpful for the detection of tumour subtypes. Since the
graph Laplacian is introduced to the proposed method,
the geometric structure of data is explored. However,
the encoded internal geometric structure is for
clustering purpose. It is useful to evaluate whether the
explored geometric structure benefits sample clustering.
And the discovery new subtype of tumour is helpful for
the targeted therapy of tumour. In this experiment,
filtering out redundant information by the proposed
method, the corresponding results are obtained by K-
means clustering. Following the related clustering work,
we adopt clustering accuracy (ACC) as evaluation cri-
teria in our experiments [39]. The criteria of ACC can
be calculated by

ACC ¼ Σn
i¼1δ pi;map qið Þð Þ

n
� 100%; ð20Þ

where qi is the clustering label obtained by the algorithm
and pi is the truth label. δ(pi,map(qi)) is given by

δ x; yð Þ ¼ f 1; x ¼ y;
0; otherwise;

ð21Þ

where map(qi) is the best mapping function. Table 5
summarizes the ACC results of all compared methods,
in which “All-Ge” denotes all gene clusters without any
dimension reduction processing. The best results are
highlighted in bold. From the results, the observations
can be summarized as follows:

(i) Since the graph Laplacian is introduced to gLSPCA
for clustering purpose, the gLSPCA method
performs better than the other methods.

(ii) All-Ge has the lowest ACC result on PAAD dataset,
and has intermediate result on HNSC. On PAAD
dataset, the clustering results might be interfered by
too much irrelevant and redundant information if
dimensionality reduction is not employed. However,
seldom irrelevant and redundant information
contained in HNSC dataset, as well as much
information loss in some sparse PCA methods,
might lead to the intermediate result of All-Ge on
this dataset.

Conclusions
In this paper, we have proposed a new PCA method called
gLSPCA by joint graph Laplacian and sparse constraint.
The most distinguished characteristics of the new method
are that gLSPCA not only considers the internal
geometric structure in the data representation, but also
adds sparse constraint to PCA. Specifically, we obtain PCs
to represent the data meanwhile transform the PCs to
approximate the cluster membership indicators in K-
means method. The algorithm as well as the convergence
analysis of this method has also been developed. The
effectiveness of our method has been demonstrated on
differentially expressed genes identification and tumour
sample clustering comparing with currently available
sparse and graph based PCA methods. Finally, we have
evaluated the identified differentially expressed genes in
the way of co-expression (pathways) and interacting pro-
teins network.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3229-z.

Additional file 1. The pathways of highest overlap on PAAD and HNSC
datasets, the pathway of focal adhesion and ECM-receptor interaction.
Matching results of each method on PAAD and HNSC datasets.
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ACC: clustering accuracy; All-Ge: denotes all genes cluster without any
dimension reduction processing; BCD_SPCA: block coordinate descent sparse
PCA; DSPCA and PathSPCA: two sparse PCA method designed by
D’Aspremont; EMSPCA: expectation-maximization sparse PCA; gLSPCA: PCA
via joint graph Laplacian and Sparse regularization; GPower: a serious of
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squamous carcinoma; IA: differentially expressed genes identification
performance; MSPCA: Multilinear regression and Sparse regression PCA;

Table 5 ACC performance of all methods

Datasets All-Ge Z-SPCA GPower PathSPCA SPCArt gLPCA gLSPCA

PAAD 83.09 95.00 95.00 95.00 96.35 95.00 97.22

HNSC 78.23 75.84 77.51 72.73 75.84 79.43 92.88

Notes: “All-Ge” denotes all features cluster without any dimension reduction processing
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Components; SDP: semidefinite program; sPCA-rSVD: low-rank matrix
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