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Abstract A common practice in modern QSAR modelling

is to derive models by variable selection methods working

on large descriptor pools. As pointed out previously, this is

intrinsically burdened with the risk of finding random

correlations. Therefore it is desirable to perform tests

showing the performance of models built on random data.

In this contribution, we introduce a simple and freely

available software tool SCRAMBLE’N’GAMBLE that is

aimed at facilitating data preparation for y-randomization

and pseudo-descriptors tests. Then, four close-to-real-

world modelling situations are analysed. The tests indicate

what the quality of obtained QSAR models is like in

comparison to chance models derived from random data.

The non-randomness is not the only requirement for a good

QSAR model, however, it is a good practice to consider it

together with internal statistical parameters and possible

physical interpretations of a model.

Keywords y-Randomization � Chance correlations �
QSAR � QSAR validation

Introduction

Quantitative Structure-Activity Relationship (QSAR)

modelling is an important field of research in current

medicinal chemistry. QSAR models relate the structure of

chemical compounds to their biological activities:

activity = f ðstructure):

The aim of building such models is to explain and/or to

predict the activity of a group of compounds and thus to

facilitate and direct search for new active substances.

In QSAR, the structure of a chemical compound is rep-

resented mathematically by molecular descriptors. These

can be based on physicochemical properties measured

experimentally (e.g. partition coefficient LogP), quantities

calculated by quantum chemistry methods (e.g. HOMO/

LUMO energies) (Karelson et al. 1996) or be derived from

other theoretical bases (e.g. chemical graph theory, (Balaban

1985; Helguera et al. 2008) theory of quantitative chirality

(Ostrowski et al. 2012; Jamróz et al. 2012 etc.). The number

of currently available descriptors is enormous (Dearden

2016). There are several applications designed specifically at

their calculation [for example DRAGON by Talete Srl that

computes ca. 5000 descriptors (Talete Srl 2010)] and such a

functionality is present in probably all drug design and

discovery suites like Accelrys Discovery Studio (Accelrys

Software Inc. 2009), Schrödinger Suite (2017), molecular

operating environment (Chemical Computing Group ULC

2017) to mention only a few.

In a typical situation a researcher has at his or her dis-

posal a scarce number of compounds with determined

activity (like 20 to several dozen) and an alluring plenitude

of molecular descriptors (hundreds or thousands) to be used

for constructing QSAR equations. This makes the danger

of overfitting data a very likely one.
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The common statistical parameters, like coefficient of

determination, standard deviation, significance etc. are not

able to discern ‘good’ models from overfitted ones (Rücker

et al. 2007). This cannot be also done by any kind of

internal validation procedures, like leave-one-out, leave-

many-out etc. An ultimate test of validity and utility of a

given QSAR model is always the external validation on an

independent, large enough, properly designed set of new

derivatives (Gramatica 2007). This is, however, rarely

possible due to the lack of resources and/or time. In such

circumstances, perhaps the only affordable way to see if

studied QSAR models work better than the pure chance is

to simulate the ‘predictive power’ of the pure chance. Two

tests could be of help here: y-scrambling and pseudo-de-

scriptors test (Clark et al. 2001; Rücker et al. 2007).

The y-scrambling (y-randomization, response random-

ization) is a form of a permutation test, where the values of

the response variable (y) are randomly ascribed (scram-

bled) to different compounds, while the descriptors values

(x’s) are left intact. Scrambled data are then used for

training QSAR models. In the pseudo-descriptors test, the

descriptors (x’s) are replaced by random numbers (pseudo-

descriptors) that are also subsequently used to train QSAR

equations.

Both tests are run over several to several dozen times,

and from each run best coefficient of determination r2,

leave-one-out cross-validation correlation coefficient q2

and perhaps other adequate statistical parameters are col-

lected. The mean highest r2 (mhr2) and q2 (mhq2) along

with their standard deviations (SD) are calculated. This

allows to assess the ‘predictive power’ of the pure chance,

and the truly good models should have their r2 and q2

significantly better than this.

Unfortunately, these simple tests are very often not

included into QSAR studies. One of the reasons, apart from

their time-consuming character, might be in a difficulty in

obtaining random data for simulations. Not every

researcher is enough computer proficient to generate them

on his own, and not everyone has access to good statistical

software that could accomplish this without much trouble.

The software, in majority, if not in all cases, is also not

suited to working with common formats of chemical

table files like SDF (Dalby et al. 1992) that are usually

accepted by QSAR modelling software. The need for

manual operations on numerous, large spreadsheets of

numbers and chemical files can be an actual obstacle, and

discouraged researchers omit these insightful tests.

In order to facilitate data preparation for the tests, a

simple and free software tool SCRAMBLE’N’GAMBLE is

proposed. It is a stand-alone Java application with both

graphic user interface as well as a command-line man-

ageability. SCRAMBLE’N’GAMBLE reads in comma-

separated files (csv) and chemical table files by MDL (sdf)

containing descriptors and activity data. It can perform

y-scrambling as well as generate pseudo-descriptors given

number of times and output the results into a csv file, but

also directly into a sdf file immediately usable in most

QSAR programs. SCRAMBLE’N’GAMBLE is available

free of charge at: http://www.drugdesign.pl/scramble-n-

gamble/.

