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Aims Cardiac resynchronization therapy (CRT) involves time-consuming procedures to achieve an
optimal programming of the system, at implant as well as during follow-up, when remodelling
occurs. A device equipped with an implantable sensor able to measure peak endocardial acceleration
(PEA) has been recently developed to monitor cardiac function and to guide CRT programming.
During scanning of the atrioventricular delay (AVD), PEA reflects both left ventricle (LV) contractility
(LV dP/dtmax) and transmitral flow. A new CRT optimization algorithm, based on recording of PEA
(PEAarea method) was developed, and compared with measurements of LV dP/dtmax, to identify an
optimal CRT configuration.
Methods and results We studied 15 patients in New York Heart Association classes II–IV and with a QRS
duration .130 ms, who had undergone implantation of a biventricular (BiV) pulse generator connected
to a right ventricular (RV) PEA sensor. At a mean of 39+15 days after implantation of the CRT system,
the patients underwent cardiac catheterization. During single-chamber LV or during BiV stimulation,
with initial RV or LV stimulation, and at settings of interventricular intervals between 0 and 40 ms,
the AVD was scanned between 60 and 220 ms, while LV dP/dtmax and PEA were measured. The area of
PEA curve (PEAarea method) was estimated as the average of PEA values measured during AVD scanning.
A �10% increase in LV dP/dtmax was observed in 12 of 15 patients (80%), who were classified as respon-
ders to CRT. In nine of 12 responders (75%), the optimal pacing configuration identified by the PEAarea

method was associated with the greatest LV dP/dtmax.
Conclusion The concordance of the PEAarea method with measurements of LV dP/dtmax suggests that this
new, operator-independent algorithm is a reliable means of CRT optimization.
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Introduction

Cardiac resynchronization therapy (CRT) is an established
therapy for patients with advanced, congestive heart
failure (CHF) associated with cardiac dyssynchrony. The
mechanisms of action of CRT are complex, as it interacts
with several electromechanical variables, including atrio-
ventricular (AV), interventricular (VV), intraventricular,

and intramural delays. Information regarding the optimal
programming and follow-up of these devices are limited.

Left ventricular (LV) dP/dtmax and several non-invasive
indices have been used to optimize the functions of CRT
devices, in particular AV delay (AVD) and VV configuration,1–6

and recent clinical experience has confirmed the need for,
and benefits of their long-term reprogramming, as their
optimal stimulation settings might change over time.7–10

A direct assessment of changes in systolic function (LV dP/
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which are neither practical, nor ethically acceptable as a
routine procedure.

As a consequence, in clinical practice, the optimization of
CRT is usually achieved with the assistance of non-invasive
echocardiographic procedures, which can only be performed
with the patient supine, and are costly, time-consuming,
and operator-dependent.

A haemodynamic sensor integrated in a CRT pulse genera-
tor, which automatically calculates and optimizes the pro-
grammable settings of the device, might be an objective
means of assessing and adjusting therapy, also during activi-
ties or exercise.

As the myocardium contracts isometrically, it generates
muscular and valve vibrations (endocardial accelerations)
that are transmitted throughout the heart and thus
measured with an implantable microaccelerometer located
inside the tip of a conventional unipolar pacing lead.
These vibrations, in their audible component, are respon-
sible for the first heart sound. A pacing system equipped
with a microaccelerometer sensor (PEA sensor), able to
measure the peak of the endocardial acceleration during
the isovolumic contraction phase (first component of the
signal here defined as ‘PEA’), has been previously developed
and clinically evaluated.11,12 The system allows monitoring
of myocardial function by means of PEA, which was ident-
ified as an expression of cardiac contractility.13 Till now,
several clinical applications and tools based on PEA assess-
ment have been proposed.14–17

A new CRT-P device (The New LivingTM CHF, Sorin Group
CRM, Saluggia, Italy) equipped with an implantable PEA
sensor has been recently developed to monitor cardiac
function and guide CRT programming in patients affected
by CHF.

This study examined the performance of a new CRT
optimization algorithm based on PEA measurements
(PEAarea method) in the identification of the optimal CRT
pacing configuration, compared with direct measurements
of LV pressure (LV dP/dtmax).

