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Abstract: During the large-scale outbreak of COVID-19 in China, the Chinese government adopted
multiple measures to prevent the epidemic. The consequence was that a sudden variation in residents’
travel behavior took place. In order to better evaluate the temporal distribution of air pollution, and
to effectively explore the influence of human activities on air quality, especially under the special
situation, this study was conducted based on the real data from a case city in China from this new
perspective. Two case scenarios were constructed, in which the research before the changes of
residents’ travel behavior was taken as case one, and the research after the changes in residents’ travel
behavior as case two. The hourly real-time concentrations of PM2.5, PM10, SO2, NO2, CO and O3 that
have passed the augmented Dickey–Fuller (ADF) test were employed as a data source. A series of
detailed studies have been carried out using the correlation method, entropy weight method and the
Air Quality Index (AQI) calculation method. Additionally, the research found that the decrease rate of
NO2 concentration is 61.05%, and the decrease rate of PM10 concentration is 53.68%. On the contrary,
the average concentration of O3 has increased significantly, and its growth rate has reached to 9.82%.
Although the air quality in the first week with fewer travels was in the excellent category, and chief
pollutant (CP), as well as excessive pollutant (EP), were not found, as traffic volume increased, it
became worse in the second and third weeks. In addition to that, special attention should still be
paid to the development trend of O3, as its average hourly concentration has increased. The findings
of this study will have some guiding significance for the study of air pollution prevention, cleaner
production, and indoor environmental safety issues, especially for the study of abnormal traffic
environments where residents’ travel behaviors have changed significantly.

Keywords: air pollution; human activity; temporal distribution; particulate matter; gaseous
contaminants; travel behavior

1. Introduction

Outdoor and indoor air pollution poses a serious threat to the sustainable development of society
and the economy, thus causing a broad concern for public health and cleaner production [1,2]. Plentiful
pieces of literature show that air pollutants including particulate matter, and gaseous contaminants
can endanger human health directly or indirectly [3–8]. Sulfur dioxide (SO2), as a common pollutant,
is greatly harmful to living beings [9]. Nitrogen oxides (NOX) and particulate matter have known
harmful impacts on human health, such as causing damage to the respiratory and cardiovascular
systems [10–13]. Carbon monoxide (CO) is a colorless, tasteless and odorless gas that is poisonous to
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the human body [14,15]. Ground- and tropospheric-level O3 have been shown to have adverse effects
on public health, cause respiratory diseases and increase mortality by impairing lung function [16–18].

With the rapid development of industrialization and urbanization, atmospheric environmental
pollution has become increasingly serious in China in recent decades [19]. To measure air quality in
a simple and intuitive way, while letting the public know the real-time status of air quality, the Air
Quality Index (AQI) has been adopted by the Chinese Ministry of Environmental Protection (MEP)
since 2012. AQI was proposed by the United States Environmental Protection Agency and has been
widely used around the world. AQI is a dimensionless index that quantitatively describes the condition
of air quality. The larger the AQI is, the more serious the pollution becomes, and the more obvious the
impact of air pollution on human health. Research on the impact of atmospheric pollutants on human
health based on AQI and the spatial and temporal distribution of pollutants has attracted the attention
of many scholars [20,21].

Air pollution is not only related to natural phenomena such as seasons [22–24] and wind speeds [25],
but also to social phenomena such as human activities [26–28]. In December 2019, an “unknown cause
of pneumonia” appeared in Wuhan, China. On 7 January 2020, it was confirmed as “novel coronavirus”
by whole genome sequencing. On 12 January 2020, the World Health Organization (WHO) temporarily
named it “2019-nCoV” (2019 novel coronavirus). On 11 February 2020, WHO officially named it
“COVID-19”, where “CO” stands for “Corona”, “VI” stands for “Virus”, and “D” stands for “Disease”.
Common signs of a person infected with COVID-19 include respiratory symptoms, fever, cough,
shortness of breath, and dyspnea. In more severe cases, the infection can cause pneumonia, severe
acute respiratory syndrome, kidney failure, and even death. COVID-19 is highly contagious. As of 21
February 2020, a total of 75,567 confirmed infections and 2239 deaths from infection were reported in
China. In order to better prevent and control COVID-19, a series of measures have been introduced to
effectively control the spread of COVID-19 in China, such as wearing masks, quarantining people who
have returned from affected areas, putting an end to family gatherings, proposing staying at home
and not driving around, and forcing factories and schools to shut down. The result of appropriate
government policies is that, during the COVID-19 epidemic prevention and control period, human
activities, especially the travel behavior of residents, have changed dramatically. During this period,
the number of residents traveling by cars and public transit dropped drastically. Instead, residents took
close walking or stayed at home without traveling. Correspondingly, the vehicular exhaust emissions
have changed, the air pollution has changed, and the air quality has changed.

