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Abstract

Background: Amyloid b (Ab), a causative peptide of Alzheimer’s disease, is generated by intracellular metabolism of amyloid
b-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by
a- or b-, and c-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-
glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not
subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB)
and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its
PTB domain, thereby generation of Ab lowers. X11L expresses another function in the regulation of intracellular APP
trafficking.

Methodology: In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional
dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined
along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP.

Conclusions: X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains,
without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in
further suppression of Ab generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely
to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other
X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that
respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory
pathways.
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Introduction

X11 proteins (X11s) comprise a family of evolutionarily

conserved molecules, which include: X11/X11a/mint1, X11L/

X11b/mint2 and X11L2/X11c/mint3 in mammals [1], two

orthologous proteins in D. melanogaster [2,3], and one in C. elegans

[4]. X11s are composed of a relatively unique N-terminal half and

a conserved C-terminal half, which includes a phosphotyrosine

binding/phosphotyrosine interaction (PTB/PI) domain and two

PDZ domains. Through protein-protein interactions, mediated by

the PTB/PI and/or PDZ domains, X11s are thought to play

various important regulatory roles in synapse formation, protein

transport and protein metabolism [5].

In mammals, X11 and X11L are expressed predominantly in

the brain, while X11L2 is expressed ubiquitously [5]. The PTB/PI

domain of X11s binds to the cytoplasmic domain of Alzheimer’s

amyloid b-protein precursor (APP) and suppresses the intracellular

metabolism of APP [1,6–9]. APP is a type I membrane protein,

subject to N-glycosylation (immature APP/imAPP) in the endo-

plasmic reticulum (ER) in the early protein secretory pathway, and

further subject to O-glycosylation in the Golgi compartment in the

late secretory pathway [10]. Mature APP (mAPP), possessing both

N- and O-glycans, is subject to consecutive cleavages at the

extracellular juxtamembrane region by a- or b-secretase, and at

the transmembrane region by c-secretase in the late secretory

pathway [11]. This amyloidogenic cleavage of mAPP by b- and c-

secretases generates neurotoxic amyloid b-protein (Ab), and the

generation and oligomer formation of Ab are widely believed to be

the primary cause of Alzheimer’s disease (AD) [12]. Other

substrates of c-secretase such as APP-like proteins and neurexin,

but not Notch, also bind to X11s, although the interaction is not

restricted to type I membrane proteins [5].

In transgenic mice, overexpressing X11 or X11L, together with

the human APP Swedish mutation, resulted in a decrease of
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cerebral Ab levels and Ab plaque formation when compared to

mice overexpressing the human APP Swedish mutation alone

[13,14]. Conversely, the amyloidogenic metabolism of endogenous

APP and overexpressed human APP, including the generation of

Ab, was enhanced in the brains of X11-deficient, X11L-deficient

and X11/X11L doubly-deficient mice [15–17]. In the brain, X11s

are thought to associate with mAPP outside the detergent-resistant

membrane (DRM) or lipid raft, which is rich in active b-secretase

(BACE) [18]. It was also reported that dysfunctional X11s in X11s

knock-out mice facilitated the entry of mAPP into the DRM and

enhanced the cleavage of uncomplexed mAPP by BACE [16].

In addition to suppression of the amyloidogenic cleavage of

mAPP by direct binding between the PTB/PI domain of X11s and

the 681-GYENPTY-687 motif in the APP cytoplasmic region

[19,20], X11s show other regulations in APP metabolism. Indeed,

cells overexpressing X11s showed intracellular imAPP accumula-

tion, which means a suppression of APP maturation by

invalidation of O-glycosylation [1]. This resulted in a reduction

in the secretion of the N-terminal APP fragment, sAPPa/b; in the

generation of the C-terminal APP fragment, APP CTFa/b
(generated from the primary cleavage of APP by a- or b-secretase);

and in the secretion of Ab, generated by the intramembranous c-

cleavage of CTFb [1,6,7]. Thus, the intracellular trafficking of

APP, including the APP maturation steps regulated by X11s, is

closely associated with APP metabolism [11,19].

In this study, we performed a functional dissection of X11L,

which revealed that: (1) the C-terminal PDZ domains of X11L

regulate the passage of APP into early secretory pathway without

the direct-binding to APP and consequently regulate overall APP

metabolism including Ab generation, and (2) the imAPP

accumulated in early secretory pathway is subject to transport to

plasma membrane by unidentified way.

Results

Identification of X11L domain involved in the
suppression of APP maturation

APP is cleaved by secretases during the late secretory pathway

after it has undergone glycosylation; thus, mAPP is indeed the

substrate of the secretases and Ab is generated from mAPP

[11,19]. Previous studies showed that overexpression of X11L

suppressed APP maturation and resulted in the accumulation of

imAPP in cells [1]. To identify the functional region of X11L

involved in the suppression of APP maturation, we prepared

various domain-deleted X11L mutants (Fig. 1A). N-terminal

EGFP-tagged X11L mutants were expressed in N2a cells with

FLAG-APP, and the maturation of APP was examined by

immunoblotting (Fig. 1B). The ability of X11L to suppress the

maturation of APP and to accumulate imAPP is indicated as the

relative ratio of imAPP to mAPP (imAPP/mAPP) (Fig. 1C) in

which the ratio of cells with no X11L expression was set as 1.0

(column 2).

Moderate amounts of mAPP was detected along with imAPP in

cells in the absence of X11L expression (Fig. 1B, lane 2), while the

expression of X11L in these cells resulted in the suppression of

APP maturation and the significant accumulation of imAPP,

which also leads to a decrease in the levels of both CTFa and

CTFb, the products of mAPP cleavage by primary a- or b-

secretase (compare lane 2 to lane 3; to indicate CTFb, a relative

darker exposure of film was shown in lower row of Fig. 1B).