Methods

Patient population

The study included 15 patients (mean age ¼ 72+8 years, 13
men) with indications of CRT in accordance with standard
international guidance. They were in New York Heart Associ-
ation (NYHA) CHF functional class II–IV, despite stable
optimal medical therapy, including b-adrenergic blockers
(n ¼ 14) and angiotensin-converting enzyme-inhibitors or
angiotensin II blockers (n ¼ 13). All patients were in sinus
rhythm. Their mean echocardiographic LV ejection fraction
(EF) was �35% (mean ¼ 23+8%) and QRS duration
.130 ms (mean ¼ 170+16 ms). The underlying heart
disease was ischaemic in eight and non-ischaemic in seven
patients. Exclusion criteria were: possible surgical treat-
ment (myocardial revascularization or valve replacement),
life-threatening ventricular arrhythmias, right ventricular
(RV) dimension superior to LV dimension, myocardial infarc-
tion, coronary artery bypass grafting (CABG) within last 3
months, patient already implanted with a conventional
pacemaker. The study protocol was approved by our insti-
tutional review committee, and all patients granted their
informed consent before enrolment.

Implantation of the cardiac resynchronization
system

All patients underwent implantation of LivingTM CHF or
NewLivingTM CHF CRT pulse generators (Sorin Group CRM),
connected to standard atrial and LV pacing leads. The LV
lead was inserted transvenously through the coronary
sinus, preferably into a lateral or postero-lateral cardiac
vein. A pacing lead (BESTTM, Sorin Group CRM) with a micro-
accelerometer sensor inside its tip was implanted at the RV
apex to record the PEA signal. At implant, all pulse genera-
tors were programmed in dual chamber atrioventricular
synchronous (DDD) mode and simultaneous biventricular
(BiV) stimulation (VV ¼ 0), and the AVD was adjusted to
ensure full electrical pre-excitation of the ventricles
during DDD pacing. The average AVD was 154+20 ms.

Catheterization procedure

At a mean interval of 39+15 days after implantation of the
CRT system, the patients underwent cardiac catheterization
under mild sedation. Haemodynamic measurements were
performed using a 7F pigtail catheter equipped with a high-
fidelity pressure transducer (CD-Leycom, Zoetermeer, The
Netherlands). The catheter was advanced into the LV from
the left femoral artery and connected to a signal-conditioning
module (Sentron, Roden, The Netherlands) to record pressure.

Stimulation protocol

After placement of the pressure catheter, the heart was
stimulated programming the device with a PMP 2000T exter-
nal programmer (Sorin Group CRM).

The protocol included single LV and BiV stimulation, either
simultaneously (BiV0), or sequentially at VV intervals of 12
or 40 ms, with LV (LR12, LR40) or RV (RL12, RL40) preactiva-
tion, in a random order. At each of these configurations,
the AVD was scanned between the shortest 60 ms and
the longest 220 ms interval, with four increments of
AVDstep calculated as (PR 2 90)/4 ms. The five tested AVD
intervals were: 60 ms, 60 þ 1 � AVDstep ms, 60 þ 2 � AVDstep

ms, 60 þ 3 � AVDstep ms, and 60 þ 4 � AVDstep ms. The AVD
scans performed for each patient are listed in Table 1.

Data sampling and analysis

PEA signals, LV pressure with LV dP/dtmax calculation,
and analog electrocardiographic signals were recorded
simultaneously, using a MP100 acquisition system (Biopac
System Inc., Goleta, CA, USA) at a sampling rate of
1000 Hz for each channel. For each pacing configuration, a
10-s programming period was required and a 30-s recording
period was preceded by a stabilization period of 30 s (i.e.
a total of 70 s for each configuration). According to the
stimulation protocol, six pacing configurations were tested
(RL40, RL12, BiV0, LR12, LR40, LV), performing AVD scanning
over five AVD intervals. Thus, the total time needed to find
the optimal pacing configuration with the new PEAarea

method was approximately 35 min (2100 s), calculated as
(70 s) � (6) � (5) ¼ 2100 s.

For PEA recordings, the voltage signal generated by the
acceleration was measured from peak to peak in gravity
(1 g ¼ 9.8 m/s2). LV dP/dtmax and PEA were measured at
steady state, cycle-by-cycle, using the AcqKnowledge 3.8.1
analysis software (Biopac System Inc., Goleta, CA, USA),
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and values, sampled over approximately 30 s, were
averaged. Cycles with failure to capture, affected by extra-
systolic events and post-extrasystolic cycles were excluded
from the analysis. LV dP/dtmax and PEA were first measured
during intrinsic rhythm, used as the reference patient’s
status condition. The heart rate was kept constant by
atrial pacing for all subsequent stimulation sequences.