In order to better evaluate the temporal distribution of air pollution under the noticeable variation
of resident travel behaviors, and to effectively explore the influence of human travel activities on
air pollution, such as under the above mentioned abnormal human activities which were caused
by COVID-19, this study was carried out from this new perspective, and based on real data from a
case city in China. Two case scenarios were constructed to complete the comparison of air pollution
and air quality before and after noticeable variation of residents’ travel behavior. The correlation
relationship between AQI and six representative pollutants was analyzed, the temporal distribution
characteristics of pollutant concentration of six representative pollutants in both cases were carried out,
the comparison of entropy weights of their pollutant concentrations in both cases was conducted, and
the impact of air pollution on human health was evaluated based on the AQI calculation formula.

2. Data Source and Datasets Stationarity Test

2.1. Data Source

Guangzhou, located at (112◦57′ E~114◦3′ E, 22◦26′ N~23◦56′ N), is the greatest city and capital
city of Guangdong Province in China. It is the third-largest city in China and the largest city in
southern China. By the end of 2018, the city had 11 districts, with a total area of 7434.4 square
kilometers and a resident population of 13.501 million people. The largest population density of the
jurisdiction (Yuexiu District) is 34,225 people per square kilometer. The average population density
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in Guangzhou is 8582 people per square kilometer. The climate here is a typical monsoon marine
climate of the South Subtropics. The annual average temperature is 20◦~22◦, the average wind speed
is 1.6 m/s, and the average relative humidity is 77% [29]. The low average annual wind speed and high
population density are exacerbating air pollution. The solution to air pollution in Guangzhou has a
strong guiding significance for air pollution control in Guangdong, China, and even for other densely
populated countries.

In order to comprehensively monitor air quality, air quality monitoring stations have been
established at eleven different locations in Guangzhou, including Sports West station and Luhu Lake
station, and so on. The air quality monitoring stations are the basic platform for Guangzhou to collect
air pollution concentration data and evaluate air quality. Multi-parameter automatic monitoring
instruments are installed in the air quality monitoring station to the conduct fixed-site, continuous
and automatic sampling of atmospheric pollutants. Therefore, the real-time concentration of PM2.5,
PM10, SO2, NO2, CO and O3 can be automatically recorded every hour. However, this is affected by
many factors such as the geographic location of monitoring stations, the number of nearby residents,
and the amount of road traffic; the concentration of PM2.5, PM10, SO2, NO2, CO and O3 detected by
each monitoring station will vary. To fully reflect the overall air quality and the temporal distribution
characteristics of pollutants before and after variations in residents’ travel behavior in Guangzhou, the
weighted average value of the PM2.5, PM10, SO2, NO2, CO and O3 concentrations detected by the above
mentioned eleven monitoring stations are adopted. The weighted average values are 0.094801, 0.103976,
0.073394, 0.110092, 0.097589, 0.107034, 0.061162, 0.11315, 0.100917, 0.06422 and 0.073394, respectively, at
Sports West, Luhu Lake, Jiulong Town Zhenlong, Guangzhou No. 5 Middle School, Guangzhou 86th
Middle School, Guangzhou Monitoring Station, Maofeng Mountain Forest Park, Guangdong Business
School, Guangya Middle School, Panyu Middle School and Huadu District Normal School station,
which are calculated based on the air quality of each monitoring station. Additionally, the hourly
real-time concentration of PM2.5, PM10, SO2, NO2, CO and O3 from 1 January 2020 to 15 February 2020
are contained in this study. These data are sourced from http://beijingair.sinaapp.com/.

In order to better compare the changes in pollutant concentrations before and after variations
of residents’ travel characteristics, the hourly concentration of PM2.5, PM10, SO2, NO2, CO and O3

from 1 January to 23 January 2020 were used as datasets before travel behavior changes. As the notice
calling for less travel was issued by the Guangdong provincial government on 23 January 2020, the
hourly concentration of PM2.5, PM10, SO2, NO2, CO and O3 from 24 January to 15 February 2020 as
datasets after changes in travel behavior. In the follow-up research, to make the expression more
concise and clearer, the study on the change of pollutant concentration before the variation of resident
travel behavior is taken as case one. Additionally, the study on the change of pollutant concentration
after the variation of resident travel behavior is taken as case two.

2.2. Datasets Stationarity Test

Since the hourly real-time concentrations of PM2.5, PM10, SO2, NO2, CO and O3 from 1 January
2020 to 15 February 2020 are the data observed at different times, they cannot be regarded as being
generated by a same random variable. Moreover, to avoid nonstationary of datasets and sensitiveness
to departures from stationarity of the presented methodology mentioned below, the above datasets
should be regarded as being generated by a random process and their stationary test should be done.
As the unit root test is the most common and effective test method in the stationarity test, which
includes the Dickey–Fuller (DF) test, the augmented Dickey–Fuller (ADF) test, the Phillips–Perron (PP)
test, etc. [30], this section will apply the ADF test, which is widely used to test the time-series data
stationarity [30,31], to complete the stationarity test of datasets used in this article. Hence, the time
series data of hourly real-time pollutant concentrations (Yt) was deemed as a random variable that

http://beijingair.sinaapp.com/
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changes over time (t) and {Yt, t ∈ T} was defined as a random process. If Yt meets the requirements of
the Equation (1), then the random process {Yt, t ∈ T} is a basic unit root process.

