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ABSTRACT

Objective: The clinical diagnosis of genetic disorders is undergoing transformation, driven by whole exome se-

quencing and whole genome sequencing (WES/WGS). However, such nucleotide-level resolution technologies

create an interpretive challenge. Prior literature suggests that clinicians may employ characteristic cognitive

processes during WES/WGS investigations to identify disruptions in genes causal for the observed disease.

Based on cognitive ergonomics, we designed and evaluated a gene prioritization workflow that supported these

cognitive processes.

Materials and Methods: We designed a novel workflow in which clinicians recalled known genetic diseases

with similarity to patient phenotypes to inform WES/WGS data interpretation. This prototype-based workflow

was evaluated against the common computational approach based on physician-specified sets of individual pa-

tient phenotypes. The evaluation was conducted as a web-based user study, in which 18 clinicians analyzed 2

simulated patient scenarios using a randomly assigned workflow. Data analysis compared the 2 workflows with

respect to accuracy and efficiency in diagnostic interpretation, efficacy in collecting detailed phenotypic infor-

mation, and user satisfaction.

Results: Participants interpreted genetic diagnoses faster using prototype-based workflows. The 2 workflows

did not differ in other evaluated aspects.

Discussion: The user study findings indicate that prototype-based approaches, which are designed to model

experts’ cognitive processes, can expedite gene prioritization and provide utility in synergy with common

phenotype-driven variant/gene prioritization approaches. However, further research of the extent of this effect

across diverse genetic diseases is required.

Conclusion: The findings demonstrate potential for prototype-based phenotype description to accelerate

computer-assisted variant/gene prioritization through complementation of skills and knowledge of clinical

experts via human–computer interaction.
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BACKGROUND AND SIGNIFICANCE

Whole exome sequencing (WES) and whole genome sequencing

(WGS) are allowing clinicians an unprecedented opportunity to ex-

amine human genes en masse and to diagnose rare genetic dis-

eases.1–3 An accurate and efficient analysis of DNA sequence data

has become crucial for a timely diagnosis of patients, many of whom

might otherwise suffer a long and costly diagnostic odyssey.4–6

However, identifying causal variants among millions of DNA varia-

tions in any individual is challenging.7 For this reason, computa-

tional approaches have been created to improve efficiency in

multiple aspects of WES/WGS analyses, from encoding available

clinical genetic knowledge into computers,8–11 to collecting compre-

hensive phenotype information,12 to prioritizing potentially patho-

genic variants,13–18 and to matching patients for collaborative

investigation of rare, novel genetic diseases.19

While the above aspects have been improved, variant (or gene in

a wider context) prioritization and interpretation during WES/WGS

analyses have remained largely expert-driven tasks with computer

assistance, as they require cross-examination of complex evidence

(eg, variant/gene/phenotype/population-level) that affect treatment

decisions.7,20 As these informatics/interpretative activities are in-

creasingly dominating the overall cost of genomic analyses,21 an al-

ternative solution for accelerating WES/WGS analyses may lie in the

creation of new computational methods that more efficiently collab-

orate with highly trained experts (whose skills and knowledge are

difficult to fully encode into computers). A recent study in this direc-

tion has demonstrated that variant prioritization based on a

clinician-generated gene list could outperform purely computational

methods in the analysis of singleton WES data.22 The findings sug-

gest the utility of harnessing clinical expertise, such as a clinician’s

experience, skills in recognizing clinical gestalt, and their ability to

evaluate multifactorial information such as disease onset, family his-

tory, and negative findings.22–24

In this study, we report the design and evaluation of a gene prior-

itization workflow based on cognitive ergonomics, the study of un-

derstanding human cognitive capabilities in interactive systems, and

applying this understanding to support human cognition via hu-

man–system interaction for optimized system performance.25 The

word “workflow,” within the context of this study, refers to a se-

quence of interactions between clinical experts and computers dur-

ing computer-assisted variant/gene prioritization. Using this

definition, this study focused on examining 2 different designs of

interactions (workflows) and their effect on expert performance re-

gardless of variant/gene prioritization algorithms. These 2 work-

flows are herein referred to as the prototype-based workflow and

feature-based workflow.