Optimization of cardiac resynchronization

Response to CRT was defined as a �10% increase in LV dP/
dtmax, considered the gold standard to monitor cardiac func-
tion in clinical CRT studies,9,10 as it is reliable, reproducible,
and not operator-dependent. For each patient, the optimal
CRT configuration was determined by comparing the optimiz-
ation criteria based on measurements of LV dP/dtmax (LV dP/
dtmax method) vs. measurements of PEA (PEAarea method).

The new PEAarea method

Studies in animals have shown that the peak-to-peak value of
acceleration of heart vibrations (PEA), recorded during LV iso-
volumic contraction with an accelerometer sensor, corre-
sponds to the endocardial recording of the first heart sound
(S1).18 LV contractility, as expressed by the maximum rate of
rise of LV pressure (LV dP/dtmax), and the respective timing
of atrial and ventricular systoles (the AVD), are both major
and independent determinants of the amplitudes of S1 and
PEA, in normal and in failing hearts.19–24 In normal hearts,
shortening of the AVD causes a rapid increase in PEA ampli-
tude, mainly determined by the degree of opening of the
mitral valve leaflets, strictly related to an increase in transmi-
tral flow during the A wave, while LV dP/dtmax remains rela-
tively fixed. Similar results have been shown in clinical
studies of CRT, where LV dP/dtmax remained nearly fixed
with shortening of the AVD in case of successful resynchroniza-
tion procedures, whereas it decreased with shortening of
the AVD in case of unsuccessful resynchronization attempts.10

The new PEAarea method is, according to these results,
based on measurements of the area under the PEA curve:

it is expected to have a lower PEAarea in case of unsuccessful
resynchronization attempts, because of LV dP/dtmax

decreasing for short AVDs, with respect to successful resyn-
chronization procedure in which LV dP/dtmax remained
nearly fixed. For each tested VV interval setting, the area
of PEA curve was estimated, using a simplified formula, as
the average of PEA values measured during AVD scanning
(Figure 1A–D). Thus, the PEAarea is an index of both contrac-
tility variations and transmitral flow variations, and we
assumed that an increase in the area reflects an increase
in overall haemodynamic benefit achieved by the pro-
grammed configuration.

Statistical analysis

The mean values of LV dP/dtmax, calculated over a period of
10 respiratory cycles at each pacing configuration, were
compared, using the Student-Newman-Keuls test for com-
parison of multiple variables. This specific t-test for com-
parison of paired variables belonging to a group, takes into
account, for each paired comparison, the influence of all
variables included in the group. A value of at , 0.05 was
considered statistically significant.

Results

Responder patients were identified by a �10% increase in LV
dP/dtmax. Among the 15 patients included in this study, 12
(80%) were responders, a proportion consistent with other
clinical studies of CRT.9,10 In 9 out of the 12 responders
(75%), the results of the LV dP/dtmax and PEAarea methods
were concordant (Table 2). The haemodynamic responses
(LV dP/dtmax and PEAarea trends) for different pacing con-
figurations are shown in Figure 2A–D for the same four
representative patients used for showing the PEAarea curve
during AVD scanning in Figure 1A–D.

The overall means and standard deviations for LV dP/dtmax

and PEAarea values for pacing configuration for each patient
were reported in Table 3.

Table 1 Scans of the atrioventricular delay

Patient no. Atrioventricular delay (ms)

60 80 90 100 110 120 140 150 160 180 220

1 X X X X X X
2 X X X X X
3 X X X X
4 X X X X X
5 X X X X X
6 X X X X X X
7 X X X X
8 X X X X X
9 X X X X X
10 X X X X X
11 X X X X X
12 X X X X X
13 X X X X X X
14 X X X X
15 X X X X X

Each scan was performed during single chamber left ventricular (LV) stimulation and during biventricular stimulation at 0, 12, and 40 ms VV intervals, with
LV (LR12, LR40) or right ventricular (RL12, RL40) preactivation.