Yt = η+ Yt−1 + εt (1)

where, εt refers to a correction term subject to the white noise process. η is a coefficient.
When ADF test is applied to the test of the random process {Yt, t ∈ T}, the basic unit root process

could be expanded into the following three versions, as described below.
The model without constants and trends:

∆Yt = ωYt−1 +
∑k

i=1
βi∆Yt−i + εt (2)

The model with constants and without trends:

∆Yt = α0 +ωYt−1 +
∑k

i=1
βi∆Yt−i+1 + εt (3)

The model with constants and trends:

∆Yt = α0 + α1t +ωYt−1 +
∑k

i=1
βi∆Yt−i+1 + εt (4)

where, ∆ is the 1st difference,α0 refers to a constant, α1t represents the trend,ωmeans the autoregressive
term,

∑k
i=1 βi∆Yt−i+1 stands for the lag of dependent variables, εt means the white noise, k is the orders

of lags.
The null hypothesis of the ADF unit root test can be stated as H0: ω = 0, which means that the unit

root exists. If the null hypothesis (H0) is rejected, then the variables with a unit root can be rejected and
the datasets can be considered stationary.

After the calculation using the abovementioned ADF test methodology, the ADF test results for
PM2.5, PM10, SO2, NO2, CO and O3 can be concluded as:

(1) For the original time-series datasets of PM2.5, PM10 and SO2 concentration, the null hypothesis
was rejected, which means that their data series were stationary and there was no unit root.
Therefore, these datasets passed the ADF test.

(2) For the original time-series datasets of CO and O3 concentration, the null hypothesis was rejected,
and these datasets passed the ADF test at a 95% confidence level. Therefore, these datasets were
stationary at a 95% confidence level.

(3) For the original time-series data of NO2 concentration, the null hypothesis was accepted (which
can be seen from the ADF test results before the data transformation in Table 1), so there existed a
unit root. Therefore, these datasets were nonstationary.

Table 1. Results of augmented Dickey–Fuller (ADF) test before and after the data transformation of
NO2.

Before the Data Transformation After the Data Transformation

Test Statistic −1.273999 −5.592696
p-Value 0.640982 0.000001

Critical Value (1%) −3.436442 −3.436364
Critical Value (5%) −2.864230 −2.864195
Critical Value (10%) −2.568202 −2.568184

To ensure that the effects of time, trends, etc. are eliminated before applying the datasets to
subsequent analysis, and to avoid time-series data being nonstationary, the transformation of the
original NO2 datasets was carried out using the exponentially weighted moving average (EWMA)



Int. J. Environ. Res. Public Health 2020, 17, 4947 5 of 18

method [32], which combines the log transform method and moving average method together. The
ADF test of the processed data after EWMA transformation can be seen from the results in Table 1.
Meanwhile, the log-transformed, moving average and the weighted moving average of NO2 datasets
can be seen in Figure 1. The NO2 concentration datasets after log-transformed, and their rolling mean
as well as their rolling standard deviation, can be seen in Figure 2. Judging from the results after the
data transformation in Table 1 (the p-value is significantly less than 0.05) and the rolling standard
deviation in Figure 2 (the rolling standard deviation fluctuates around 0), the conclusion that the
processed data after EWMA transformation can completely reject the null hypothesis and pass the
ADF test can be drawn. Therefore, the transformed NO2 concentration datasets were obtained through
log-recover and roll-recover.
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From now on, the original time-series datasets of PM2.5, PM10, SO2, CO and O3, as well as the
transformed time-series datasets of NO2 concentration, were used for the subsequent analysis, as these
datasets passed the data stationary of the ADF test.

3. Temporal Distribution of Six Representative Pollutions

3.1. The Correlation Relationship between AQI and Six Representative Pollutants

The value of AQI is calculated by comparing the concentration of a pollutant to that of a series of
air pollutants, and the AQI on a specific hour or specific day is determined by the pollutant(s) that have
the highest AQI score among all representative air pollutants [4,21,33]. It can be seen that the level of
AQI is directly related to the concentration of pollutants, but the impact of each pollutant concentration
on AQI is different. To reflect the influence of each pollutant concentration on AQI, the correlation
coefficients between AQI and six representative pollutants in both cases are calculated according to
Equation (5). Additionally, the correlation relationships (ρ) between AQI and their concentrations in
both cases are shown in Figures 3 and 4, respectively. It can be seen intuitively from Figures 3 and 4,
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no matter in case one or case two, the correlation between AQI and particulate matter is obvious, but
its correlation with gaseous contaminants is quite complex. Subsequently, the calculation results are
shown in Table 2.

r(x, y) =
Cov(x, y)√

Var[x]Var[y]
(5)

where, r(x, y) refers to correlation coefficients between variable x and y, Cov(x, y) is covariance between
variable x and y, Var[x] is variance of variable x, Var[y] is variance of variable y.

r(AQI, PM2.5)case one= 0.939462, r (AQI, PM10)case one = 0.978872 (6)

r(AQI, PM2.5)case two= 0.994004, r (AQI, PM10)case two = 0.986916 (7)
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Table 2. The correlation coefficients between AQI and six pollutants.