In response to the expression of the X11L mutants, which

showed expression levels almost identical to that of wild-type

X11L (some mutants with smaller size, PTB+C, C and PTB, tend

to express in lower level slightly), PTB+C (Fig. 1B, lane 4; Fig. 1C,

column 4) and C (Fig. 1B, lane 10; Fig. 1C, column 10) produced

a significant accumulation of imAPP, accompanied with a

decrease in CTFa and CTFb (compare lanes 4 and 10 to lane 2

in the lower row of Fig. 1B). The data indicate that X11L

including the two PDZ domains, PTB+C (column 4), DPTB

(column 6), C (column 10), and F520V (column 12) mutants along

with entire X11L (column 3) showed a significant accumulation of

imAPP (Fig. 1C), suggesting that the two PDZ domains of X11L

are required for the suppression of APP maturation.

Because it has been widely accepted that X11s can regulate APP

metabolism by a direct binding to APP through its PTB domain

[1,6–9], we also verified whether the association of APP with

X11L is required for the accumulation of imAPP. It has already

been known that X11L lacking APP-binding PTB domain (DPTB;

lane 6 in Fig. 1B) and X11L possessing an amino acid substitution

at Phe520 (F520V; lane 12 in Fig. 1B) don’t interact with APP

[21]. The interaction of APP with the X11L mutants used in this

study was examined by coimmunoprecipitation (Fig. 2), which

reconfirmed that the PTB domain of X11L binds to APP as

described previously [1]. Although DPTB and F520V mutants had

an effect on imAPP accumulation and caused a decrease in CTFa
and CTFb (Fig. 1B and C), we confirmed that both mutants did

not associate with APP (Fig. 2, lanes 6 and 12). Therefore, we

concluded that the C-terminal region, which includes the PDZ

domains, is involved in the accumulation of imAPP, without being

bound to APP directly. This regulation by X11L in APP

metabolism, therefore, is independent of the suppression of

amyloidogenic cleavage of mAPP by X11L which is widely known

as X11s function in the regulation of APP metabolism [5,16,22].

The PTB+C mutant (Fig. 1B, lane 4; Fig. 1C, column 4)

strongly suppressed the maturation of APP compared to the C

mutant, which contained only the C-terminal region (Fig. 1B,

lane 10; Fig. 1C, column 10). Attachment of the N-terminal PTB

domain to the C region may have stabilized the conformation of

the C region included the two PDZ domains, because X11, a

member of X11 family proteins, is reported to form the closed

conformation of the PDZ domains [23]. The DPTB mutant,

possessing an intact C-terminal region also showed a weak activity

in imAPP accumulation (Fig. 1B, lane 6; Fig. 1C, column 6).

Lack of a central PTB domain may make difficult to preserve

functional C-terminal structure.

X11 and X11L2 expression also showed effects comparable to

those of X11L (Fig. 1B, lanes 13 and 14, and Fig. 1C, columns

13 and 14), regardless of their weaker binding to APP compared to

X11L (compare lane 3 with lanes 13 and 14 in Fig. 2, and see

Fig. S1 for confirmation of X11s binding to APP). This result

suggests that all members of X11s has ability to accumulate

imAPP and also supports that the association strength between

APP and the X11s is not involved in the accumulation of imAPP.

X11L mutants carrying the two PDZ domains but lacking APP-

binding ability also showed a significant decrease in the secretion

of both Ab40 and Ab42 derived from mAPP (Fig. 1D: C, column

10; F520V, column 12), as did entire X11s (X11L, column 3; X11,

column 13; X11L2, column 14) and X11L mutants containing

PTB domain (PTB+C, column 4; PTB, column11). In contrast to

these, DPDZ1 (column 7) did not suppress Ab generation and

DPDZ2 (column 8) showed very weak suppression of Ab40 alone.

The observations suggest that existence of both PDZ domains is

significant for the Ab suppression, which is thought to dependent

on the suppression of APP maturation. The DPTB mutant, in spite

of the preservation of intact PDZ domains, had no effect on Ab
suppression. This may reflect to a weak activity in imAPP

accumulation (Fig. 1C and D, column 6), as described above,

probably by the conformation of C-terminal structure. In contrast
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to this, PTB alone (Fig. 1D, column 11) had an effect on the

suppression of Ab generation without significant accumulation of

imAPP (Fig. 1C, column 11). This PTB fragment may be

relatively free to localize in cytoplasm and can associate

predominantly to mAPP (Fig. 2, lane 11), when compared to

other PTB containing X11L peptide (Fig. 2, lanes 4, 5, 7 and 8),

and is thought to suppress the amyloidogenic processing of mAPP

as described previously [16].

Figure 1. Suppression of APP maturation and proteolytic metabolism by the PDZ domains of X11 proteins. (A) Schematic
representation of the structures of amino-terminal tagged X11L proteins. a: human X11L, b: X11L-PTB+C (368 to 749), c: X11L-N+PTB (1 to 555), d:
X11L-DPTB (D369 to 555), e: X11L-DPDZ1 (D561 to 651), f: X11L-DPDZ2 (D661 to 749), g: X11L-N (1 to 368), h: X11L-C (556 to 749), i: X11L-PTB (369 to
555), j: X11L F520V, k: human X11, and l: human X11L2. PTB, phosphotyrosine binding domain; PDZ, PDZ domain. Oval indicates FLAG (Fig. 2) or EGFP
(Fig. 1, 3, 6) tag. Numbers indicate amino acid positions. (B to D) Alteration of APP maturation and proteolytic metabolism in cells expressing EGFP-
X11L mutant proteins, X11 and X11L2. N2a cells (,26105) were transiently transfected with pcDNA3-FLAG-APP695 (0.8 mg) in the presence of various
X11L cDNA plasmids, pcDNA3.1-EGFP-X11L and pcDNA3.1-EGFP-X11L2 (a: 0.18 mg, b: 0.6 mg, c: 0.6 mg, d: 0.06 mg, e: 0.36 mg, f: 0.18 mg, g: 0.08 mg, h:
0.15 mg, i: 0.6 mg, j: 0.54 mg, k: 0.09 mg, and l: 0.12 mg). Plasmid amounts were adjusted to produce a similar level of protein expression, and empty
vector was added to yield a total of 1.4 mg of plasmid to standardize the amount of plasmid. The cell lysates were analyzed by immunoblotting with
an anti-FLAG M2 antibody to detect APP, an anti-EGFP antibody to detect X11L derivatives, an anti-actin antibody to detect actin, and an anti-APP/C
antibody to detect APP-CTFa/b (B). (C) The relative ratio of imAPP/mAPP is quantified. The relative ratio in cells in the absence of X11L was set as 1.0
(column 2). (D) Ab40 and Ab42 secreted into the medium of N2a cells were quantified with sELISA. Concentrations of Ab40 (left) and Ab42 (right) are
shown as means 6 s.e. (n = 4). Data were analyzed using the Student’s t-test (*, P,0.05; **, P,0.01; ***, P,0.001). Proteins showing a significant
decrease (P,0.01 and P,0.001) in Ab generation are shown as closed columns.
doi:10.1371/journal.pone.0022108.g001
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Therefore, strong effect of X11L in the suppression of Ab
generation is composed of, at least, two functions; one is the