In order to demonstrate the importance of simulating

random chance performance along with building QSAR

models, let us expose the following Cases: I. classical

QSAR modelling (descriptors based on 2D structures) of

steroids’ affinity for the sex-hormone-binding globulin, II.

classical QSAR modelling (descriptors based on 2D and

3D structures) of steroids’ affinity for the corticosteroid-

binding globulin, III. Fujita-Ban QSAR modelling of the

effective dose of some fentanyls in the mouse hot plate test

and IV. a classification model for discerning glucocorticoid

receptor binders and non-binders.

Experimental

Molecules, activity data, descriptor calculation

and modelling procedure

In all Cases, a general workflow was as follows. First,

molecules with activity data for a given molecular target

were collected and divided into a training set and a test set.

Second, molecular descriptors were calculated. Constant

and near-constant descriptors were deleted from the pool,

and further reduction was done by checking intercorrela-

tions between descriptors. In pairs where the coefficient of

correlation was larger than 0.90, one of the descriptors was

randomly excluded. Third, QSAR models were trained.

Fourth, random data for y-scrambling and pseudo-de-

scriptors test were generated using SCRAM-

BLE’N’GAMBLE and the tests were performed by training

QSAR models in the same way as the ones based on true

data were trained. Fifth, the performance of the latter was

checked on test sets.

Details of the workflow for singular Cases are given in

Table 1.

Evaluation of regression models

For regression models in Cases I and II, standard statistical

metrics were applied. These are:

r2 coefficient of determination in the training set,

q2 cross-validated coefficient of determination in the

training set (internal validation, leave-one-out procedure)

R2 coefficient of determination in the test set (external

validation).
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Table 1 Details of the workflow for singular cases

Case I II III IV

QSAR task Linear equation of up to 3

variables, descriptors based

on 2D structure

Linear equation of up to 3

variables, descriptors based

on 3D structure

Linear equation, Fujita-

Ban model (Fujita and

Ban 1971)

Classification model

Molecules Various steroids (Fig. 2) Various steroids (Fig. 2) Fentanyl derivatives (3-

methyl-1,4-

disubstituted

piperidines) (Table SI-1

in Electronic supporting

material)

Various compounds (Tables SI-

5 to SI-8)

Dependent

variable

Logarithm of binding affinity to

sex-hormone-binding

globulin (SHBG) (Fig. 2)

Logarithm of binding affinity to

corticosteroid-binding

globulin (CBG) (Fig. 2)

Effective dose ED50 in

mouse hot plate test

(analgesic activity test)

(Table SI-1)

Whether a molecule binds or

does not bind the

glucocorticoid receptor

(Tables SI-5 to SI-8)

Training set 21 steroids of the benchmark

Cramer data set (Cramer et al.

1988; Coats 1998) (S1-S21 in

Fig. 2)

21 steroids of the benchmark

Cramer data set (Cramer et al.

1988; Coats 1998), chosen by

clustering from 31 molecules:

S2, S3, S4, S5, S7, S8, S9,

S10, S11, S14, S15, S18, S19,

S20, S22, S24, S25, S26, S28,

S29, S31 in Fig. 2

36 active derivatives

(Lalinde et al. 1990)

(Table SI-1)

100 active molecules and 3600

decoys randomly chosen from

Directory of useful decoys,

enhanced (DUD-E).

(Mysinger et al. 2012)

(Tables SI-5 and Table SI-7)

Test set Up to 12 molecules (within the

applicability domains of the

models found) taken from the

extended benchmark steroid

data set (Cherkasov et al.

2008) (S32-S44 in Fig. 2)

10 steroids of the benchmark

Cramer data set (Cramer et al.

1988; Coats 1998), chosen by

clustering from 31 molecules:

S1, S6, S12, S13, S16, S17,

S21, S23, S27, S30 in Fig. 2

10 inactive derivatives

(Lalinde et al. 1990)

(Table SI-1)

Other 50 active molecules and

1800 decoys randomly chosen

from Directory of Useful

Decoys, Enhanced (DUD-E).

(Mysinger et al. 2012)

(Tables SI-6 and Table SI-8)

Calculation

of

molecular

descriptors

2D descriptors in DRAGON 6

(Talete Srl 2010)

Structure optimization

(B3LYP/6-31G*) in Gaussian

09 (Frisch et al. 2009) (full

citation in Electronic

supporting material);

vibrational frequencies to

check imaginary frequencies;

atomic charges (q-

descriptors) calculated using

the CHELPG algorithm

(Breneman and Wiberg

1990); 2D and 3D molecular

descriptors in Accelrys

Discovery Studio (Accelrys

Software Inc. 2009); Sinister-

Rectus Chirality Measures

(SRCMs) (Ostrowski et al.

2012; Jamróz et al. 2012;

Ostrowski et al. 2013) and

Continuous Chirality

Measures (CCMs)

(Zabrodsky and Avnir 1995),
SRCMs calculated using the

CHIMEA software (Jamróz

2010) available at http://

www.smmg.pl, while CCMs

using a web page from

Hebrew University of Jer-

usalem (Zayit et al. 2011)

Indicator variables 2D descriptors in DRAGON 6

(Talete Srl 2010)

Descriptors

calculated

3764 127 9 3764
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The r2 and q2 values were compared to mean highest r2

(mhr2) and q2 (mhq2) from y-scrambling and pseudo-de-

scriptors tests in order to check whether the models per-

form better than chance models.