First, we created the prototype-based workflow (Figure 1A) that

aimed to complement the following characteristics of diagnostic rea-

soning and human cognition reported in literature: (a) clinicians

form a gestalt diagnosis from perceived clinical information,26–28 (b)

people tend to make categorizations using an ideal/core representa-

tion called the “prototype,”29 and (c) people tend to focus on deeper

structural information when comparing 2 examples, whereas they

focus on superficial information when considering an isolated exam-

ple.30 The “prototype” in this study refers to a representation that

effectively describes patient characteristics, in the form of a specific

genetic disease that closely resembles a patient. For example, con-

sider a patient who manifests developmental delay, cleft palate, fu-

sion of the second and third toes, and distinctive facial features

(ptosis, narrow forehead, and anteverted nares). Using a prototype,

these individual characteristics can be summarized to describe the

patient as “exhibiting the characteristics of Smith-Lemli-Opitz syn-

drome.” In this prototype-based workflow, therefore, clinicians are

solicited to provide a prototype disease with resemblance to patient

characteristics, prior to initiating gene prioritization. The computer

then extracts a set of characteristics described for the selected proto-

type from an underlying database.

Next, the prototype-based workflow was compared against the

feature-based workflow (Figure 1B), which simulated a common

process employed by phenotype-driven variant/gene prioritization

tools.13,15–18 This feature-based workflow requires experts to pro-

vide a set of individual characteristics observed in the patient before

embarking on a computational variant/gene prioritization process.

For workflow comparison, a user study was conducted with expert

clinical/biochemical geneticists as subjects. The workflows were

assessed with respect to accuracy and efficiency in diagnostic inter-

pretation, efficacy in collecting detailed phenotypic information,

and user satisfaction. Finally, we created a proof-of-concept mobile

application for exploration by interested users.

This study explores an alternative in computer-assisted variant/

gene prioritization and interpretation in which computational meth-

ods attempt to harness the intellectual power of clinical experts us-

ing human–computer interaction. We hope our findings catalyze

further interest to explore interactive methods in this domain.

MATERIALS AND METHODS

To help understanding of the upcoming sections, the workflow defi-

nitions have been provided in Background and Significance, and in

Figure 1. For a detailed explanation of the workflow designs, please

refer to the “Workflow designs” section in Results. The upcoming

sections also require understanding of an interchangeable use of the

words “feature” and “phenotype,” both of which will refer to char-

acteristics of patients.

User study participants
Between October 2017 and May 2018, 59 clinicians from special-

ized (tertiary) healthcare institutions within Canada, the Nether-

lands, Ireland, Germany, and Switzerland were invited to

participate in the user study. Participant inclusion criteria were to

(a) hold the title of medical geneticist/biochemical geneticist or spe-

cialize in rare genetic diseases, and (b) have prior experience work-

ing with WES/WGS data as part of their clinical practice. The

invitees were identified by consulting hospital staff directories, a

rare disease research network, and collaborators. The invitees were

contacted by an email that provided researcher information, expla-

nation on how the contact was obtained, purpose and a brief de-

scription of the study, as well as a web link to the user study

website. Participation was completely voluntary, and consent to par-

ticipate was implied by submission of responses. Of the 59 invitees,

18 completed their participation in the study. Power analysis was

performed for this study, and its details are provided the Supplemen-

tary Material.

The user study was reviewed and approved by the University of

British Columbia Research Ethics Board (Certificate: H17-00872).

Simulated clinical scenarios
Five simulated clinical scenarios were developed for the user study

(Table 1). One was dedicated as a tutorial exercise and 4 were for

clinical scenario analysis exercises. The latter 4 scenarios were
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coupled as 2 disease-based pairs, with each pair consisting of a sce-

nario that described a typical presentation and a scenario that de-

scribed an atypical presentation of a genetic disease. The above

arrangements were used for scenario assignment in the study so that

each participant analyzed 1 typical scenario from 1 pair and 1 atypi-

cal scenario from the other pair, while the order of the scenarios was

randomized. This ensured (a) elimination of exposure to the same

genetic disease diagnosis during analysis exercises, (b) minimizing

ordering bias, and (c) examination of the effect of different disease

presentations on workflow performance.