suppression of amyloidogenic processing of mAPP in late protein

secretory pathway [16] in which X11L binds to mAPP through the

PTB domain, and another is the regulation of APP maturation in

early protein secretary pathway, where the two PDZ domains of

X11L function to imAPP independent of the direct binding.

Appearance of imAPP on plasma membrane of cells
expressing X11s

Next, we explored the localization of imAPP accumulated in

cells expressing X11L. We considered that the imAPP dominantly

accumulated in ER and/or early Golgi as a matter of course.

Contrary to our expectations, we found that some of imAPP

accumulated in cells appeared on the plasma membrane without

O-glycosylation (Fig. 3A). Proteins exposed on the outer surface of

cells expressing FLAG-APP in the presence of various EGFP-

X11L proteins were biotinylated, recovered by NeutrAvidin beads

from cell lysates, and subjected to immunoblotting with an anti-

FLAG antibody. Usually only mAPP is detected on the plasma

membrane (Fig. 3A, lane 2) because imAPP is localized at the

early protein secretory pathway [11,19]. Nevertheless, imAPP was

detected on the plasma membrane of cells expressing X11L (lane

3), reproducibly. In this study, actin (cytoplasmic protein), calnexin

Figure 2. PTB domain-dependent binding of X11L to APP. N2a cells (,26105) were transiently transfected with pcDNA3-APP695 (0.6 mg) in
the presence of various cDNA plasmids encoding the FLAG-X11L proteins: FLAG-X11 and FLAG-X11L2 (a: 0.2 mg, b: 0.8 mg, c: 0.4 mg, d: 0.2 mg, e:
0.2 mg, f: 0.4 mg, g: 0.4 mg, h: 0.1 mg, i: 0.8 mg, j: 0.2 mg, k: 0.2 mg, and l: 0.2 mg). Plasmid amounts were adjusted to produce a similar level of protein
expression, and empty vector was added to yield 1.4 mg of plasmid in total to standardize the plasmid amount. The cell lysates were subjected to
immunoprecipitation with an anti-FLAG antibody. The immunoprecipitate (IP) and cell lysate were analyzed by immunoblot analysis with anti-FLAG
or anti-APP/C antibodies. Lanes a to l correspond to the protein constructs described in Figure 1A. Numbers indicate protein molecular weight
standards (kDa). Asterisks indicate non-specific, immuno-reaction products. Association of X11s with APP is also shown in Figure S1.
doi:10.1371/journal.pone.0022108.g002
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(ER protein) and EGFP-X11L were not detected in biotinylated

cell-surface samples (Fig. S2), indicating that only cell-surface

proteins were biotinylated.

Cell surface-localized imAPP was also observed in cells

expressing the PTB+C mutant (Fig. 3A, lane 4), and a moderate

level of imAPP was detected on the surface of cells expressing C

(Fig. 3A, lane 10) and F520V (lane 12). The mutants lacking

either or both PDZ domains (N+PTB, lane 5; DPDZ1, lane 7;

DPDZ2, lane 8; N, lane 9; PTB, lane 11) had no effect on the

presence of imAPP on the plasma membrane. One mutant DPTB,

possessing an intact C-terminal region, also had no effect (lane 6)

which may be due to a weak activity in imAPP accumulation

(Fig. 1B, lane 6; Fig. 1C, column 6; Fig. 3A, lane 6 of second

row). These observations suggested that some of imAPP

accumulated by expression of X11L proteins containing C-

terminal PDZ domains was transported to plasma membrane

and this activity might tend to be enhanced in the presence of

entire PTB domain (compare lane 4 to lane10, and compare lane

3 to lane 12 in Fig. 3A).

The observation that imAPP exposed on the plasma membrane

of cells that expressed with X11L implies that imAPP, which was

not subjected to O-glycosylation, might be transported to the

plasma membrane by unidentified mechanism, probably differs

from the classical Golgi mediated protein secretory pathway. To

Figure 3. Cell surface expression of imAPP induced by X11L mutant proteins. (A) Effect of X11L mutant proteins. N2a cells (,26105) were
transiently transfected with pcDNA3-FLAG-APP (0.8 mg) in the presence of various cDNA plasmids encoding EGFP-X11L proteins (a: 0.18 mg, b: 0.6 mg,
c: 0.6 mg, d: 0.06 mg, e: 0.36 mg, f: 0.18 mg, g: 0.08 mg, h: 0.15 mg, i: 0.6 mg, and j: 0.54 mg). To standardize the plasmid amount, empty vector was added
to yield 1.4 mg of plasmid in total. Cells were labeled with sulfo-NHS-LC-biotin and NeutrAvidin was used to collect the biotinylated proteins. The cell
lysates and biotinylated proteins (Cell surface) were analyzed by immunoblotting with an anti-FLAG antibody to detect APP, an anti-EGFP antibody to
detect X11L proteins, and an anti-actin antibody to detect actin. Lanes a to j correspond to the constructs described in Figure 1A. (B) Specificity of
X11s function. N2a cells (,26105) were transiently cotransfected with pcDNA3-FLAG-APP695 (0.6 mg) and 0.2 mg of the following plasmids:
pcDNA3.1-HA-X11 (lane 3), pcDNA3.1-HA-X11L (lane 4), pcDNA3.1-HA-X11L2 (lane 5), pcDNA3.1-HA-FE65 (lane 6), or pcDNA3.1-HA-JIP1b (lane 7).
Cells were labeled with sulfo-NHS-LC-biotin and NeutrAvidin was used to collect biotinylated proteins. The cell lysate and biotinylated proteins (Cell
surface) were analyzed by immunoblotting with an anti-FLAG antibody to detect APP, an anti-HA antibody to detect HA-binding proteins, and an
anti-actin antibody to detect actin.
doi:10.1371/journal.pone.0022108.g003
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exclude the possibility that X11L suppressed protein O-glycosyl-