Coefficients

AQI
PM2.5 PM10 SO2 NO2 CO O3

Case one 0.939462 0.978872 0.707992 0.796998 0.125977 0.018185
Case two 0.994004 0.986916 0.491164 0.601048 0.130621 0.053570

The above Equations (6) and (7) indicate that the relationship between AQI and particulate matter
are highly correlated.

r(AQI, SO2)case one= 0.707992, r (AQI, NO2)case one = 0.796998 (8)

While,
r(AQI, SO2)case two= 0.491164, r (AQI, NO2)case two = 0.601048 (9)

In the scenario of case one, the relationship between AQI and SO2, NO2 are moderately correlated.
In the scenario of case two, AQI and NO2 are still moderately correlated. However, the correlation
between AQI and SO2 is significantly reduced, and even the relationship between AQI and SO2 belongs
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to lowly correlated. Medium and low correlations do not indicate that the impact of SO2 and NO2

on AQI is decreasing, but merely that the relationship between them is not very distinctive in terms
of linear correlation, and that the relationship between them is more complicated. The relationship
between them will be explained in the following chapters.

r(AQI, CO)case one= 0.125977, r (AQI, O3)case one = 0.018185 (10)

r(AQI, CO)case two= 0.130621, r (AQI, O3)case two = 0.053570 (11)

The relationship between AQI and CO, O3 is extremely weak in both cases. The discrepancy in
the coefficient of O3 in case two through comparing to case one indicates that O3 has increased. At the
same time, it also indicates that the concentrations of O3 have risen after the variation of residents’
travel behaviors.

The average concentration of pollutants in the two cases has changed significantly. As shown in
Table 3, the average concentration of PM2.5 decreased from 32.28 µg/m3 to 21.77 µg/m3. The average
concentration of PM10 decreased from 61.38 µg/m3 to 28.43 µg/m3. The average concentration of SO2

decreased from 6.86 µg/m3 to 4.99 µg/m3. The average concentration of NO2 decreased from 52.22
µg/m3 to 20.34 µg/m3. The average concentration of CO decreased from 0.98 mg/m3 to 0.74 mg/m3.
However, the average concentration of O3 increased from 40.14 µg/m3 to 44.08 µg/m3. Table 3 also
shows the decline rates of the average concentrations of six representative pollutants in case two, by
comparison with case one. Among them, the decrease rate of NO2 and PM10 are the most considerable.
The decrease rate of NO2 concentration is 61.05%, and the decrease rate of PM10 concentration is
53.68%. On the contrary, the concentration of O3 has increased significantly, and the growth rate of its
average concentration has reached to 9.82%.

Table 3. Average concentration of six representative pollutants in two cases and their decline rates of
average concentration in case two.

Average
Concentration

PM2.5
(µg/m3)

PM10
(µg/m3)

SO2
(µg/m3)

NO2
(µg/m3)

CO
(µg/m3)

O3
(µg/m3)

Case one 32.28 61.38 6.86 52.22 0.98 40.14
Case two 21.77 28.43 4.99 20.34 0.74 44.08

Decline rates 32.56% 53.68% 27.26% 61.05% 24.49% −9.82%

3.2. Pollutant Concentration Diurnal Characteristics

The temporal distribution characteristics of six representative pollutant concentrations in both
cases over 24-h a day are shown in Figures 5 and 6, respectively.

PM2.5 and PM10 are usually the chief pollutants in Guangzhou urban air pollution. The changing
tendency of PM2.5 and PM10 is almost the same, both in case one and case two. PM2.5 and PM10