Each scenario consisted of a diagnosis, a patient description, and

a gene list, simulating a case involving WES data (equivalent to

restricting analysis to exons within WGS data). Normally, WES

analyses produce a list of variants at the resolution of nucleotides. In

order to limit the time demands on participants, we simplified the

results to provide a list of genes impacted by variation. In the user

study, participants were explicitly notified that a variant list had

been simplified to display only gene-level information, and

instructed participants to assume that each gene in the list harbored

a variant/variants that was/were rare, potentially pathogenic, and

aligned with inheritance models (eg, dominant, recessive).

Each simulated clinical scenario was developed in the following

order: diagnosis, patient description, and gene list. Diagnosis selec-

tion used the following criteria: (1) the diagnosis was a rare genetic

disease that had been described in at least 10 peer-reviewed

publications; (2) it was widely known so that participants could rec-

ognize its associated gene by name/symbol during gene list interpre-

tation, thus minimizing time spent looking up gene information

using online tools; and (3) the disease was well characterized so that

participants could formulate a prototype (or a model presentation of

the disease) by reading a text description. After reviewing previously

published rare genetic disease annotations,31 3 diseases, CHARGE

syndrome, Smith-Lemli-Opitz syndrome, and tuberous sclerosis,

that fulfilled the above criteria were assigned to each scenario as fol-

lows: CHARGE syndrome for the tutorial scenario, Smith-Lemli-

Opitz syndrome for 2 analysis scenarios, and tuberous sclerosis for

the remaining 2 analysis scenarios.

Based on the diagnosis assignment, patient descriptions were

then generated by extracting typical/atypical characteristics from

published case reports (Supplementary Material) as well as the dis-

ease annotations used during the previous step, which contained a

list of phenotypes described using the Human Phenotype Ontology

(HPO)10 and their frequency.31

After patient descriptions were generated, gene lists were com-

piled. The gene list for each scenario contained 17 genes, 1 associ-

ated with the scenario’s diagnosis and the rest associated with

diseases that had varying degrees of similarity to the diagnosis. The

purpose of such an arrangement was to ensure the investment of

thought and time before discerning the diagnosis. The following

outlines the steps that determined gene lists. For each scenario, the

Figure 1. Sequence diagram for prototype-based and feature-based workflows. (A) Illustration of the prototype-based workflow. (B) Illustration of the feature-

based workflow. In the prototype-based workflow, clinicians provide a prototype in the form of suspected diagnosis, refine a list of phenotypes that are suggested

based on the given prototype, and identify a causal variant/gene from a list of variants/genes that is computationally prioritized by the relevance to given pheno-

types. In the feature-based workflow, clinicians provide a list of phenotypes and identify a causal variant/gene from a list of variants/genes that is computationally

prioritized by the relevance to given phenotypes. The prototype-based workflow is different from the feature-based workflow in that it explicitly asks clinicians to

provide prototypes that they have in mind.
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patient description was converted into a list of HPO terms. These

terms were then used to compute the scenario’s similarity against

6946 diseases in Online Mendelian Inheritance in Man (OMIM)

that were annotated by HPO [10] (phenotype_annotation.tab down-

loaded on June 27, 2017). Similarity was computed using a previ-

ously published HPO-based disease similarity score31 and

normalized to a range between 0 and 1. OMIM diseases were then

ordered and categorized by their similarity [highly similar (0.6-1.0),

similar (0.5-0.6), somewhat similar (0.4-0.5), and irrelevant (0-

0.4)]. From each category, 4 diseases were randomly selected, and

their associated genes were added to the gene list. All components of

the simulated clinical scenarios were reviewed by CDMvK.

User study procedure
The user study was formatted as an online survey. Participants were

asked to complete the survey as outlined in Figure 2 and were ran-

domly assigned to either prototype-based or feature-based work-

flows. The survey consisted of 4 sections: introduction, clinical

scenario analysis, debriefing, and user satisfaction questionnaire.

The introduction section presented 3 questions regarding

participants’ demographic information/clinical expertise, an orienta-

tion video explaining the study purpose and procedure, and a tuto-

rial exercise that walked through a sample clinical scenario to help

participants become acquainted with the survey interface.