ation in the Golgi, we examined the expression of the vesicular

stomatitis virus G protein (VSVG), a protein subjected to O-

glycosylation [24], and found that O-glycosylated VSVG was

detected in cells in the presence, and absence, of X11L expression

(Fig. S3). Although we cannot rule out a possibility that the

presence of X11L may specifically interfere with the O-

glycosylation of imAPP without affecting the O-glycosylation of

VSVG, this result supports our observation that imAPP was

transported to the plasma membrane, by unidentified way,

probably without passing Golgi mediated protein secretory

pathway.

To reconfirm that protein mobility shift on SDS-PAGE is due to

the O-glycosylation of APP (this has been demonstrated in our and

others’ previous works [10,19,25]) , APP was recovered from cells

with or without X11L expression, after cell surface labeling of

proteins with biotin, by immunoprecipitation with anti-APP

antibody (Fig. S4). The immunoprecipitated APP was treated

with endoglycosidase H to remove N-glycans, neuraminidase to

remove neuraminic acids, and a combination of neuraminidase

and O-glycanase (O-glycans with terminal neuraminic acid show

resistance to O-glycanase) to remove O-glycans [10], and APP

exposed on the outer surface of cells was detected by immuno-

blotting with anti-biotin antibody. The outer surface-localized

mAPP of cells without X11L expression moved down to the

position of imAPP on SDS-PAGE (Fig. S4, left), indicating that O-

glycans were removed from mAPP. In contrast to this, the outer

surface-localized imAPP of cells with X11L expression did not

show the mobility shift by enzyme treatment (Fig. S4, right),

indicating that imAPP, which is not subject to O-glycosylation,

appeared to the outer surface of cells in the presence of X11L.

This effect is characteristic of X11 family proteins. Other APP-

binding proteins, such as FE65 and JIP1b which are also recognize

the 681-GYENPTY-687 motif in the APP cytoplasmic region

[19,20], did not accumulate imAPP in cells and appear imAPP on

the plasma membrane (Fig. 3B).

We further and carefully performed studies to verify the

transport of imAPP. It is known that the reduced temperature

prevents transfer of membrane glycoproteins to cell surface

[26,27]. Cells with or without expression of X11L were cultured

at 20uC for 0 to 12 h and APP exposed on the outer surface of cells

was analyzed by immunoblotting along with total cellular APP

(Fig. 4). In the absence of X11L expression, cell surface-localized

mAPP decreased depending on culture time and no surface mAPP

was detected at 8 h (Fig. 4A, lanes 3 to 7), while in the presence of

X11L, cell surface-localized imAPP first decreased by 2–4 h but

re-increased at 8 to 12 h (Fig. 4A, lanes 8 to 12). The quantitative

analysis of APP exposed on the outer surface of cells was also

shown in Fig 4 B (left, mAPP on cell surface of cells without X11L

expression; right, imAPP on cell surface of cells with X11L

expression). This study supports our idea that X11L mediates

imAPP transfer onto plasma membrane by unidentified mecha-

nism but not through the conventional Golgi mediated secretory

pathway.

Rab1 is known as an essential factor required for the ER to

Golgi transport [28]. We analyzed the transport of APP from the

ER to the plasma membrane using dominant-negative mutants of

Rab1a and Rab1b. We explored four dominant-negative mutants,

Rab1aS25N (Asn was substituted for Ser25 of Rab1a), Ra-

b1aN124I (Ile was substituted for Asn124), Rab1bS22N (Asn was

substituted for Ser 22 of Rab1b) and Rab1bN121I (Ile was

substituted for Asn121) in the effect of the accumulation of imAPP

(Fig. S5). As expected, these dominant-negative Rab1 mutants

inhibited the maturation of APP and accumulated imAPP in cells.

Because Rab1bN121I mutant was most effective to accumulate

imAPP, we further examined whether X11L expression performs

the cell surface transport of imAPP which was accumulated in the

ER by the expression of Rab1bN121I mutant (Fig. 5). In the

absence of X11L, mAPP alone appeared on cell surface and the

amount was decreased by the expression of Rab1bN121I mutant

(Fig. 5, compare lane 2 to lane 4 on first row). The expression of

Rab1bN121I increased intracellular imAPP (compare lane 4 to

lane 2 on second row) but the imAPP did not appear on cell

surface (lane 4 on first row). When X11L was expressed with

Rab1bN121I, imAPP appeared on the cell surface (lane 5 on first

row) along with accumulated intracellular imAPP (lane 5 on

second row), indicating that imAPP accumulated in ER under the

expression of dominant-negative mutant of Rab1b was transferred

to the plasma membrane without passing Rab1b-dependent

classical secretory pathway. Taken together, X11L can mediate

the transport of imAPP to the plasma membrane by unidentified

mechanism, which is different from Golgi mediated protein

secretory pathway.

The localization of FLAG-APP in cells expressing X11L and

the PTB+C mutant was compared in cells with, or without,

permeabilization. Cells expressing X11L and PTB+C showed

localization of APP to the plasma membrane when cells were not

permeabilized as observed in cells without expression of X11L

(Fig. 6, left [intact cell]; vector, no expression of X11L),

regardless of the fact that almost no mAPP was found in cells

expressing X11L and PTB+C (Fig. 3A, lanes 3 and 4). No

intracellular-staining of FLAG-APP was observed in intact cells.