Additionally, cR2
p and r2

m testð Þ parameters were applied

calculated as proposed by the Roy group (Pratim Roy et al.

2009; Mitra et al. 2010). Both these metrics should be

greater than 0.5 for an acceptable model. The fulfilment of

this criterion with regard to r2
m testð Þ parameter ensures that a

model predicts the exact values of the response data. High
cR2

p values allow to consider a model to be robust and not

just the outcome of a chance correlation.

For the models in Case II, additional parameters were

checked. First, the internal cross-validation was performed

also in leave-three-out procedure, giving q2
ðL3OÞ—a cross-

validated coefficient of determination in the training set

(leave-three-out). Furthermore, another type of random-

ization experiment was performed (Wold et al. 1998). Here

y-scrambled data (25 runs) were used to refit the Case II

models. The obtained r2 and q2 values were then plotted

against the correlation coefficients of original y and per-

muted y data. The resulting intercepts (R2
int and Q2

int) are

expected to be below 0.4 and 0.05 respectively for valid

models.

Evaluation of decision trees

For all decision trees (Case IV) the number of True Posi-

tives (TP), True Negatives (TN), False Positives (FP) and

False Negatives (FN) was collected. The following metrics

were used for assessment of the decision trees: accuracy

(ACC), precision (PREC), sensitivity (SENS), specificity

(SPEC), fall-out (FALL) and F1-score (F1). They are given

by the expressions:

ACC =
TP þ TN

TP + TN + FP + FN
ð1Þ

PREC =
TP

TP + FP
ð2Þ

SENS =
TP

TP + FN
ð3Þ

SPEC =
TN

TN + FP
ð4Þ

FALL ¼ 1 � SPEC ð5Þ

F1 =
2TP

2TP + FP + FN
¼ 2 � PREC � SENS

PREC + SENS
: ð6Þ

Results and discussion

Software description

SCRAMBLE’N’GAMBLE is a fast and user-friendly

software for generation of random data for the purposes of

QSAR model validation. The program can read and output

both comma-separated files (csv) as well as chemical

table files by MDL (sdf) containing molecular descriptors

and activity data. Upon selecting which fields should be

scrambled or replaced with random data (pseudo-descrip-

tors), the user is able to obtain a required number of ran-

domized data sets in csv or sdf files. The latter are most

often accepted by QSAR modelling software. SCRAM-

BLE’N’GAMBLE may be run in a graphic user interface

mode (Fig. 1), but it is also manageable in the command-

line mode.

The generation of random (or to be said more precisely:

pseudo-random) numbers is achieved using Mersenne

Twister 19937 generator (Matsumoto and Nishimura 1998)

Table 1 continued

Case I II III IV

Descriptors

included

in training

the models

89 49 9 1090

Training

QSAR

model

Genetic function approximation

(GFA) algorithm (Rogers and

Hopfinger 1994) in Discovery

Studio, GFA settings were as

default

Genetic function approximation

(GFA) algorithm (Rogers and

Hopfinger 1994) in Discovery

Studio, GFA settings were as

default

Linear regression routine

in Microsoft Excel 2016

In-house script based on a

Python scikit-learn library for

machine learning. (http://

scikit-learn.org/); the depth of

the tree was set to be maxi-

mally 3

Number of

random

data sets

generated

300 (y-scrambling, pseudo-

descriptors with original

distributions, pseudo-

descriptors with uniform

distributions)

300 (y-scrambling, pseudo-

descriptors with original

distributions, pseudo-

descriptors with uniform

distributions)

300 (y-scrambling,

pseudo-descriptors with

original distributions,

pseudo-descriptors with

uniform distributions)

25 (pseudo-descriptors with

original distributions, pseudo-

descriptors with uniform

distributions)
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implemented in UncommonMaths Java library (Dyer

2006). The generator has been shown to generate high

quality random numbers and pass many statistical tests for

randomness. It is possible to select a distribution from

which random numbers will be generated: uniform, nor-

mal, binomial, Poisson or exponential. The user may also

want to keep original distributions of variables, and in such

case the program will perform x-scrambling. SCRAM-

BLE’N’GAMBLE is available free of charge at: http://

www.drugdesign.pl/scramble-n-gamble/.

The examples and importance of performing random

data tests in QSAR validation are provided by considering

four close-to-real-world modelling situations.

Case I

Sex-hormone-binding globulin (SHBG) is a transport gly-

coprotein produced in all vertebrates except for birds.

SHBG binds preferentially sex hormones (androgens and

oestrogens) in the bloodstream and in this way it has

impact on the concentration of their free, supposedly bio-

logically active, fractions. Its role in various endocrine

disorders is well described (Anderson 1974; Cunningham

et al. 1983; Key et al. 2002; Hammond 2011; Caldwell and

Jirikowski 2014). Environmental toxicology points also to

the importance of SHBG in the endocrine disruption in

men and animals caused by exogenous substances (Wilson

et al. 2007; Saxena et al. 2014; Hong et al. 2015).

In QSAR studies, the Cramer data set of 21 steroids

(Fig. 2) binding to SHBG became a benchmark set for

validating novel QSAR methodologies or descriptors

(Cramer et al. 1988; Coats 1998). Therefore, it is a good

point for illustrating the danger of chance correlations.

In our study, we trained QSAR models of up to 3

independent variables, using 89 2D molecular descriptors.