The clinical scenario analysis section invited participants to diag-

nose 2 simulated clinical scenarios using their assigned workflow.

For each scenario, the analysis exercise proceeded as follows. Partic-

ipants were presented with a simulated patient description and

asked to input prototypes or patient phenotypes according to their

assigned workflow (Figure 1). The order of the sentences within the

description was randomized to minimize ordering bias. For proto-

type selection, participants were restricted to OMIM disease names

(provided by OMIM API).8 For phenotype selection (feature-based

workflow) and phenotype refinement (prototype-based workflow),

participants were restricted to HPO terms. Such restrictions were

imposed to enable accurate comparison of input from different par-

ticipants. Afterwards, participants were asked to identify a diagnosis

within a simulated gene list, which was ordered by the number of

phenotypes that overlapped between input and diseases that were

associated with each gene. The ordering was performed to mimic

the output of common computational variant/gene prioritization

tools.13,15–18 Gene-phenotype-disease associations provided by

HPO10 were used to enable this functionality. Participants could

freely modify input phenotypes and reorder the gene list until they

identified a diagnosis. Following diagnosis selection, the actual diag-

nosis was revealed to participants, and they were invited to express

their satisfaction with the assigned workflow by completing a modi-

fied After-Scenario Questionnaire (ASQ).32

During each analysis exercise, the following information was

collected: prototype/phenotype selections, changes made to proto-

type/phenotype selections before making diagnoses, final diagnoses,

time elapsed between initial display of the gene list and identifica-

tion of diagnoses, and ASQ responses.

Upon completion of 2 clinical scenario analyses, participants

were debriefed about the alternative (unassigned) workflow. During

debriefing, they walked through the alternative workflow using the

same scenarios and completed an ASQ at the end of each scenario.

Table 1. Simulated scenarios

Tutorial scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4

Diagnosis CHARGE syndrome

(MIM 214800)

Smith-Lemli-Opitz

syndrome (MIM

270400)

Smith-Lemli-Opitz

syndrome (MIM

270400)

Tuberous sclerosis 1

(MIM 191100)

Tuberous sclerosis 1

(MIM 191100)

Gene CHD7 DHCR7 DHCR7 TSC1 TSC1

Typical/Atypical – Typical Atypical Typical Atypical

Demographic information 5-month-old girl 18-month-old boy 18-month-old boy 6-year-old girl 6-year-old girl

Family information Parents were noncon-

sanguineous and of

European ancestry

Parents were noncon-

sanguineous and of

European ancestry

Parents were noncon-

sanguineous and of

European ancestry

Parents were noncon-

sanguineous and of

European ancestry

Parents were noncon-

sanguineous and of

European ancestry

Clinical

synopsisa

Pregnancy and

delivery

Born at term follow-

ing an uneventful

pregnancy and

delivery

Born at term follow-

ing an uneventful

pregnancy and

delivery

Born at term follow-

ing an uneventful

pregnancy and

delivery

Born at term follow-

ing an uneventful

pregnancy and

delivery

Born at term follow-

ing an uneventful

pregnancy and

delivery

Phenotypic

description

Asymmetric facial

palsy

Bilateral coloboma of

the iris

Choanal atresia and

ventricular septal

defect @ birth

Developmental delay

Missing ear lobes and

short, wide ears

Swallowing

difficulties

2nd-3rd toe

syndactyly

Anteverted nares

Broad nasal bridge

Developmental delay

Feeding difficulties

and failure to thrive

@ 3 months

Hypotonia

Irritable

Low-set ears

Microcephaly

Micrognathia

Postaxial polydactyly

Ptosis

Brain MRI and MRS:

no structural abnor-

malities

Broad nasal bridge

Developmental delay

Feeding difficulties @

3 months

Finger clinodactyly

Micrognathia

Mild hypotonia

Mild ptosis

Minimal cutaneous

2nd-3rd toe

syndactyly

Brain MRI: cortical

sclerotic tubers

Epileptic seizure

Hypomelanotic

macules on the

chest

Hypsarrhythmia

Renal cysts

Skin papules on the

side of nose

Brain MRI: normal

Epileptic seizure

Hypsarrhythmia

Intellectual disability

Renal cysts

Skin papules on the

side of nose

aClinical synopses are summarized from a paragraph format for brevity.
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Only ASQ responses were collected during the walkthrough. Finally,

participants were invited to express their overall satisfaction with

the workflows by completing 2 modified Post-Study System Usabil-

ity Questionnaires (PSSUQ)32 for the assigned workflow and for the

alternative workflow, respectively.