In contrast to this, FLAG-APP was detected both at perinuclear

region and to plasma membrane of permeabilized cells (Fig. 6,

right [permeabilized cell]. This result confirmed that the

periplasmic staining of FLAG-APP observed in intact cells was

due to signal of imAPP present on the cell surface (Fig. 3A). The

imAPP exposed on the plasma membrane may be not a result of

membrane fusion between the ER and the plasma membrane in

response to X11L expression or an observation of ER membrane

fragments, because the ER-resident transmembrane protein,

calnexin, was not detected on the plasma membrane of cells

expressing X11L (Fig. S2). These results (Fig. 6), together with

the biochemical analyses (Figs. 3 to 5), supported our idea that

X11L has the ability to transport imAPP, which was accumulated

in the early secretory pathway such as ER, to the plasma

membrane.

To confirm furthermore that this unidentified pathway that was

capable of transporting imAPP to the plasma membrane was not

an artificial event due to the exogenous expression of X11L, we

explored whether cells also utilized this pathway when APP

maturation was suppressed, without the exogenous expression of

X11L. Treatment of cells with brefeldin A (BFA) inhibits the

transport of secretory/membrane proteins from the ER to the

Golgi. In fact, cells treated with BFA showed a remarkable

increase in imAPP at 2 hr (Fig. 7, lane 5 in second row), and

mAPP completely disappeared from the cell surface at 2 h (Fig. 7,

lane 5 in first row). Interestingly, imAPP appeared on the outer cell

surface at 8 h of BFA treatment (lane 7 in first row), which was

weak but similar to cells expressing X11L (lane 8 in first row).

These observations indicated that cells may naturally possess a

secretory pathway that transports imAPP from the ER to the

plasma membrane; however, this unidentified pathway may be

generally quiescent. When the Golgi mediated protein secretory

pathway is subject to malfunction, this pathway, in which X11s is

expected to play an important role, may help to dispose of some of

the accumulated protein(s). Indeed, in Fig. 7, endogenous X11

proteins, including the ubiquitously expressed X11L2, may
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function to transport imAPP to the plasma membrane of cells

without the exogenous expression of X11L.

Discussion

The X11 family proteins X11, X11L and X11L2 are adaptor

proteins, which contain a divergent N-terminal region that binds

synaptic proteins such as Munc-18 and an evolutionarily

conserved C-terminal region with a phosphotyrosine binding/

phosphotyrosine interaction (PTB/PI) domain that associates

with various proteins such as APP, Alcadein and ADP-

ribosylation factor (Arf) and two PDZ domains that interact with

proteins such as KIF17 and NF-kB [1,29–34]. Cell activities such

as intracellular protein transport, presynaptic neurotransmitter

release and protein metabolism are regulated through protein-

protein interactions mediated by members of the X11 family

[5,20,35].

In this study, we have focused on the novel role of X11s in the

intracellular transport of APP, because Ab, which is a major factor

in the pathogenesis of Alzheimer’s disease [12], is generated from

the proteolytic cleavages of APP during protein secretory pathway

[11]. Among the X11 proteins, X11L binds more strongly to APP

than either X11 or X11L2 (Fig. 2 and Fig. S1), and in brain,

X11L is expressed more widely than X11, and colocalizes with the

expression of APP [16]. Furthermore, X11L-deficient mice

showed a remarkable increase in the amyloidogenic processing

of endogenous mAPP, including Ab generation, in the brain

compared to X11-deficient mice, which indicated that X11L

contributes to the regulation of APP metabolism along with the

protein transport in cells to a greater extent than does X11

[15,16].

At least two independent mechanisms are possible in the

suppression of APP metabolism by X11s. One of the mechanisms

through which X11s regulate APP metabolism is the suppression

Figure 4. Cell surface appearance of imAPP by X11L expression in cells suffered from reduced temperature. N2a cells (,16106)
transferred transiently with 0.6 mg of pcDNA3-FLAG-APP with (+) or without (2) 0.2 mg of pcDNA3.1-HA-X11L were cultured for indicated time (h) at
20uC. To standardize the plasmid amount, empty vector was added to yield 0.8 mg of plasmid in total. The cells were labeled with sulfo-NHS-LC-biotin
and NeutrAvidin was used to collect biotinylated proteins. (A) The cell lysates and biotinylated proteins (Cell surface) were subjected to immunoblot
analysis with anti-FLAG antibody to detect APP, anti-HA antibody to detect X11L, and anti-a-tubulin antibody to detect a tubulin. (B) The relative
ratio of cell surface mAPP in cells without X11L expression (first row of left panel; lanes 3 to 7 in A) and that of cell surface imAPP in cells with X11L
expression (first row of right panel; lanes 8 to 12 in A) are quantified. The relative ratio in cells at time 0 (lanes 3 and 8) was set as 1.0. Data were
analyzed using the Student’s t-test with standard error (n = 4; *, P,0.05).
doi:10.1371/journal.pone.0022108.g004
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of mAPP translocation into the detergent-resistant membrane

region (DRM) or lipid raft, where b-secretase is active, by the

direct binding of X11s to mAPP. This direct binding by X11s

suppresses the amyloidogenic cleavage of APP by b-secretase

[16,22,35]. X11s also bind to c-secretase and directly suppress the

c-site cleavage of mAPP [36,37]. In either situation, the metabolic

suppression of mAPP by direct binding to X11s occurs during the

late protein secretory pathway. In addition to the suppression of

mAPP cleavages, X11s expression in cells induces an overall

metabolic stabilization of APP, in other words, X11s induce

intracellular accumulation of imAPP, which leads to a consequent

decrease in Ab generation, but the detailed mechanism was still

unclear [1,6–9] when compared to X11L function to prevent

amyloidogenic cleavage of mAPP [16,22].

In this study, we analyzed the mechanism of imAPP accumu-

lation in cells with expression of X11L. Our results revealed that

the C-terminal PDZ domains of X11L are required for the

suppression of APP maturation and the accumulation of imAPP;

however, the PTB/PI domain, required for APP-binding, was

independent of this activity. Although the molecular mechanism

by which X11L suppresses the maturation of imAPP is still under

consideration, X11s may be a component to regulate protein

transport between early and late Golgi, or the ER and early Golgi.