The top 10 models are presented in Table 2. Their

Fig. 1 General view of SCRAMBLE’N’GAMBLE interface
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Fig. 2 Steroid molecules used in Cases I and II. The figures under names are binding affinities to corticosteroid-binding globulin (upper figures,

Case II) and sex-hormone-binding globulin (lower figures, Case I)
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statistical parameters are not the best ones, but they could

be perceived as acceptable by some QSAR modellers

(r2 = 0.762–0.811, q2 = 0.613–0.706). On the other hand,

the equations are physically uninterpretable as almost all

descriptors (except for P_VSA_s_4 and NsssCH) cannot be

translated (at least without great effort) into the language of

atoms, functional groups or other chemical structures. Still,

many authors ‘interpret’ similar models just by providing

brief descriptions of how the descriptors are calculated and

conclude that the equation(s) could serve for screening

chemical libraries in search of new active compounds.

The moderately optimistic r2 and q2 become not opti-

mistic at all if one looks at the outcomes of the models

trained on y-scrambled activity data or those trained on

pseudo-descriptors (Table 3). It turns out that none of the

obtained ‘real’ models is better than the 99th percentile

(?2.3 SD) of the models found in the y-randomization or

pseudo-descriptors tests (mhr2 ? 2.3 SD of models trained

on pseudo-descriptors is as high as 0.825). Further, external

validation on several ligands (6–12, depending on the

applicability domain of a given model, (Tables 2 and SI-2)

extracted from the extended steroid set (Cherkasov et al.

2008) yields very poor results, with the coefficient of

determination in the test set (R2) not higher than 0.270.

The models in Table 2 are thus: internally quite good

but uninterpretable and not better than random models. As

such, they could be expected to have poor predictive

power, what is then shown in external validation (Tables 2

and SI-2).

Case II

In the second of the studied cases, we used the same

Cramer steroid data set (Cramer et al. 1988; Coats 1998),

but this time the target property was binding affinity for the

corticosteroid-binding globulin (CBG). CBG is another

steroid transporting protein, but contrary to SHBG, it binds

preferentially corticosteroids and progestogens, while

Fig. 2 continued
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androgens or oestrogens have only moderate affinity for it

(Rosner 1990). The protein is implicated in the inflam-

matory response by modulating the corticosteroid concen-

tration at the site of inflammation (Klieber et al. 2007). On

the other hand, under physiological conditions it buffers

blood cortisol levels. In CBG-deficient individuals

observed are symptoms of extreme tiredness, hypotension

or chronic muscle pain (Marathe and Torpy 2012; Torpy

Table 2 Top 10 QSAR models obtained by the GFA procedure (Case I)

No Kaff = r2 q2 R2 cR2
p r2

m testð Þ

1 -69.185 - 1.103 9 X5v ? 38.155 9 MATS5m ? 44.524 9 SpMin3_Bh(m) 0.811 0.690 0.051,

n = 10

0.339 0.023

2 -60.380 ? 28.860 9 MATS5m - 45.301 9 MATS3v ? 34.208 9 SpMin3_Bh(m) 0.792 0.706 0.015,

n = 9

0.312 \0.001

3 -89.817 ? 160.850 9 X2A ? 36.696 9 MATS5m ? 30.049 9 SpMin3_Bh(m) 0.784 0.701 0.027,

n = 12

0.300 0.017

4 22.870 ? 127.78 9 VE2_Dt - 5.549 9 SpDiam_AEA(dm) - 0.559 9 NsssCH 0.782 0.673 0.322,

n = 8

0.297 0.289

5 14.787 - 2.262 9 IDDE ? 157.890 9 VE2_Dt - 3.801 9 SpDiam_AEA(dm) 0.777 0.669 0.030,

n = 8

0.290 0.024

6 -25.180 ? 30.414 9 MATS5 m ? 23.871 9 SpMin3_Bh(m) - 1.935 9 SpDiam_AEA(dm) 0.771 0.679 0.146,

n = 9

0.280 0.097

7 2.426 ? 186.700 9 VE2_Dt ? 0.070 9 P_VSA_s_4 - 4.433 9 SpDiam_AEA(dm) 0.766 0.620 0.062,

n = 10

0.273 0.059

8 -67.765 ? 34.796 9 MATS5m - 8.129 9 MATS8 m ? 40.696 9 SpMin3_Bh(m) 0.766 0.615 0.1085,

n = 11

0.273 0.084

9 61.058 ? 170.730 9 VE2_Dt - 178.400 9 ChiA_B(p) - 5.089 9 SpDiam_AEA(dm) 0.765 0.613 0.057,

n = 6

0.271 0.050

10 35.620 ? 34.296 9 MATS5m - 25.263 9 SpMax4_Bh(i) ? 32.296 9 SpMin3_Bh(m) 0.762 0.633 0.016,

n = 10

0.266 0.003

Kaff logarithm of the affinity for SHBG, ChiA_B(p) average Randic-like index from Burden matrix weighted by polarizability, IDDE mean

information content on the distance degree equality, MATS3v Moran autocorrelation of lag 3 weighted by van der Waals volume, MATS5m