concentration have the characteristic of bimodal distribution in diurnal variation. Their concentration
peaks at around 10:00 and 23:00 in case one, and at around 11:00 and 22:00 in case two. Through the
above comparative analysis, it can be obtained that the variation in residents’ travel behavior has
brought down the concentrations of PM2.5 and PM10, and it has not changed the characteristics of the
bimodal distribution of their concentrations. However, it will cause their concentration peaks to appear
about an hour later in the morning and about an hour earlier in the evening. This diurnal characteristic
is similar to the characteristics of residents’ travel activities. Significant changes in residents’ travel
characteristics during the COVID-19 epidemic have led to a significant reduction in the total amount
of urban travel demand and a sudden disappear of normalized urban road traffic congestion. Not only
is the road space resource extremely surplus, but also the peak time of traffic flow is delayed. This is in
accordance with the characteristics of the time-varying law of pollutants. SO2 has the characteristic of
approximately unimodal distribution and its concentration peaks at around 12:00 in case one. However,
the general trend of its concentration was relatively flat and there was no significant fluctuation in case
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two, except for a few abnormal values that are measured from 1:00 to 4:00 in the morning. Through
the above comparative analysis, it can be obtained that the variation in residents’ travel behavior has
brought down the concentrations of SO2, and it is one of the important factors in determining whether
the peak of SO2 concentration occurs. Although SO2 pollution is directly related to industrial pollution
sources [34], it also has a positive correlation with the traffic flow [35]. During the COVID-19 epidemic,
the amount and the time-varying characteristics of traffic flow are different from the past. For this
reason, the concentration of SO2 pollutants also showed corresponding changes. The O3 concentration
peaked at around 17:00 in the afternoon, and the NO2 concentration was approximately U-shaped. The
NO2 concentration rises rapidly at around 18:00 every day, and then slowly drops after reaching the
peak of pollution at 21:00 in case one. Compared with case one, the O3 concentration fluctuates greatly,
with a smaller peak at 6:00 in the morning and a bigger peak at 17:00 in the afternoon in case two.
Additionally, the NO2 concentration has the characteristic of U-shaped distribution, which rises rapidly
at around 18:00 every day, and then slowly drops after reaching the peak of pollution at around 23:00 at
night. Through the above comparative analysis, it can be obtained that residents’ travel behavior will
change the concentration distribution of O3 from unimodal to bimodal. Additionally, it will cause the
peak concentration of NO2 to appear two hours earlier in the evening. The significant increase of NO2

in the evening period may be due to the superposition of two reasons. The first is the concentrated
emission of vehicular exhaust during peak hours at night, and the second is the accumulation of NO2

pollution at night after the ozone pollution subsides during the daytime.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 10 of 18 

 

 
Figure 5. The pollutant concentrations distribution in case one. Figure 5. The pollutant concentrations distribution in case one.



Int. J. Environ. Res. Public Health 2020, 17, 4947 10 of 18
Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 11 of 18 

 

 
Figure 6. The pollutant concentrations distribution in case two. 

4. The Entropy Weight of Six Pollutants 

The third chapter mainly studies the correlation relationship between six pollutants and AQI, 
and the temporal distribution characteristics of their respective concentrations. However, the 
contribution of each pollutant to overall air quality has not been studied. Next, the entropy weight 
method was adopted to mine the contribution.  

The entropy weight method is one of the classic algorithms for calculating indicator weights [36–
38]. It was initially derived from Shannon entropy. In 1948, Shannon introduced the concept of 
entropy into information theory, as a measure of information uncertainty based on probability theory 
[39]. Nowadays, the Shannon entropy has been widely used in engineering technology, social 
economy and other fields [40,41]. The Shannon entropy is an objectively assigned weight method. 
The biggest difference between it and the subjective weight distribution method, such as the analytic 
hierarchy process method (AHP), expert survey method, etc., is that it determines the weight of the 
indicators based on the inherent information of the indicators, which can eliminate human 
interference and make the result more consistent with the fact [37]. Moreover, the Shannon entropy 
has a good capability in assessing the time-varying degree of informational efficiency of time-series 
data [42,43]. According to the characteristics of the Shannon entropy, we can judge the randomness 
and disorder of an event by calculating the entropy weight. We can also use the entropy weight to 
determine the degree of discreteness of an indicator. The larger the entropy, the more chaotic the 
system is, and the less information it carries. The smaller the entropy, the more orderly the system is, 

Figure 6. The pollutant concentrations distribution in case two.

The change of CO concentration with time in case one is stable, while the change in case two is
disordered. Through the above comparative analysis, it can be obtained that the variation in residents’
travel behavior did not bring about a simultaneous change in CO concentration.

4. The Entropy Weight of Six Pollutants

The third chapter mainly studies the correlation relationship between six pollutants and AQI, and
the temporal distribution characteristics of their respective concentrations. However, the contribution
of each pollutant to overall air quality has not been studied. Next, the entropy weight method was
adopted to mine the contribution.

The entropy weight method is one of the classic algorithms for calculating indicator weights [36–38].
It was initially derived from Shannon entropy. In 1948, Shannon introduced the concept of entropy
into information theory, as a measure of information uncertainty based on probability theory [39].
Nowadays, the Shannon entropy has been widely used in engineering technology, social economy
and other fields [40,41]. The Shannon entropy is an objectively assigned weight method. The biggest
difference between it and the subjective weight distribution method, such as the analytic hierarchy
process method (AHP), expert survey method, etc., is that it determines the weight of the indicators
based on the inherent information of the indicators, which can eliminate human interference and make
the result more consistent with the fact [37]. Moreover, the Shannon entropy has a good capability in
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assessing the time-varying degree of informational efficiency of time-series data [42,43]. According to
the characteristics of the Shannon entropy, we can judge the randomness and disorder of an event
by calculating the entropy weight. We can also use the entropy weight to determine the degree
of discreteness of an indicator. The larger the entropy, the more chaotic the system is, and the less
information it carries. The smaller the entropy, the more orderly the system is, and the more information
it carries. The calculation procedure of the entropy weight method is described as follows,

(1) Build a data matrix. Assuming that the data have n rows of records and m feature columns,
then the data can be represented by an n*m matrix A.