Another APP-binding protein Numb was reported to accumu-

late mAPP, but not imAPP, into the early endosomal and recycling

compartments of cells [38]. The orchestrated functions of such

adaptor proteins to APP in the respective stages of protein

secretory pathway may play an important role in the intracellular

transport and metabolism of APP.

We found that some of imAPP accumulated in the early

secretory pathway by expression of X11L appeared on the cell

surface plasma membrane without O-glycosylation. The C-

terminal PDZ domains of X11L were required for this activity.

Although the presence of the PTB/PI domain along with the PDZ

domains seemed to enhance the appearance of imAPP on the

plasma membrane, the interaction of imAPP with X11L via the

PTB/PI domain is not involved in the imAPP transport. This

imAPP transport to the plasma membrane was verified by three

independent procedures; (i) when cells were cultured at 20uC
which blocks the secretoty pathway at the late Golgi, cellular

imAPP accumulated and the imAPP was appeared on the plasma

membrane in the presence of X11L, (ii) when Rab1 dominant-

negative mutant which blocks the transport of proteins from the

ER to the Golgi were expressed in cells, the accumulated

intracellular imAPP appeared on the plasma membrane by

expression of X11L, and (iii) when brefeldin A blocked the

transport of proteins from the ER to the Golgi, imAPP appeared

on plasma membrane in cells, without exogenous expression of

X11L.

Taken together, excess X11s suppress the maturation of APP by

preventing the imAPP transport into the late secretory pathway,

but X11s also show their function to transport the imAPP

accumulated in the early secretory pathway to the plasma

membrane. Cells are likely to possess this unidentified pathway

to transport proteins accumulated in the ER to the plasma

membrane, as can be observed in a study with BFA (Fig. 7), which

may be mediated by X11s, but this pathway must be very slender

when classical Golgi-mediated pathway has functioned in healthy

cells.

The idea that other membrane and secretory proteins, which

are not involved in APP or X11s, may be transported to the

plasma membrane from the ER, when proteins are accumulated

Figure 5. Cell surface appearance of imAPP by X11L expression
in cells expressing Rab1b dominat-negative mutant. N2a cells
(,26105) were transferred transiently with 0.3 mg of pcDNA3-FLAG-APP
with (+) or without (2) 0.1 mg of pcDNA3.1-HA-X11L and 0.4 mg of pCA-
FLAG-Rab1bN121I. To standardize the plasmid amount, empty vector
was added to yield 0.8 mg of plasmid in total. The cells were labeled
with sulfo-NHS-LC-biotin and NeutrAvidin was used to collect
biotinylated proteins. The cell lysates and biotinylated proteins (Cell
surface) were subjected to immunoblot analysis with anti-FLAG
antibody to detect APP, anti-HA antibody to detect X11s, and anti-a-
tubulin antibody to detect a tubulin.
doi:10.1371/journal.pone.0022108.g005

Figure 6. Expression of APP on the outer membrane. N2a cells (,26104) were transiently cotransfected with 0.1 mg of pcDNA3-FLAG-APP695
and 0.04 mg of pcDNA3.1-EGFP-X11L, pcDNA3.1-EGFP-PTB+C, or empty vector. The cells were washed with ice-cold PBS, and FLAG-APP present on
the cell surface was labeled with anti-FLAG antibody and anti-mouse IgG antibody-conjugated Alexa 546 on ice (Intact cell, left panels). The same
intact cells were permeabilized and intracellular APP was detected with anti-APP/C antibody and anti-rabbit IgG antibody-conjugated Alexa 633
(Permeabilized cell, right panels). The cells were observed using a confocal laser-scanning microscope LSM510 (Carl Zeiss, Oberkochen, Germany).
DIC: Differential Interference Contrast microscopy; DNA: nuclear DNA staining with 49,6-diamino-2-phenylindole (DAPI). Signals are merged in the
right-hand rows. Scale bar, 5 mm.
doi:10.1371/journal.pone.0022108.g006
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in early secretory pathway by some reasons, is an interesting one.

APP works as a vesicular cargo receptors for the motor protein

kinesin-1 [39,40] Therefore, APP vesicles may contain various

types of membrane-associated and/or secretory proteins. Thus,

such proteins may also be transported to the plasma membrane

when the proteins are unusually accumulated in the early secretory

pathway.

In any case, our observations suggest that the existence of an

unidentified protein trafficking pathway at least for APP, in which

X11s are likely to involve in the regulation of imAPP accumulation

and transport. Such novel X11s function, together with the known

X11s function of the regulation of APP processing by directly

binding to APP, controls APP metabolism through the regulation

of APP trafficking. Therefore, understanding for both roles of

X11s in APP metabolism and transport should shed light on the

molecular mechanism of Ab generation in Alzheimer’s disease.

Materials and Methods

Plasmids
The cDNA constructs pcDNA3-APP695, pcDNA3-FLAG-AP-

P695, pcDNA3.1-FLAG-X11L, pcDNA3.1-FLAG-X11L-PTB+C,

pcDNA3.1-FLAG-X11L-N+PTB, pcDNA3.1-FLAG-X11L F520V

(Phe to Val mutation at amino acid 520), pcDfNA3.1-HA-X11L,

pcDNA3.1-HA-X11, pcDNA3.1-HA-X11L2, pcDNA3.1-HA-FE-

65, pcDNA3.1-HA-JIP1b, pcDNA3.1-EGFP-X11L, pcDNA3.1-

EGFP-X11, and pcDNA3.1-EGFP-X11L2 have been described

previously [1,21,41–44]. The constructs, pcDNA3.1-FLAG-X11L-

DPTB (deletion of amino acids 369 to 555), pcDNA3.1-FLAG-

X11L-DPDZ1 (deletion of amino acids 561 to 651), pcDNA3.1-

FLAG-X11L-DPDZ2 (deletion of amino acids 661 to 749),

pcDNA3.1-FLAG-X11L-N (amino-terminal amino acids 1 to 368),

pcDNA3.1-FLAG-X11L-C (carboxyl-terminal amino acids 556 to

749), and pcDNA3.1-FLAG-X11L-PTB (amino acids 369 to 555)