Endocardial acceleration-based algorithm to optimize cardiac resynchronization 803



Both methods identified the greatest haemodynamic
improvement with LV preactivation or single-chamber LV
stimulation in six, RV preactivation in three, and simul-
taneous biventricular stimulation in two responders. LV pre-
activation or single chamber LV stimulation was associated
with the greatest haemodynamic improvement by at least
one method in nine, RV preactivation in five, and BiV stimu-
lation in four responders. Finally, in eight responders, more
than one optimal stimulation configuration (range 2–4) were
identified by the LV dP/dtmax method (including opposite
ventricular preactivation in two patients), whereas the
PEAarea method identified a single optimal configuration in
all responders (Table 2).

For each patient, the values of LV dP/dtmax increase in %
for the optimal pacing mode, compared with PEAarea varia-
tions in % for the optimal pacing mode, were summarized
in a scatter diagram plot (Figure 3).

Discussion

With the currently available CRT pulse generators, the AVD
and the VV interval have become programmable, and their
optimization is generally recommended, as an appropriate
selection of VV interval might further optimize LV function,
at implant as well as during follow-up.25–32 Therefore, a
direct comparison of a new method of CRT optimization,
based on PEA measurements, with LV dP/dtmax, the haemo-
dynamic gold standard, was of particular interest. LV dP/
dtmax has been used previously as an index of LV perform-
ance in CRT.27–29 However, it is influenced by heart rate,
preload, LV synchronization, and degree of mitral regurgita-
tion. Furthermore, when applied to optimize CRT, it requires
an invasive procedure, and its value is limited to short-term
observations. On the contrary, the optimization of CRT
based on individual adjustments of heart rate, AVD, VV
interval, and mode of stimulation can be accomplished
non-invasively in the long term, with the assistance of
haemodynamic sensors integrated in the implanted devices.
The perspective of being able to re-adjust CRT, with an

Figure 1 (A–D) Representative examples among cardiac resynchro-
nization therapy responder patients of (peak endocardial accelera-
tion) PEAarea curve measured during atrioventricular delay scanning
for different pacing configurations [RL40: sequential biventricular
pacing with 40 ms of right ventricular (RV) preactivation; RL12:
sequential biventricular pacing with 12 ms of RV preactivation;
LR12: sequential biventricular pacing with 12 ms of left ventricular
(LV) preactivation; LR40: sequential biventricular pacing with 40 ms
of LV preactivation; BiV0: simultaneous biventricular pacing].

Table 2 Concordance of the optimal pacing configuration
identified by the LV dP/dtmax vs. PEAarea methods

Patient no. Optimal configuration Concordance

LV dP/dtmax PEAarea

1 LR40, LV LR40 þ

2 BiV0, RL40, RL12, LR12 BiV0 þ

3 NR NR NR
4 NR NR NR
5 LR12, BiV0, LV, LR40 LR12 þ

6 NR NR NR
7 LV RL12 2

8 BiV0, LR12 BiV0 þ

9 RL12 RL12 þ

10 RL12 RL40 2

11 LV, RL12 LV þ

12 LR12, LR40 LR12 þ

13 LR40, LV LR40 þ

14 LR40 LR12 2

15 RL12, BiV0, LR12 RL12 þ

þ, concordant; 2, non-concordant; NR, non-responder.
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automatic on board function for periodic CRT optimization by
PEA, at rest and during lifetime exercise activity, is attractive
and preferable to the echocardiographic procedures that are
currently applied in clinical practice only at follow-up. More-
over, the echocardiographic method is not so sensitive and
might not be able to detect subtle changes in LV systolic func-
tion. Therefore, the consistent results obtained with the
PEAarea method, validated by the direct measurements of LV
dP/dtmax, strongly support the introduction of this new
operator-independent method of CRT optimization into clini-
cal practice and implantable devices.

Study limitations

The absence of an automated stimulation protocol and data
analysis system limited the number of AVD used to calculate
the area of PEA curve and VV intervals we were able to test.
However, we believe that for preliminary evaluation of the
new PEA-based method a five-step AVD scanning may be
enough to provide meaningful data to estimate area under
the PEA curve.

The number of patients included in the present study
was relatively small, even if the rate of CRT responders
was comparable with data reported in literature.33

Furthermore, our method, based on the measurement of
PEA during scanning of the AVD, is not applicable to patients
presenting with atrial fibrillation.