A =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

 (12)

(2) Normalization of indicators. Because the measurement units of the indicators are not uniform,
before using them to calculate comprehensive indicators, they must be standardized. That is, the
absolute value of the indicator should be converted into a relative value, thereby solving the problem
of homogeneity of various qualitative indicator values. Moreover, because the values of the positive
and negative indicators represent different meanings (the higher the value of the positive indicator, the
better; on the contrary, the lower the value of the negative indicator, the better). Therefore, we can use
different algorithms for data normalization for positive and negative indicators. The specific method is
as follows:

For positive indicators,

xi j =
xi j−min

{
x1 j, . . . , xnj

}
max

{
x1 j, . . . , xnj

}
−min

{
x1 j, . . . , xnj

} (i = 1, · · · , n; j = 1, · · · , m) (13)

For negative indicators,

xi j =
max

{
x1 j, . . . , xnj

}
−xi j

max
{
x1 j, . . . , xnj

}
−min

{
x1 j, . . . , xnj

} (i = 1, · · · , n; j = 1, · · · , m) (14)

(3) Calculate the proportion of the i-th record under the j-th indicator.

pi j =
xi j∑n

i=1 xi j
(i = 1, · · · , n; j = 1, · · · , m) (15)

(4) Calculate the entropy weight of the j-th indicator.

e j= −k∗
∑n

1
pi j∗ log(p i j), k = 1/ln(n) (16)

(5) Calculate the coefficient of variance for the j-th indicator.

d j= 1− e j (17)

(6) Calculate the weight of the j-th indicator.

w j =
d j∑m
1 d j

(18)

A comparison of entropy weights of six pollutant concentrations in both cases is reflected in
Table 4. Upward or downward arrows are employed to indicate the movement of entropy weights.
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SO2, NO2, and PM2.5 have got upward arrows. It can be perceived that the dispersion of the hourly
measured concentration of SO2, NO2, and PM2.5 has increased. Relatively speaking, the dispersion of
the other three pollutants, including CO, PM10 and O3, is declining. Here, taking SO2 and O3, which
have obvious discrete data values in Table 4 as an example, to visually observe the fluctuation of data
over time. The concentration of SO2 and O3 in both cases are shown in Figures 7 and 8. By comparing
the SO2 concentration of case one and case two in Figure 7, it can be found that there is a certain degree
of data dispersion in the hourly SO2 concentration in case one. However, this kind of data dispersion
is not as strong as that in case two, especially when abnormal discrete values from 1:00 to 4:00 AM
and 16:00 PM were discovered. These abnormal discrete values result in a greater entropy weight
for SO2 when evaluating the atmospheric quality. Since the average concentrations of SO2 in both
cases are 6.76 µg/m3 and 5.01 µg/m3, respectively, and the entropy weight of SO2 is in an upward
trend in case two, it can be considered that the change in residents’ travel behavior will bring about
an effective reduction in SO2 concentration. Meanwhile, the time-sensitivity of SO2 concentration in
case two is stronger than that in case one. O3 concentration changes diametrically opposite to SO2

concentration, as shown in Figure 8. The abnormal discrete values of O3 concentration were found
from 13:00 to 19:00 PM in case one. Since the average concentrations of O3 in both cases are 42.10
µg/m3 and 44.55 µg/m3, respectively, and the entropy weight of O3 is in a downward trend in case
two, it can be considered that the change in residents’ travel behavior will bring about an increase
in O3 concentration. At the same time, the O3 concentration maintains a higher concentration level,
from 0:00 to 24:00 in case two, instead of the peak value of O3 concentration, only from 13:00 to 19:00
PM, and a low concentration at other hours in case one. This should arouse public awareness of the
development trend of O3 concentration after the change in residents’ travel behavior.

Table 4. Comparison of entropy weights of six pollutants.

PM2.5 PM10 SO2 NO2 CO O3

Case one 0.120497 0.145691 0.143843 0.157466 0.095655 0.336848
Case two 0.145131 0.132877 0.295273 0.216554 0.083962 0.126202

Weight adjustment ↑ ↓ ↑ ↑ ↓ ↓
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The maximum concentrations of CO, O3, PM10, PM2.5, NO2 and SO2 are 1190, 130, 73, 61, 57 and
20 µg/m3, respectively, and their minimum concentrations in case two are 480, 4, 1, 1, 7 and 4 µg/m3,
respectively. The range (R) between the maximum and minimum concentration can be determined by
Equation (19).