were generated by PCR using pcDNA3.1-FLAG-X11L as the

template. The fragments generated were then ligated into pcD-

NA3.1-FLAG-X11L at the NheI/XhoI site instead of the X11L

sequence. The constructs pcDNA3.1-EGFP-X11L-PTB+C, pcDNA-

3.1-EGFP-X11L-N+PTB, pcDNA3.1-EGFP-X11L F520V, pcDN-

A3.1-EGFP-X11L-DPTB, pcDNA3.1-EGFP-X11L-DPDZ1, pcDN-

A3.1-EGFP-X11L-DPDZ2, pcDNA3.1-EGFP-X11L-N, pcDNA-

3.1-EGFP-X11L-C, and pcDNA3.1-FLAG-X11L-PTB were gener-

ated by replacing the FLAG-tag with EGFP. The construct pcD-

NA3.1-VSV-G-ts045-GFP was kindly gifted from Dr. J. Lippin-

cott-Schwartz [24]. The constructs pCA-FLAG-Rab1aN124I, pCA-

FLAG-Rab1aS25N, pCA-FLAG-Rab1bN121I and pCA-FLAG-

Rab1bS22N were kindly gifted from D. Y. Kawaoka [45].

Antibodies
The commercially available antibodies used in this study were

purchased as follows: mouse monoclonal anti-FLAG antibody (M2,

Sigma-Aldrich, St Louis, MO, USA), anti-HA (12CA5, Roche

Diagnostics, Mannheim, Germany), anti-GFP (1E4, Medical &

Biological Laboratories/MBL, Nagoya, Japan), anti-GM130 and

anti-syntaxin 6 (BD Biosciences, Franklin Lakes, NJ, USA), anti-

actin (MAB1501, Chemicon/Millipore, Billeria, MA, USA), anti-a-

tubulin (sc-32293, SANTA CRUZ Biotech., Santa Cruz CA, USA)

and anti-Ab (82E1, Immuno-Biological Laboratories/IBL, Fujioka,

Japan); rabbit polyclonal anti-APP C-terminal APP/C (A8717,

Sigma-Aldrich), and anti-calnexin (Stressgen, Ann Arbor, MI,

USA); goat polyclonal anti-rabbit and anti-mouse immunoglobulin

antibodies conjugated to horseradish peroxidase (GE Healthcare

Life Sciences, Little Chalfont, UK); and goat anti-rabbit and horse

anti-mouse immunoglobulin antibodies conjugated to Alexa 546 or

Alexa 633 (Molecular probes/Invitrogen, Carsbad, CA, USA).

Cell culture and expression of proteins
Mouse neuroblastoma cell line Neuro2a (N2a) cells were

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% (v/v) heat-inactivated fetal bovine serum

(FBS). To express proteins, approximately (,) 26105 cells for a

12-well dish and ,16106 cells for a six-well dish were transiently

transfected with 0.3 to 1 mg of the plasmids indicated using

LipofectAMINE 2000 (Invitrogen, Carlsbad, CA, USA), accord-

ing to the manufacturer’s protocol. The cells were cultured for 32

to 36 h in DMEM containing 10% (v/v) FBS.

Quantification of Ab40 and Ab42
N2a cells (,16106) were transiently transfected with pcDNA3-

FLAG-APP695 and the plasmid indicated, and then cultured for 32

to 48 h. Ab40 and Ab42, secreted into the medium, were quantified

using a sandwich enzyme-linked immunosorbent assay (sELISA) as

described previously [46]. Briefly, the wells of a 96-well plate were

coated with Ab40 (4D1) or Ab42 (4D8) end-specific monoclonal

antibodies (0.3 mg of IgG in PBS), washed with PBS containing

0.05% (v/v) Tween 20 (PBST), blocked with bovine serum albumin

(BSA, 3% [w/v] in PBS), and washed with PBST [10]. Then, a

sample (100 ml), suitably diluted with PBST containing 1% (w/v)

BSA (dilution buffer), was incubated together with a standard

amount of synthetic Ab1-40 or Ab1-42 peptide. After washing, the

wells were treated with biotinylated 82E1 [47], washed, and

incubated with 100 ml of a streptavidin-horseradish peroxidase

complex (1:2,000 dilution; RPN1051, Amersham Pharmacia

Biotech). The plates were washed again, and 100 ml of 2,29-azino-

bis (3-ethylbenzothiazoline-6-sulfonia acid) or ABTS solution (KPL

5062-01, Kirkegaard & Perry Laboratories Inc., Gaithersburg, MD)

was added to the wells. The plates were incubated at room

temperature and the absorbance was measured at 415 nm.

Co-immunoprecipitation and biotinylation of cell surface
proteins

N2a cells (,16106) were transiently transfected with the

plasmid indicated as described above. Cells were harvested and

Figure 7. imAPP transport to plasma membrane in cells treated
with Brefeldin A. N2a cells (,26105) were transiently transfected
with pcDNA3.1-FLAG-APP (0.6 mg) in the presence (lane 8) or absence
(lanes 3 to 7) of pcDNA3.1-HA-X11L (0.2 mg). To standardize the plasmid
amount, empty vector was added to yield 0.8 mg of plasmid in total.
Cells were treated with brefeldin A (BFA, 10 mg/ml) for 10 min (1/6 h,
lane 4), 2 h (lane 5), 4 h (lane 6) and 8 h (lanes 2 and 7), or without
reagent (2, lanes 1, 3, 8). Cells were labeled with sulfo-NHS-LC-biotin
and NeutrAvidin was used to collect the biotinylated proteins (Cell
surface). The cell lysates and biotinylated proteins were subjected to
immunoblot analysis with anti-FLAG antibody to detect APP, anti-HA
antibody to detect X11L, and anti-actin antibody to detect actin.
doi:10.1371/journal.pone.0022108.g007
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lysed in HBS-T lysis buffer (10 mM HEPES [pH 7.6] containing

150 mM NaCl, 5 mM EDTA, 0.5% [v/v] Triton X-100, 5 mg/ml

chymostatin, 5 mg/ml leupeptin, and 5 mg/ml pepstatin A) and

centrifuged at 10,0006 g for 10 min. The resulting supernatants

were incubated with the antibodies indicated at 4uC for 2 h. The

immunocomplex was recovered using protein G-Sepharose beads

(GE Healthcare Life Sciences), and the proteins were analyzed by

immunoblotting with the antibodies indicated.