Moran autocorrelation of lag 5 weighted by mass, MATS5m Moran autocorrelation of lag 5 weighted by mass, MATS8m Moran autocorrelation of

lag 8 weighted by mass, NsssCH Number of atoms of type sssCH, P_VSA_s_4 P_VSA-like on I-state, bin 4, SpDiam_AEA(dm) spectral diameter

from augmented edge adjacency matrix weighted by dipole moment, SpMax4_Bh(i) largest eigenvalue n. 4 of Burden matrix weighted by

ionization potential, SpMin3_Bh(m) smallest eigenvalue n. 3 of Burden matrix weighted by mass, VE2_Dt average coefficient of the last

eigenvector from detour matrix, X2A average connectivity index of order 2, X5v valence connectivity index of order 5

r2 coefficient of determination in the training set

q2 cross-validated coefficient of determination in the training set (internal validation)

R2 coefficient of determination in the test set (external validation)

n number of molecules used for the external validation (that is: found in the applicability domain of a given model)

cR2
p a parameter of model non-randomness proposed in (Mitra et al. 2010)

r2
m testð Þ a parameter describing the prediction of the absolute response date of the test set, proposed in (Pratim Roy et al. 2009)

Table 3 Predictive power of the chance models (Case I)

mhr2 SD ?1 SD ?2.3 SD ?3 SD mhq2 SD ?2.3 SD ?3 SD

y-scrambling 0.544 0.123 0.667 0.827 0.913 0.316 0.183 0.737 0.865

Pseudo-descriptors (original distributions) 0.656 0.066 0.723 0.809 0.855 0.546 0.101 0.778 0.849

Pseudo-descriptors (uniform distributions) 0.669 0.068 0.737 0.825 0.873 0.571 0.091 0.780 0.843

mhr2 mean highest coefficient of determination from 300 test runs

SD standard deviation

mhq2 mean highest cross-validated coefficient of determination from 300 test runs
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et al. 2013). Some research has been also made on the role

of CBG in glucose metabolism (Fernández-Real et al.

1999), obesity (Ousova et al. 2004) or sperm motility

(Teves et al. 2010). Recently, an interesting proposition

was put forward to use engineered CBGs as drug delivery

agents (Chan et al. 2014).

Table 4 Top 10 QSAR models obtained by the GFA procedure (Case II)

No Kaff = r2
q2
ðLOOÞ q2

ðL3OÞ R2 cR2
p r2

m testð Þ

1 -9.394 ? 5.644 9 q2 - 0.145 9 ALogP_MR ? 10.252 9 JX 0.892 0.823 0.826 0.365,

n = 7

0.546 0.131

2 -9.934 - 5.780 9 q3 ? 2.055 9 Shadow_Ylength - 0.263 9 Shadow_YZ 0.885 0.802 0.739 0.325,

n = 8

0.538 0.178

3 -4.871 - 6.046 9 q3 ? 5.795 9 JX - 1.168 9 Shadow_Zlength 0.879 0.805 0.786 0.732,

n = 8

0.531 0.630

4 8.117 - 6.065 9 q3 ? 1.013 9 CHI_3_C - 2.035 9 Shadow_Zlength 0.877 0.790 0.778 0.635,

n = 8

0.529 0.366

5 -1.520 - 6.636 9 q3 ? 0.840 9 Shadow_Ylength - 1.209 9 Shadow_Zlength 0.877 0.775 0.750 0.255,

n = 7

0.529 0.078

6 4.437 ? 1.986 9 q2 - 5.312 9 q3 - 1.112 9 Shadow_Zlength 0.871 0.803 0.802 0.654,

n = 7

0.522 0.484

7 9.151 - 6.785 9 q3 ? 2.103 9 srcm2 - 2.035 9 Shadow_Zlength 0.867 0.789 0.736 0.691,

n = 8

0.518 0.371

8 3.079 ? 2.976 9 q2 - 4.246 9 q3 - 0.074 9 ALogP_MR 0.867 0.788 0.800 0.619,

n = 8

0.518 0.425

9 3.451 - 2.334 9 q1 - 5.156 9 q3 - 1.034 9 Shadow_Zlength 0.866 0.805 0.102 0.579,

n = 8

0.516 0.334

10 -5.392 - 6.237 9 q3 - 0.076 9 ALogP_MR ? 1.113 9 Shadow_Ylength 0.863 0.694 0.600 0.636,

n = 8

0.513 0.514

Kaff negative logarithm of the affinity for CBG, ALogP_MR the Ghose and Crippen estimate of molar refractivity, CHI_3_C Kier and Hall

molecular connectivity index, cluster subgraph of order 3, JX Balaban Index JX, q1 CHELPG atomic charge at the C1 atom of the steroid

skeleton (IUPAC numbering), q2 CHELPG atomic charge at the C2 atom of the steroid skeleton (IUPAC numbering), q3 CHELPG atomic

charge at the C3 atom of the steroid skeleton (IUPAC numbering), Shadow_Ylength length of molecule in the y dimension, Shadow_YZ area of

the molecular shadow in the yz plane, Shadow_Zlength length of molecule in the z dimension, srcm2 Sinister-Rectus Chirality Measure weighted

by mass

r2 coefficient of determination in the training set

q2
ðLOOÞ cross-validated coefficient of determination in the training set (internal validation, leave-one-out procedure)

q2
ðL3OÞ cross-validated coefficient of determination in the training set (internal validation, leave-three-out procedure)