For the survey, a custom online interface was developed using

Ruby on Rails and React.js in order to implement functionalities re-

quired by clinical scenario analysis exercises.

Data analysis
All data analyses were performed using R version 3.4.4. The 2 work-

flows were compared with respect to (a) diagnostic accuracy (mea-

sured as the number of correctly diagnosed scenarios), (b) efficiency

in gene list interpretation (measured as the time elapsed between

when the gene list was presented and when participants selected a

causal gene from the list; Supplementary Material), (c) efficacy in

phenotype collection (measured as the number of participant-

provided phenotypes), and (d) user satisfaction (measured as ASQ

and PSSUQ scores). All comparisons except the PSSUQ score com-

parison were performed using a 2 x 2 analysis of variance (ANOVA)

(afex package) with workflow assignments (prototype-based/feature-

based) as a between-subject variable, disease presentations (atypical/

typical) as a within-subject variable, and each measurement as a

response variable. The primary focus of ANOVA was on the main

effect of workflow assignments. PSSUQ scores were compared using

the Mann–Whitney U test (wilcox.test). To account for multiple com-

parisons within (d), the Bonferroni correction (p.adjust) was applied

to ASQ and PSSUQ comparisons. Participant-provided prototypes

and phenotypes were analyzed for common and workflow-specific in-

formation patterns. Optional written comments provided in ASQ and

PSSUQ were reviewed to extract common participant opinions.

RESULTS

Workflow designs
We present the 2 workflow designs investigated in this study as fol-

lows. The prototype-based workflow (Figure 1A) was designed to

augment the following properties of clinical reasoning and human

cognition during WES/WGS investigations: (a) an ability to form ge-

stalt diagnosis,26–28 (b) a tendency to categorize using an ideal/core

representation called the “prototype,”29 and (c) a tendency to focus

on deeper structural information when comparing 2 examples.30

The specific steps of this prototype-based workflow follow: (1) the

computer solicits the clinician to provide a prototype in the form of

suspected diagnosis; (2) the computer presents a list of key pheno-

types of the given prototype; (3) the clinician refines the presented

list by adding/excluding phenotypes; (4) the computer prioritizes

genes based on their overlap with the phenotypes; and (5) the clini-

cian specifies a causal gene (diagnosis) from the prioritized list.

The rationale behind this prototype-based workflow design was

that articulating gestalt diagnosis in the form of prototype (sus-

pected diagnosis) and using this prototype as an aggregate represen-

tation of patient phenotypes would simultaneously (a) relieve the

requirement to frequently recall granular details of the patient and

(b) engender focus on structural information. To embody this con-

cept, step (3) of the prototype-based workflow was implemented to

Figure 2. User study structure. The user study consisted of 4 main sections: introduction, clinical scenario analysis, debriefing, and user satisfaction question-

naire. During the introduction, participants answered questions regarding their demographic information and clinical expertise, watched an orientation video,

and walked through a sample clinical scenario. Afterwards, participants analyzed 2 simulated clinical scenarios using their assigned workflow. At the end of each

scenario, participants completed an After-Scenario Questionnaire (ASQ). Upon completion of clinical scenario analyses, participants were debriefed about the

workflow that they were not assigned to and tried out the workflow using the same simulated scenarios. Participants also filled out an ASQ at the end of each sce-

nario. Finally, participants filled out Post-Study System Usability Questionnaires, regarding the assigned workflow and the alternative (unassigned) workflow, re-

spectively.
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encourage clinicians to compare patient characteristics with respect

to key presentations of the selected prototype. Based on cognitive

principles, this comparison was anticipated to bring focus on deeper

structural differences, resulting in more concrete and detailed de-

scription of patient phenotypes, in contrast to asking clinicians to

describe patients de novo. The same concept was also applied to

step (5) of the prototype-based workflow. In this step, the prototype

was to be used as a proxy against which candidate genes and their

associated diseases would be assessed for clinical relevance to pa-

tient phenotypes.