R = Pmax−Pmin (19)

where, Pmax refers to the maximum concentration, Pmin means the minimum concentration.
The calculation results of Formula (19) show that the R of CO, O3, PM10, PM2.5, NO2 and SO2

are 710, 126, 72, 60, 50 and 16 µg/m3, respectively. The Shannon entropy weight is the opposite, as
the Shannon entropy weights of CO, O3, PM10, PM2.5, NO2 and SO2 in Table 4 are 0.083962, 0.126202,
0.132877, 0.145131, 0.216554 and 0.295273, respectively. This means that the greater the range (R) is, the
smaller the entropy weight is. For this reason, when evaluating the quality of the atmospheric system
in case two, it can be considered that CO contains less information, so it can be given less attention. In
contrast, SO2 should be given more attention, because the abnormal discrete values of SO2 were found
in Figure 7.

Nowadays, AQI is adopted to describe the extent of air pollution and the impact of air pollution
on human health in China. It is calculated based on the concentration of six representative pollutants,
including CO, SO2, NO2, O3, PM2.5 and PM10, and according to Equations (20) and (21), by converting
the concentration of each representative pollutant into a comparable dimensionless individual air
quality index (IAQI), and then taking the maximum IAQI to describe the situation of air pollution.

IAQIP =
IAQIHi−IAQILo

BPHi−BPLo
(C P−BPLo) + IAQILo (20)

AQI = max{IAQI 1, IAQI2, . . . , IAQIn
}
(n = 1, 2, · · · , P) (21)

where, IAQIP refers to the IAQI of pollutant P, and pollutant P can stand for SO2, CO or O3 or NO2 or
PM2.5 or PM10. If IAQIP > 50, then the pollutant P is defined as chief pollutant (CP). It is considered
that the pollutant P does not affect human health if its IAQIP ≤ 50. That is to say, the pollutant P
will threaten human health if its IAQIP > 50. If IAQIP > 100, then the pollutant P is called excessive
pollutant (EP). CP is the measured mass concentration of pollutant P. BPHi indicates the breakpoint
which is ≥CP in Table 5. BPLo stands for the breakpoint which is ≤CP in Table 5. IAQIHi indicates the
IAQI corresponding to BPHi in Table 5. IAQILo represents the IAQI corresponding to BPLo in Table 5.
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Table 5. Individual air quality index (IAQI), concentration thresholds and air quality.

IAQI

Pollutant Concentration Thresholds
Air Quality
Categories

SO2 24-h
Average
(µg/m3)

NO2 24-h
Average
(µg/m3)

CO 24-h
Average
(mg/m3)

O3 8-h Moving
Average(µg/m3)

PM2.5 24-h
Average
(µg/m3)

PM10 24-h
Average
(µg/m3)

0 0 0 0 0 0 0 Excellent
50 50 40 2 100 35 50 Excellent

100 150 80 4 160 75 150 Good

150 475 180 14 215 115 250 Light
pollution

200 800 280 24 265 150 350 Moderate
pollution

300 1600 565 36 800 250 420 Heavy
pollution

400 2100 750 48 1000 350 500 Severe
pollution

500 2620 940 60 1200 500 600 Severe
pollution

Within the total number of 547 observation times in case one, the CP appeared 392 times. Among
them, the number of occurrences of one CP is 29, the number of simultaneous occurrences of two CPs
is 180, the number of simultaneous occurrences of three CPs is 167, and the number of simultaneous
occurrences of four CPs is 16. The occurrences of IAQIO3 , IAQINO2 , IAQIPM2.5 , and IAQIPM10 , which
are greater than 50, are 14, 246, 156 and 271, respectively. The number of AQIs determined by IAQIO3 is
14, the number of AQIs determined by IAQINO2 is 453, the number of AQIs determined by IAQIPM2.5 is
18, and the number of AQIs determined by IAQIPM10 is 62. The EP occurred 32 times in total. Among
them, the number of occurrences of one EP (all EP refer to NO2) is 28, and the number of simultaneous
occurrences of two EPs (here, the EPs include NO2 and O3) is 4. The frequency of air quality being
categorized into excellent, good and lightly pollution are 155, 360 and 32, respectively. In short, air
quality is mainly determined by four pollutants, including NO2, O3, PM2.5, and PM10. At the same
time, CP and EP were found before the changes in residents’ travel behavior. Within the total number
of 547 observation times in case two, the frequency of air quality belonged to the excellent category,
with no CP, and EP being found, is 457. The number of occurrences of one CP is 38, the number of
simultaneous occurrences of two CPs is 52, the number of simultaneous occurrences of three or more
CPs is 0. The occurrences of IAQIO3 and IAQIPM2.5 , which are greater than 50, are 8 and 82, respectively.
EP was not found. The comparison between case one and case two reveals that the air quality has
improved significantly, and the concentration of pollutants (including NO2, PM2.5, and PM10) that has
posed a potential threat to human health decreased significantly after the changes in residents’ travel
behavior. However, since the average hourly concentration of O3 has increased compared to that in
case one, special attention should be paid to the development trend of O3.