Among 12 responders, according to the LV dP/dtmax

measurement, three patients showed no concordant
results between LV dP/dtmax and PEAarea method indications.
For one patient, during the procedure, we encountered
some problems with the pressure catheter that required
its repositioning. Even if we used the same calibrating pro-
cedure, the obtained LV dP/dtmax trend could have been
altered because of LVP recordings assessed before and
after catheter repositioning.

For the other two patients, the optimal CRT configuration
indicated by PEAarea method is ‘adjacent’ to the best con-
figuration indicated by LV dP/dtmax. This means that the
optimal configuration indicated by LV dP/dtmax corresponds
to the ‘second optimal’ configuration indicated by PEAarea

slightly lower than the optimal PEAarea value. Small differ-
ences can be observed between the optimal and the
‘second optimal’ CRT configurations indicated by PEAarea;
consequently, for these two patients we can say that, even
if PEAarea and LV dP/dtmax methods does not provide
exactly the same CRT best mode, however it is clear that
both identified the same optimal range of CRTconfigurations

Figure 2 (A–D) Comparison between (peak endocardial acceleration) PEAarea method and LV dP/dtmax method in identifying the optimal
stimulation configuration for the same representative responder patients reported in Figure 1. Measurements made during intrinsic
rhythm were used as baseline to calculate % variation of PEAarea and LV dP/dtmax indexes. Symbol # indicates absence of significant difference
between the two or more cardiac resynchronization therapy configurations by Student-Newman-Keuls analysis.
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(RV preactivation—RL12, RL40—in one case, and LV preacti-
vation—LR12, LR40—for the other). Moreover, for sequential
BiV stimulation we performed a VV interval scanning with
only two increments of VV step (12 ms, 40 ms). Probably, a
more refined VV interval scanning (e.g. four increments of
VV step, from 12 to 40 ms) would have helped in determining
the optimal configuration for these two ‘no concordant’
patients, as for both LV dP/dtmax and PEAarea methods the
best pacing mode could correspond to a configuration with
VV interval included in the range of 12–40 ms.

We are working towards implementing the CRT-P device as
an automated stimulation protocol and PEAarea calculations
during AVD scanning in order to provide a more practical
and systematic method to apply for a more large and
complete clinical study. With this automated PEAarea

algorithm implemented in the device, the time needed to
find the optimal pacing configuration can be reduced up to
10–15 min, minimizing the programming and the recording
periods.

Finally, the outcomes of CRT optimization based on the
PEAarea method might not be predicted over an intermediate
or long-term follow-up. Thus, the long-term performance of
the PEAarea index must be clinically validated.

In the next clinical study, we are planning to validate the
method; results obtained with the automated PEAarea

algorithm implemented in the device will be compared with
clinical non-invasive measurements of cardiac performance
and CRT outcome (e.g. the 6 min-walk test), at implant and
during periodic follow-up (three or six months after implant).

Conclusions

Recent clinical studies have shown that CRT might require
reprogramming during follow-up. The proposed method,
based on measurements of the area under the PEA curve
during scanning of the AVD with different CRTconfigurations,
might be the answer to the need of automatic CRT
optimization at implant and during follow-up. The attain-
ment of concordant results with invasive haemodynamic

Table 3 Means and standard deviation (SD) for LV dP/dtmax and
PEAarea values for each pacing configuration, for each patient

Patient
no.

LV dP/dtmax (mmHg/s) PEAarea (g)

Configuration Mean+ SD Configuration Mean+SD

1 RL40 680+33 RL40 0.68+0.09
RL12 695+25 RL12 0.68+0.09
BiV0 724+38 BiV0 0.68+0.08
LR12 711+22 LR12 0.73+0.09

2 LR40 777+++++35 LR40 0.77+++++0.07
LV 778+++++59 LV 0.63+0.06
RL40 1429+++++39 RL40 1.63+0.16
RL12 1434+++++57 RL12 1.62+0.17
BiV0 1440+++++37 BiV0 1.65+++++0.16
LR12 1425+++++38 LR12 1.45+0.17
LR40 1341+38 LR40 1.19+0.17
LV 1270+32 LV 0.84+0.10

3 NR NR NR NR
4 NR NR NR NR
5 RL40 1289+43 RL40 0.97+0.10

RL12 1272+64 RL12 0.80+0.10
BiV0 1301+++++99 BiV0 0.96+0.05
LR12 1347+++++57 LR12 1.01+++++0.07
LR40 1301+++++86 LR40 0.98+0.08
LV 1355+++++102 LV 0.92+0.05