The feature-based workflow (Figure 1B) was designed for com-

parison with the prototype-based workflow. This feature-based

workflow modeled common phenotype-driven variant/gene prioriti-

zation tools.13,15–18 Specific steps of the feature-based workflow fol-

low: (1) the computer solicits the clinician to provide a list of patient

phenotypes; (2) the computer prioritizes genes based on their over-

lap with the phenotypes; and (3) the clinician identifies a causal gene

(diagnosis) from the prioritized list.

The difference between the 2 workflows was that the prototype-

based workflow explicitly asked for a prototype (to populate the set

of phenotypes, which the user can refine by eliminating/adding

terms), whereas the feature-based workflow required the user to se-

rially specify individual patient phenotypes.

User study participant characteristics
Characteristics of the 18 participants are summarized in Figure 3.

Ninety-four percent of participants have practiced more than 5

years. All participants had experience with cases involving clinical

WES/WGS data.

Workflow performance evaluation
Figure 4 summarizes the performance of the prototype-based work-

flow and the feature-based workflow. There was no difference in di-

agnostic accuracy between the two workflows [(F(1, 16) ¼ 1.0, P ¼
.33, gp

2 ¼ .059]. Almost all participants, except 1, correctly diag-

nosed assigned scenarios. The participant who incorrectly diagnosed

1 scenario explained via optional comments that a general diagnosis

(tuberous sclerosis) was correctly anticipated and the correct genetic

diagnosis (TSC1) was considered during gene list interpretation.

However, the participant determined that the presented scenario

was more compatible with a different genetic diagnosis (TSC2) and

thus did not select any diagnosis.

Participants who were assigned to prototype-based workflows

identified diagnoses significantly faster than those assigned to

feature-based workflows [F(1, 16) ¼ 6.04, P ¼ .026, gp
2¼ .27]. In

addition, participants identified diagnoses faster for scenarios with

typical presentations than atypical presentations [F(1, 16) ¼ 18.1,

P ¼ .0006, gp
2¼ .53], while no significant interaction between

workflow assignment and disease presentation was observed

[F(1, 16) ¼ 3.26, P ¼ .090, gp
2¼ .17].

No difference was observed in the number of phenotypes col-

lected by either workflow [F(1, 16) ¼ 2.71, P ¼ .12, gp
2¼ .14].

Three outliers were observed in the number of phenotypes collected

using prototype-based workflows. Examination of individual

responses revealed that at least 2 participants who were assigned to

prototype-based workflows selected almost all of the phenotypes

that were suggested based on participant-specified prototypes, re-

gardless of their presence/absence in simulated scenarios (ie, they

chose not to eliminate phenotypes that were not reported in the sce-

narios). Lastly, there was no difference in user satisfaction between

the 2 workflows [ASQ: F(1, 16) ¼ 1.50, P ¼ .48 (uncorrected

P ¼ .24), gp
2¼ .086; PSSUQ: W¼37, P¼1.0 (uncorrected

P ¼ .79), r¼0.19].

Summary of prototype and phenotype selection
Nine participants who were assigned to prototype-based workflows

selected the actual or very close diagnoses as prototypes prior to

interpreting gene lists (Table 2). Phenotypes that were collected by

the 2 workflows are summarized in Figure 5 and detailed in the

Supplementary Material. Phenotypes provided by 3 outlier individu-

als assigned to prototype-based workflows were excluded from this

comparison, as those phenotype lists likely did not involve a con-

scious assessment of patient phenotypes. Participants who were

assigned to feature-based workflows had a tendency to input close

synonyms of a phenotype. For example, hypotonia in the atypical

Smith-Lemli-Opitz scenario was captured in 3 different terms: gen-

eralized hypotonia, central hypotonia, and muscular hypotonia.