R2 coefficient of determination in the test set (external validation)

n number of molecules used for the external validation (that is: found in the applicability domain of a given model)

cR2
p a parameter of model non-randomness proposed in (Mitra et al. 2010)

r2
m testð Þ a parameter describing the prediction of the absolute response date of the test set, proposed in (Pratim Roy et al. 2009)

Table 5 Predictive power of the chance models (Case II)

mhr2 SD ?1 SD ?2.3 SD ?3 SD mhq2 SD ?2.3 SD ?3 SD

y-scrambling 0.475 0.105 0.580 0.716 0.789 0.341 0.148 0.681 0.785

Pseudo-descriptors (original distributions) 0.570 0.090 0.660 0.776 0.839 0.456 0.118 0.728 0.811

Pseudo-descriptors (uniform distributions) 0.558 0.098 0.656 0.784 0.853 0.431 0.128 0.725 0.815

mhr2 mean highest coefficient of determination from 300 test runs

SD standard deviation

mhq2 mean highest cross-validated coefficient of determination from 300 test runs
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In the study, we divided the CBG set into training and

test subsets (in proportion 21:10). The GFA procedure was

used to find equations of up to 3 variables, using 49

descriptors derived from 2D and 3D molecular structures.

The top 10 models are presented in Table 4.

The presented models have good statistical parameters

(r2 = 0.863–0.892, q2
ðLOOÞ = 0.694–0.823,

q2
ðL3OÞ = 0.600–0.826). A look at the performance of the

chance models allows to conclude that in this modelling

situation (21 data points and 49 molecular descriptors) the

probability of chance correlations is lower than in the Case

I (Table 5) . All obtained QSAR models are significantly

better than y-scrambled or pseudo-descriptor models. Their

additional advantage is clear physical meaning of the

variables used (except for two topological descriptors).

External validation on several ligands (7–8, depending on

the applicability domain of a given model, Tables 4 and SI-

3) yields both poor and good results. Three models have

external R2 much lower than 0.5, but on the other hand in

the case of the best two (model 3 and 7) the value is 0.732

and 0.691, which is a decent outcome. Model 3 fulfils also

the widely accepted criteria for QSAR model predictive

power (Golbraikh and Tropsha 2002): q2[ 0.5, R2[ 0.6,
R2�R2

0

R2 \0:1 and 0.85 B k B 1.15, where R2
0 denotes exter-

nal coefficient of determination forced through the origin,

and k is a slope of the regression line through the origin.

Here, the value of r2
m testð Þ parameter is 0.630 and this further

supports the predictive power of the model with regard to

exact affinity values of the test compounds. Note also that

the model has good R2
int and Q2

int metrics (their values

provided in Table SI-4 in Electronic Supporting Material).

Experimental structures of the corticosteroid-binding

globulin co-crystallized with cortisol or progesterone

(Fig. 3. PDB accession codes: 2V95, 4BB2) allow to

interpret the models in structural terms (Klieber et al. 2007;

Gardill et al. 2012). The interaction of corticosteroids or

progesterone with CBG depends mainly on hydrogen

bonds formed by polar functions at C and D steroidal rings

(IUPAC steroid nomenclature). Although in our models, no

charge descriptors for C- and D-rings atoms are present,

this is accounted for by shape descriptors like Shadow_-

Zlength or srcm2. The presence or absence of pharma-

cophoric polar elements (C17 chain with a keto group, C11

hydroxyl group etc.) affects the size of the molecule or

non-superposability on its mirror image and thus these

important features are indirectly included into equations.

On the other hand, q3 descriptor depicts electrostatics of

the A ring. If we plot q3 and Kaff, there appear three

clusters (Fig. 4). The lowest q3 values characterize mole-

cules with a hydroxyl group attached to C3 atom. The

Fig. 3 Progesterone in the

binding site of CBG (PDB

accession code: 4BB2)

Fig. 4 Plot of q3 and Kaff
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middle three are those with C3-keto group but with the

charge modified due to a C2-substituent or saturation of the

C4–C5 double bond (dihydrotestosterone). The third clus-

ter contains molecules with C3-keto group. There exists

some rough correlation between q3 and Kaff (r2 = 0.690)

showing that the C3-keto group (with its geometry and

electrostatics) is preferred over C3-hydroxyl, perhaps due

to a formation of more favourable hydrogen bonds network

with water and surrounding amino acids of the binding site.

The clustering achieved by q3 is refined by the shape

descriptors (bearing also indirectly information on the most

important pharmacophoric elements) or the topological JX

descriptor (the role of which is not easily interpretable on

its own) and thus good QSAR models are obtained.

Concluding, the models obtained in Case II are not only

internally good, but also significantly better than chance

correlations in this modelling situation. Further, they are

well-interpretable. As such, they may be expected to pos-

sess some predictive power, what is shown by external

validation.

Case III

Case III represents a different modelling situation than the

previous two, since it was attempted to build Fujita-Ban

models (Fujita and Ban 1971). This type of QSAR analysis

uses variables that are discrete indicators (taking 0 or 1

values) of presence or absence of particular structural

elements in a molecule. Fujita-Ban models have a clear

physical sense, but on the other hand they contain multiple

parameters. The ratio of the number of equation variables

to the number of data points is usually larger than in

‘typical’ QSARs with variables of a continuous character.

In this Case, we considered a group of 36 active

(training set) and 10 inactive (test set) fentanyl derivatives

(3-methyl-1,4-disubstituted piperidines) (Lalinde et al.