Cell surface proteins were biotinylated with EZ-Link Sulfo-

NHS-LC-Biotin (Thermo Fisher Scientific, Walthan, MA USA)

for 30 min on ice, and the reaction was stopped by washing cells

with PBS containing 50 mM glycine. The cells were lysed in HBS-

T, and biotinylated proteins were recovered with Immobilized

NeutrAvidin Gel (Thermo Scientific) and analyzed by immuno-

blotting. Actin and calnexin were used as controls to show that the

intracellular proteins were not biotinylated.

Brefeldin A treatment
N2a cells (,16106) were transiently transfected with the

amount of plasmid indicated as described above and treated with

10 mg/ml of brefeldin A (BFA, Sigma-Aldrich) for 10 minutes, and

two, four, or eight hours. Cell surface proteins were biotinylated

with EZ-Link Sulfo-NHS-LC-Biotin (Thermo Scientific) for

30 min on ice, and the reaction was stopped by washing cells

with PBS containing 50 mM glycine [48]. The cells were lysed in

HBS-T, and biotinylated proteins were recovered and analyzed by

immunoblotting as described above.

Supporting Information

Figure S1 Binding ability of X11 proteins to APP. N2a

cells (,26105) were transiently transfected with pcDNA3-

FLAG-APP695 (0.6 mg) in the presence (+, 0.2 mg) or absence

(2) of pcDNA3.1-HA-X11, pcDNA3.1-HA-X11L and pc

DNA3.1-HA-X11L2. To standardize the plasmid amount,

empty vector was added to yield 0.8 mg of plasmid in total.

The cell lysates were subject to co-immunoprecipitation with

anti-FLAG antibody. The immunoprecipitate (IP) and cell

lysates were subjected to immunoblot analysis with anti-HA

and anti-FLAG antibodies.

(TIFF)

Figure S2 Specific labeling of cell surface proteins. N2a

cells (,26105) were transiently transfected with pcDNA3-FLAG-

APP695 (0.6 mg) in the presence (+) or absence (2) of pcDNA3.1-

EGFP-X11L (0.2 mg). To standardize the plasmid amount, empty

vector was added to yield 0.8 mg of plasmid in total. Cells were

labeled with sulfo-NHS-LC-biotin and NeutrAvidin was used to

collect biotinylated proteins. The cell lysates and biotinylated

proteins (Cell surface) were subjected to immunoblot analysis with

an anti-FLAG antibody to detect APP, an anti-EGFP antibody to

detect X11L, an anti-calnexin antibody to detect calnexin, and an

anti-actin antibody to detect actin.

(TIFF)

Figure S3 Suppression of O-glycosylation of APP, but
not VSVG, by X11L. (A) N2a cells (,26105) were transiently

transfected with pcDNA3-FLAG-APP695 (0.4 mg) in the presence

(+) or absence (2) of pcDNA3.1-HA-X11L (0.4 mg). To

standardize the plasmid amounts, empty vector was added to

yield 0.8 mg of plasmid in total. The cell lysates were analyzed by

immunoblotting with an anti-FLAG (M2) antibody to detect APP

and an anti-HA antibody to detect X11L. (B) N2a cells (,26105)

cultured at 32uC or 39.5uC were transiently cotransfected with

pcDNA3.1-VSVG-ts045-GFP (0.4 mg) and pcDNA3.1-HA-X11L

(0.4 mg) or empty vector (2). The cell lysates were analyzed by

immunoblotting with an anti-EGFP antibody to detect VSVG-

ts045-GFP and an anti-HA antibody to detect X11L. This

temperature sensitive (ts) mutant of the VSVG protein resides in

the early secretary pathway at 32uC and is transported into the late

secretary pathway where O-glycosylation occurs at 39.5uC. The

‘‘mature’’ indicates proteins modified with O-glycosylation.

(TIFF)

Figure S4 Characterization of APP exposed on the outer
surface of cells. HEK293 cells were (,16106) were transferred

transiently with 0.5 mg of pcDNA3-FLAG-APP with (right panel)

or without (left panel) pcDNA3-hX11L (Tomita et al., [1999] J.

Biol. Chem. 274, 2243–2254). The cell surface proteins were

biotynylated and cells were lysed as described in text. Biotinylated

APP were treated with the enzymes indicated as descrived

previously (Tomita et al., [1998] J. Biol. Chem. 273, 6277–6284)

and recovered by immunoprecipitation with anti-APP G369

antibody (Oishi et al., [1997] Mol. Med. 3, 111–123) and the

immunoprecipitates were analyzed by immunoblotting with anti-

biotin antibody (BN-34, AbcamCambridge, UK). Control,

samples treated without enzyme (buffer alone),; Endo H, samples

treated with endoglycosidase H; Neu, samples treated with

neuraminidase; Neu+O-Gly, samples treated with a combination

of neuraminidase and O-glycanase. mAPP, mature APP (N- and

O-glycosylated APP); imAPP, immature APP (N-glycosylated

APP).

(TIFF)

Figure S5 Effect of Rab1 dominant-negative forms in
intracellular accumulation of imAPP. N2a cells (,26105)

were transferred transiently with 0.3 mg of pcDNA3-FLAG-APP

with or without (2) 0.3 mg of pCA-FLAG-Rab1aS25N (lane 3),

0.4 mg of pCA-FLAG-Rab1aN124I (lane 4), 0.3 mg of pCA-

FLAG-Rab1bS22N (lane 5) or 0.4 mg of pCA-FLAG-Rab1b-

N121I (lane 6). To standardize the plasmid amount, empty vector

was added to yield 0.7 mg of plasmid in total. The cell lysates were

subjected to immunoblot analysis with anti-FLAG antibody to

detect APP and rab1, and anti-a-tubulin antibody to detect a
tubulin. mAPP, mature APP (N- and O-glycosylated APP); imAPP,

immature APP (N-glycosylated APP).

(TIFF)
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