Meanwhile, synonyms were rarely present in phenotypes captured

by prototype-based workflows because participants were offered to

select/unselect suggested phenotypes that were associated with the

Figure 3. Participant characteristics. (A) Gender of participants; (B) participants’ level of clinical expertise, measured as years in clinical practice; and (C) partici-

pants’ experience with exome or genome sequencing data, measured as the number of cases involving exome or genome analyses.
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prototype of their choice. Furthermore, the prototype-based sugges-

tions seem to have encouraged participants to enter additional phe-

notypes that were not collected by feature-based workflows. For

example, terms such as vomiting, gastroesophageal reflux, and poor

suck were provided for feeding difficulty in the atypical Smith-

Lemli-Opitz scenario.

Mobile application for workflow exploration
Motivated by participant suggestions, we created a proof-of-

concept, open-source, mobile application, PhenoChat (https://

github.com/jes8/phenochat), for exploration by interested users (but

not for clinical use). Implementation details are provided in the

Supplementary Material. Briefly, PhenoChat allows users to build

and send phenotypic descriptions using either workflow inter-

changeably.

DISCUSSION

Prior literature on diagnostic reasoning and cognitive properties26–30

suggests that clinicians may employ prototypes (paragon disease pre-

sentations) to assess patients and identify relevant genetic diagnoses

within WES/WGS results. We designed a novel gene prioritization

workflow based upon a prototype-based approach and evaluated it

against a workflow that simulated a common phenotype-driven vari-

ant/gene prioritization process.13,15–18 Finally, we demonstrated that

gene interpretation could be accelerated using the prototype-based

workflow by facilitating prototypical thinking.

Figure 4. Summary of workflow performance evaluation. Evaluation results are shown in histograms or bar-plots for categorical variables. In (B), (C), and (D), the

tables next to histograms summarize descriptive statistics for each corresponding histogram. SD ¼ standard deviation. (A) Diagnostic accuracy, measured as the

number of correctly diagnosed scenarios. (B) Interpretation time, measured as the time elapsed between when the gene list was presented and when participants

selected causal gene from the list. (C) Number of participant-provided phenotypes. Values denoted by * represent mean or standard deviation including (within

brackets) or excluding (without brackets) 3 outlier individuals assigned to the prototype-based workflow. (D) User satisfaction, measured as After-Scenario Ques-

tionnaire (ASQ) and Post-Study System Usability Questionnaire (PSSUQ) scores.
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Within the scope of this study, the observed time spent on gene

list interpretation was significantly shorter for the prototype-based

workflow compared to the feature-based workflow. This suggested

that participants likely engaged in prototypical thinking. The main

difference in workflow designs was that the prototype-based work-

flow explicitly kept track of prototypes. Through tracking, the

prototype-based workflow likely reminded participants of their rea-

soning process and encouraged prototypical comparison of genetic

diagnoses. This notion was also supported by a secondary finding,

in which time spent on gene interpretation was shorter for both

workflows when analyzing typical scenarios compared to atypical

scenarios. This difference agreed with reports in prototype theory re-

search regarding faster recall and recognition of typical members of

a category compared to atypical members.33–36 In sum, it was likely

that participants employed some level of prototypical thinking in

both workflows, while the reasoning process was more efficiently fa-

cilitated by the prototype-based workflow.

However, the above evaluation was limited in scope to focus on

only 2 genetic diseases that were both well characterized in the liter-

ature. More research is needed to generalize the observed workflow

performances over different rare genetic diseases that have not yet

reached the same level of characterization or expert awareness. The

Table 2. Prototype selection summary

Actual scenario diagnosis Participant-specified prototype # of participants who

selected the prototypea

Scenario 1 (nb ¼ 5) Smith-Lemli-Opitz syndrome (MIM 270400) Smith-Lemli-Opitz syndrome (MIM 270400) 5

Scenario 2 (nb ¼ 4) Atypical Smith-Lemli-Opitz syndrome (MIM 270400) Smith-Lemli-Opitz syndrome (MIM 270400) 4

Scenario 3 (nb ¼ 4) Tuberous sclerosis 1 (MIM 191100) Tuberous sclerosis 1 (MIM 191100) 2

Tuberous sclerosis 2 (MIM 613254) 2

Scenario 4 (nb ¼ 5) Atypical tuberous sclerosis 1 (MIM 191100) Tuberous sclerosis 1 (MIM 191100) 3

Tuberous sclerosis 2 (MIM 613254) 3

aCounts how many participants selected each prototype as a probable diagnosis. If participants changed prototypes multiple times, they were counted for all

prototypes that they had specified.
bn ¼ number of participants assigned to scenario using the prototype-based workflow.