6 NR NR NR NR
7 RL40 1269+22 RL40 1.24+0.13

RL12 1257+28 RL12 1.33+++++0.12
BiV0 1233+33 BiV0 1.26+0.11
LR12 1216+27 LR12 1.23+0.12
LR40 1271+68 LR40 1.00+0.11
LV 1303+++++61 LV 0.56+0.07

8 RL40 644+29 RL40 2.17+0.28
RL12 683+26 RL12 2.12+0.45
BiV0 704+++++26 BiV0 2.21+++++0.34
LR12 707+++++20 LR12 2.12+0.27
LR40 678+19 LR40 2.14+0.33
LV 680+39 LV 1.94+0.22

9 RL40 1388+35 RL40 0.31+0.03
RL12 1509+++++64 RL12 0.32+++++0.02
BiV0 1292+59 BiV0 0.29+0.02
LR12 1221+42 LR12 0.29+0.01
LR40 1285+51 LR40 0.26+0.02
LV 1257+41 LV 0.30+0.02

10 RL40 1160+24 RL40 0.11+++++0.01
RL12 1195+++++38 RL12 0.10+0.01
BiV0 1137+26 BiV0 0.08+0.01
LR12 1161+28 LR12 0.08+0.01
LR40 1121+21 LR40 0.08+0.01
LV 1094+23 LV 0.09+0.01

11 RL40 825+21 RL40 0.51+0.08
RL12 845+++++45 RL12 0.51+0.07
BiV0 479+21 BiV0 0.56+0.08
LR12 779+24 LR12 0.64+0.07
LR40 815+22 LR40 0.73+0.06
LV 840+++++27 LV 0.74+++++0.07

12 RL40 888+22 RL40 0.65+0.08
RL12 903+50 RL12 0.71+0.11
BiV0 1004+31 BiV0 0.83+0.07
LR12 1038+++++76 LR12 0.86+++++0.14
LR40 1059+++++51 LR40 0.75+0.05
LV 998+36 LV 0.59+0.06

13 RL40 1271+46 RL40 0.45+0.03
RL12 1259+36 RL12 0.38+0.03

Continued

Table 3 Continued

Patient
no.

LV dP/dtmax (mmHg/s) PEAarea (g)

Configuration Mean+SD Configuration Mean+ SD

BiV0 1265+30 BiV0 0.39+0.03
LR12 1298+31 LR12 0.43+0.04
LR40 1332+++++53 LR40 0.47+++++0.02
LV 1341+++++58 LV 0.46+0.03

14 RL40 901+21 RL40 0.55+0.05
RL12 910+30 RL12 0.61+0.08
BiV0 954+20 BiV0 0.66+0.07
LR12 944+28 LR12 0.67+++++0.06
LR40 989+++++20 LR40 0.66+0.05
LV 964+20 LV 0.43+0.05

15 RL40 1140+31 RL40 1.20+0.17
RL12 1367+++++49 RL12 1.24+++++0.11
BiV0 1389+++++44 BiV0 1.13+0.12
LR12 1358+52 LR12 1.04+0.11
LR40 1249+56 LR40 1.05+0.11
LV 1210+113 LV 0.76+0.11

Bold denotes optimal pacing configuration.
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measurements in the majority of responders warrant further
testing of this operator-independent and expeditious
method of CRT optimization in a larger patient population.
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2. Kindermann M, Fröhlig G, Doerr T, Schieffer H. Optimizing the AV delay in
DDD pacemaker patients with high degree AV block: mitral valve Doppler
versus impedance cardiography. Pacing Clin Electrophysiol 1997;20:
2453–62.

3. Ovsyshcher IE. Toward physiological pacing: optimization of cardiac
hemodynamics by AV delay adjustment. Pacing Clin Electrophysiol
1997;20:861–5.

4. Ishikawa T, Sumita S, Kimura K, Kikuchi M, Kosuge M, Kuji N et al. Predic-
tion of optimal atrioventricular delay in patients with implanted DDD
pacemakers. Pacing Clin Electrophysiol 1999;22:1365–71.

5. Ritter P, Padeletti L, Gillio-Meina L, Gaggini G. Determination of the
optimal atrioventricular delay in DDD pacing. Comparison between
echo and peak endocardial acceleration measurements. Europace 1999;
1:126–30.