1990) (Table SI-1). Fentanyls or more basically 4-anili-

dopiperidines are one of the most important groups of

analgesics. Since the discovery of fentanyl in the late 1950s

(Janssen et al. 1963), numerous derivatives with varying

Table 6 Fujita-Ban QSAR model of fentanyls activity (Case III)

Equation terms Coefficient Standard error

3-CH3 Intercept (parent) 2.604 0.330

Cis/trans -0.001 0.225

L Phenylethyl -0.281 0.237

Tetrazolylethyl -1.657 0.413

Thienylethyl 0.000 0.000

R CH2OCH3 0.000 0.000

CH(CH3)OCH3 -1.116 0.262

Furoyl -0.722 0.247

X F 0.163 0.262

Cl -0.918 0.348

Fig. 5 Plot of predicted and

experimental activities for the

QSAR model in Case III
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activity have been synthesized and described (Vardanyan

and Hruby 2014). Four of them are present in medicinal

practice and these are fentanyl, alfentanil, sufentanil and

remifentanil. They are used for pain management in ter-

minally ill cancer patients and anaesthesia. Fentanyls act at

the l-opioid receptor (MOR), belonging to the family A of

G-protein coupled receptors (GPCR). Unfortunately, this

class of analgesics is not free of typical unwanted side

effects of opioids (Chaney 1995) nor of their potential for

abuse (Skulska et al. 2005; Algren et al. 2013; Mounteney

et al. 2016).

The dependent variable for QSAR model building was

the effective dose ED50 in mouse hot plate test (analgesic

activity test). Multiple Linear Regression correlated

indicator variables with the activity to give an equation

the terms of which are presented in Table 6. The plot of

experimental vs predicted activities is given in Fig. 5.

The equation has a moderate r2 of 0.718 and large errors

of terms coefficients, rendering a few of the terms

insignificant. On the other hand the predictive power of

chance models in this particular modelling situation is

rather low, and even such moderately good QSAR model

is better than the best predictions trained on random data

(Table 7). Large errors may be attributed to inaccuracies

of the experimental data (in vivo testing), but still the

model is able to predict inactivity of six of 10 com-

pounds not used in model training. In the case of the

remaining four, it predicts low or very low activity

(Table SI-1).

As to the model interpretability, it must be said that

statistical insignificance of the terms causes any interpre-

tations to be only rough in their nature, even though all

terms are physically well-defined. Nevertheless, the coef-

ficients of L-descriptors (Table 6) seem to fit the Structure-

Activity Relationship knowledge on fentanyl derivatives,

with the following order of L-substitution preference:

thienylethyl (as in sufentanil)[ phenylethyl (as in fen-

tanyl)[ tetrazolylethyl (as in alfentanil) (Volpe et al.

2011). Regarding the R-part of the molecules, it is clearly

visible that R-methoxymethyl is more favourable for

analgesic activity than its branched (R–CH(CH3)OCH3) or

rigidified (R-furoyl) counterparts. The freedom of rotation

and lack of steric hindrance may allow more facile for-

mation of hydrogen bonds. Unfortunately, the role of 3-Me

stereochemistry is not well rendered in the model by the

statistically insignificant coefficient. In general, however, it

is well-known that 3-cis substituents are more active

(Vuckovic et al. 2009). No clear conclusions may be drawn

about X substituents, again due to the insignificance of the

coefficients.

The model presented in Case III is most probably not a

random one, but still it is rather inaccurate. As mentioned,

large coefficient errors are attributable to the inaccuracies

of in vivo data. Thus, even though the model is not random

and partially interpretable, it may be of only partial utility.

Table 7 Predictive power of

the chance models (Case III)
mhr2 SD ?1 SD ?2.3 SD ?3 SD mhq2 SD ?2.3 SD ?3 SD

Pseudo-descriptors test

(original distributions)

0.293 0.108 0.401 0.541 0.617 – – – –

Pseudo-descriptors

test (uniform

distributions)

0.285 0.112 0.397 0.542 0.621 – – – –

y-scrambling 0.235 0.092 0.327 0.446 0.511 – – – –

Most q2 were negative

mhr2 mean highest coefficient of determination from 300 test runs

SD standard deviation

mhq2 mean highest cross-validated coefficient of determination from 300 test runs

Fig. 6 Scheme of the classification tree (Case IV). Eig02_EA(ri)

eigenvalue n. 2 from edge adjacency matrix weighted by resonance

integral, GATS7e Geary autocorrelation of lag 7 weighted by

Sanderson electronegativity, nRCONR2 number of tertiary amides

(aliphatic), NssssC number of atoms of type ssssC ([C\), where\ -

or[ are two single bonds, qnmax maximum negative charge
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Case IV

In the last Case, the objective was to create a classification

model able to discern glucocorticoid receptor (GR) binders

and non-binders. GR is a nuclear receptor-binding corti-

costeroid and acts as a transcription factor to up- or

downregulate the expression of certain genes (Luisi et al.

1991; Yudt and Cidlowski 2002). It is involved in main-

taining homeostasis by affecting inflammatory responses,

cellular proliferation and differentiation in target tissues

(Funder 1997). GR ligands include classical steroidal glu-

cocorticoids which are used for tackling diseases involving

inflammation (van der Velden 1998; Barnes 1998), for

immunosuppression (Coutinho and Chapman 2011) or for

cancer treatment (Coleman 1992; Vaidya et al. 2010).