Figure 5. Word-cloud visualization of phenotype selection. For each scenario, phenotype terms collected by the 2 workflows are summarized into word clouds.

Darker colors represent terms that were collected more frequently. The underlying data are available in Supplementary Table S2.
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workflows should also be assessed in terms of (a) performance with

diseases that present with heterogeneous, overlapping, or novel phe-

notypes and (b) incorporation of information beyond gene level. In

addition to the scope of the evaluation, the study recruitment was also

restricted to medical/biochemical geneticists in order to ensure that

participants represent a focused group of users, who would exhibit

similar areas of attention/interest when approaching WES/WGS data

as well as shared desiderata towards WES/WGS analysis software.37

Further research should also consider inclusion of other healthcare

professionals involved in clinical WES/WGS interpretation (eg, genetic

counselors and bioinformaticians) to gain further insights into diverse

groups of users and their interaction with different workflows.

While the 2 workflows resulted in equivalent phenotypic infor-

mation amounts, differences in the content of phenotypic informa-

tion suggested possible involvement of distinct cognitive processes

during phenotype assessment. Phenotype terms collected from

feature-based workflows did not deviate greatly from simulated pa-

tient descriptions, whereas those collected from prototype-based

workflows did. The deviating terms were relevant concepts but not

exact synonyms: for example, cafe-au-lait spot was provided in rela-

tion to hypomelanotic macule, and renal angiomyolipoma was pro-

vided in relation to renal cysts. This observation could be explained

by a cognitive tendency towards focusing on deeper structural

details when comparing 2 examples as opposed to considering a sin-

gle example.30 However, a quantitative experiment is required to

conclusively determine involvement of the aforementioned cognitive

tendency during phenotype assessment within different workflows.

Upon observing no difference in user satisfaction, optional com-

ments provided in user satisfaction questionnaires were examined.

Specific comments suggested that the study findings should be trans-

lated by implementing the best of both worlds. Feature-based work-

flow participants pointed out that (1) having to enter each

phenotype did not enhance productivity and thus opted to enter

only those deemed highly discriminatory; and (2) it was occasionally

difficult to code phenotypes impromptu. Meanwhile, prototype-

based workflow participants highlighted that (1) a typical feature

could not be found in phenotype suggestions (likely due to limita-

tions of disease-phenotype annotations); and (2) some thought it was

redundant to refine the phenotype list. The above comments suggested

that perceived deficiencies of one workflow could be remedied by the

other, and flexibility to use either workflow for phenotype specifica-

tion (as demonstrated by PhenoChat) or incorporating the prototype-

based workflow into existing feature-based workflows would provide

synergistic utility for prospective implementations.

Heuristics biases, such as overconfidence, anchoring effect, and

self-confirmatory bias, are potential risks associated with the

prototype-based workflow. However, more research is required to

identify when these biases may arise and when the benefits of a pro-

totype-based workflow may outweigh the risks, as cases in which

heuristics provided diagnostic advantages over computer-derived

approaches have been demonstrated.22 Meanwhile, implementa-

tions of the prototype-based workflow should consider incorporat-

ing measures aimed at reducing heuristics biases. For example, a

decision schema based on variant interpretation guidelines38 can be

incorporated into the workflow steps to enforce closer examination

of user-identified variants.

CONCLUSION

In summary, we explored the utility of augmenting clinical reason-

ing and cognitive characteristics of experts within computer-assisted

gene prioritization. We found that clinicians interpreted genes faster

using a prototype-based gene prioritization workflow. Clinician

feedback suggested that the prototype-based workflow may provide

optimal utility if implemented in synergy with common feature-

based variant/gene prioritization workflows. However, further in-

vestigation is warranted to confirm the above findings across diverse

rare genetic diseases. WES/WGS informatics methods that comple-

ment human–computer interactions offer promise for overcoming

the informatics bottleneck in clinical genome analysis.
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