Vehicular exhaust emissions have become the major source of urban air pollution, and the changing
tendency of exhaust emissions is basically consistent with that of traffic flow [44]. In the first week that
requires fewer travels from 24 January to 30 January 2020, the people do not need to go to work and
school. Hence, the usual traffic is mainly changed to purchase daily necessities or meet other daily
needs nearby. Additionally, the road traffic is no longer as busy as before. The pollutant concentrations
of PM2.5, PM10, SO2, NO2, O3 and CO in this week are 17.94, 23.86, 4.88, 15.05, 49.92 µg/m3 and 0.79
mg/m3, respectively. In addition, the average AQI is 33, and CP and EP are not found in this week. In
the second week that requires fewer travels from 31 January to 6 February 2020, although the students
have not yet started school, the enterprises’ production resumed, one after another. As a result, the
amount of traffic on the road gradually increased. The pollutant concentrations of PM2.5, PM10, SO2,
NO2, O3 and CO are 26.27, 33.25, 5.23, 21.25, 53.38 µg/m3 and 0.69 mg/m3, respectively, and the
average AQI is 41. Additionally, PM2.5 and O3 as the CPs were found in the second week. Similarly,
In the third week, that requires fewer travels from 7 February to 13 February 2020, the pollutant
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concentrations of PM2.5, PM10, SO2, NO2, O3 and CO are 23.69, 31.14, 4.87, 22.46, 32.80 µg/m3 and
0.76 mg/m3, respectively, and the average AQI is 38. PM2.5 as the CP was found in the third week.
The pollutant concentrations of PM2.5, PM10, SO2, NO2, O3 and CO before the required fewer travels
are 32.28, 61.38, 6.86, 52.22, 40.14 µg/m3 and 0.98 mg/m3, respectively. Additionally, the average
AQI before the travel reduction is 66. The comparison of these data including the data before the
required fewer travels and the data of the first, the second as well as the third week that requires fewer
travels, shows that the average concentration of pollutants is the lowest, and the air quality is optimal
in the first week with fewer travels. This situation will become slightly worse in the second and third
weeks with fewer travels. Therefore, it can be concluded that residents’ travel behavior is intrinsically
linked to air quality. When the traffic volume on the road dropped sharply, the air quality improved
significantly and the threat to human health was alleviated.

5. Conclusions

In order to quantitatively analyze the relationship between abnormal human activities and air
pollution from a new perspective, this study was conducted based on the real data from a case city in
China. A series of detailed studies have been carried out using the correlation method, entropy weight
method and AQI calculation method. Additionally, the research found that,

(1) The variation of residents’ travel behavior has brought down the concentrations of particulate
matter. However, it has not changed the characteristics of the bimodal distribution of their
concentrations. It will cause their concentration peaks to appear about an hour later in the morning
and about an hour earlier in the evening. It is also one of the important factors in determining
when the peak of SO2 concentration occurs. It will change the concentration distribution of O3

and NO2 from unimodal to bimodal. Additionally, it will cause a peak of NO2 concentration to
appear two hours earlier in the evening.

(2) The variation of residents’ travel behavior can promote a concentration reduction of particulate
matter and gaseous contaminants. However, the dispersion of the hourly measured concentration
of SO2, NO2, and PM2.5 has increased. Additionally, the dispersion of the other three pollutants
including CO, PM10 and O3 is declining. Because SO2 and O3 have obvious discrete data values.
Therefore, special attention should be given to gaseous contaminants, especially for the change
in SO2 and O3 concentration, even if vehicles on the road are no longer as busy as usual and
residents’ travel behavior is no longer the same.

(3) The decline rates of the average concentrations of six representative pollutants in case two are
significant. Among them, the decrease rate of NO2 and PM10 are the most considerable. The
decrease rate of NO2 concentration is 61.05%, and the decrease rate of PM10 concentration is
53.68%. On the contrary, the concentration of O3 has increased significantly, and the growth rate
of its average concentration has reached 9.82%.

(4) Air quality is mainly determined by four pollutants, including NO2, O3, PM2.5, and PM10. At the
same time, CP and EP were found before the changes in residents’ travel behavior. However, air
quality has improved significantly, and the concentration of pollutants that have posed a potential
threat to human health decreased significantly after the changes in residents’ travel behavior. The
air quality is optimal in the first week, followed by the second and third weeks with fewer travels.
Since the average hourly concentration of O3 has increased compared to that in case one, special
attention should be paid to the development trend of O3.

These research results will have some guiding significance for the study of air pollution prevention,
cleaner production, and indoor environmental safety issues, especially for the study of abnormal traffic
environments where residents’ travel behaviors have changed significantly.
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