Current medicinal chemistry focuses on development of

selective glucocorticoid receptor modulators (based on

scaffolds different from the steroidal), which would be void

of typical side effects of steroidal glucocorticoids (De

Bosscher 2010).

For the modelling purposes, we decided to mimic a most

common real-world situation (as for example in virtual

screening experiments), where the number of receptor

binders is much smaller than that of non-binders. There-

fore, we decided to keep the original proportion of actives

vs decoys occurring in the DUD-E data set (Mysinger et al.

2012) that is 1:36. The machine learning algorithm

obtained the classification model presented in Fig. 6. It is a

Table 8 Statistical parameters

of the decision tree (Case IV)

and comparison with different

random models and no-model

predictions

TPa TNb FPc FNd ACCe PRECf SENSg SPECh FALLi F1j

Training set

QSAR model trained on real data

90 3371 226 10 0.94 0.28 0.90 0.94 0.06 0.43

No-model: all binders

100 0 3600 0 0.03 0.03 1.00 0.00 1.00 0.06

No-model: all non-binders

0 3600 0 100 0.97 NaNk 0.00 1.00 0.00 NaN

No-model: coin toss

50 1800 1800 50 0.50 0.03 0.50 0.50 0.50 0.06

QSAR models trained on pseudo-descriptors (original distributions)

Mean 80.00 1785.40 1811.60 19.00 0.50 0.04 0.81 0.50 0.50 0.08

SDl 9.20 402.30 402.30 9.20 0.11 0.01 0.09 0.11 0.11 0.02

?1 SD 89.20 2187.80 2213.90 28.20 0.61 0.05 0.90 0.61 0.62 0.10

?2.3 SD 101.20 2710.80 2736.90 40.20 0.75 0.06 1.02 0.75 0.76 0.13

QSAR models trained on pseudo-descriptors (uniform distribution)

Mean 82.30 1666.20 1930.80 16.70 0.47 0.04 0.83 0.46 0.54 0.08

SD 13.50 461.70 461.70 13.50 0.12 0.01 0.14 0.13 0.13 0.02

?1 SD 95.80 2127.90 2392.60 30.30 0.60 0.05 0.97 0.59 0.67 0.10

?2.3 SD 113.40 2728.10 2992.80 47.90 0.75 0.06 1.15 0.76 0.83 0.13

Test set

QSAR model trained on real data

Mean 45 1674 126 5 0.93 0.26 0.90 0.93 0.07 0.40

a True positives
b True negatives
c False positives
d False negatives
e Accuracy
f Precision
g Sensitivity
h Specificity
i Fall-out
j F1-score
k Not a number
l Standard deviation
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simple decision tree with a maximal node depth being

three. The model has good statistical parameters of internal

predictions (Table 8). Models trained on random data have

significantly lower accuracies, precisions and specificities

and significantly higher fall-out rates, but on the other hand

they are comparably sensitive. F1-score, a measure con-

sidering both precision and sensitivity, is however much

better for the model trained on true data. The quality of the

decision tree may also be assessed by comparison to no-

model predictions: ‘all binders’, ‘all non-binders’ or ‘coin-

toss’. The analysis of their parameters (Table 8) gives

optimistic results, with precision and F1-score again much

better in the case of the model trained on true data.

Regarding the interpretability of the model, it must be

concluded that even though some of the descriptors used in

the model are physically well understandable, the tree does

not allow to provide explicit statements about what struc-

tural features are important for GR binding. The model is

thence uninterpretable. Still, when applied for classification

of the test set containing 1850 molecules (50 binders and

1800 decoys), it performs correctly for about 93% of cases.

The precision (0.26) and F1-score (0.40) are here similar to

the ones for the internal predictivity.

Thus, the classification tree in the Case IV is both

internally good as well as better than random. The model is

not easily interpretable, however physical interpretability is

not what is usually expected of classification models. The

most important here is good predictivity, what is shown in

external validation.

Conclusions

Since the danger of overfitting QSAR models, when

working on large descriptor pools, is very high, it is

desirable to perform tests showing the performance of

models built on random data. In this study we introduce a

simple software tool SCRAMBLE’N’GAMBLE that is

aimed at facilitating data preparation for y-scrambling and

pseudo-descriptors tests. As shown in the Cases studied in

the paper, these tests may be applied to all sorts of QSAR

techniques, including both classical linear equations,

Fujita-Ban models or classification trees. Their results

indicate what the quality of a studied model is like in

comparison to chance models obtained from random data.

While the non-randomness is not the ultimate hallmark of

QSAR models’ possible utility, it is a good practice to

consider it along with internal statistical parameters and

interpretability of the model. On the other hand, if a model

performs no better than chance, it is very probable that it

will not be of any use in predicting activities of novel

compounds. SCRAMBLE’N’GAMBLE (available for free

at: http://www.drugdesign.pl/scramble-n-gamble/) is hoped

to help QSAR researchers to perform y-scrambling and

pseudo-descriptors testing.
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Ostrowski S, Jamróz MH, Rode JE, Dobrowolski JC (2012) On

stability, chirality measures, and theoretical VCD spectra of the

chiral C58X2 fullerenes (X = N, B). J Phys Chem A

116:631–643. doi:10.1021/jp208687c
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