6. Meluzin J, Novak M, Mullerova J, Krejci J, Hude P, Eisenberger M et al. A
fast and simple echocardiographic method of determination of the
optimal atrioventricular delay in patients after biventricular stimulation.
Pacing Clin Electrophysiol 2004;27:58–64.

7. O’Donnell D, Nadurata V, Hamer A, Kertes P, Mohammed W. Long-term
variations in optimal programming of cardiac resynchronization therapy
devices. Pacing Clin Electrophysiol 2005;28:S24–S26.

8. De Cock CC, Van Campen LM, Jessurun ER, Allaart CA, Vos DS, Visser CA.
Long-term follow-up of patients with refractory heart failure and myo-
cardial ischemia treated with cardiac resynchronization therapy. Pacing
Clin Electrophysiol 2005;28:S8–S10.

9. Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P et al. Pacing
Therapies in Congestive Heart Failure (PATH-CHF) Study Group. Long-
term clinical effect of hemodynamically optimized cardiac

resynchronization therapy in patients with heart failure and ventricular
conduction delay. J Am Coll Cardiol 2002;39:2026–33.

10. Auricchio A, Stellbrink C, Block M, Sack S, Vogt J, Bakker P et al. Effect of
pacing chamber and atrioventricular delay on acute systolic function of
paced patients with congestive heart failure. Circulation 1999;99:
2993–3001.

11. Clementy J. Dual chamber rate responsive pacing system driven by con-
tractility: final assessment after 1-year follow-up. The European PEA
Clinical Investigation Group. Pacing Clin Electrophysiol 1998;21:2192–7.

12. Langenfeld H, Krein A, Kirstein M, Binner L. Peak endocardial
acceleration-based clinical testing of the ‘BEST’ DDDR pacemaker. Euro-
pean PEA Clinical Investigation Group. Pacing Clin Electrophysiol 1998;
21:2187–91.

13. Rickards AF, Bombardini T, Corbucci G, Plicchi G. An implantable intracar-
diac accelerometer for monitoring myocardial contractility. The Multi-
center PEA Study Group. Pacing Clin Electrophysiol 1996;19:2066–71.

14. Ritter P. Diagnostic functions of implanted sensors. In: Santini M (ed.)
Progress in Clinical Pacing. Armonk: New York Futura Media Services
Inc.; 1996. p 183–8.

15. Oude Luttikhuius HA. A new approach for chronicle comparison of apical
vs. septal right ventricular stimulation. A case study. In: Antonioli GE
(ed.) Pacemaker Leads 1997. Bologna, Italy: Monduzzi; 1997. p 253.

16. Deharo JG, Peyre JP, Ritter P, Chalvidan T, Macaluso G, Djiane P et al.
Adaptive rate pacing controlled by a myocardial contractility index for
treatment of malignant neurally mediated syncope (abstract). PACE
1997;20:1192.

17. Deharo JG, Peyre JP, Ritter P, Chalvidan T, Berland Y, Djiane P. A
Sensor-based evaluation of heart contractility in patients with head-up
tilt-induced syncope. PACE 1998;21:223.

18. Wood JC, Festen MP, Lim MJ, Buda AJ, Barry DT. Regional effects of
myocardial ischemia on epicardially recorded canine first heart sounds.
J Appl Physiol 1994;76:291–302.

19. Stept ME, Heid CE, Shaver JA, Leon DF, Leonard JJ. Effect of altering P-R
interval on the amplitude of the first heart sound in the anesthetized
dog. Circ Res 1969;25:255–63.

20. Dupuis JM, Kobeissi A, Vitali L, Gaggini G, Merheb M, Rouleau F et al. Pro-
gramming optimal atrioventricular delay in dual chamber pacing using
peak endocardial acceleration: comparison with a standard echocardio-
graphic procedure. Pacing Clin Electrophysiol 2003;26:210–3.

21. Bombardini T, Gaggini G, Marcelli E, Parlapiano M, Plicchi G. Peak endo-
cardial acceleration reflects heart contractility also in atrial fibrillation.
Pacing Clin Electrophysiol 2000;23:1381–5.

22. Marcelli E, Plicchi G, Parlapiano M, Gaggini G. Feasibility of detecting
sustained ventricular tachycardias with an implantable sensor (abstract).
Pacing Clin Electrophysiol 2003;26:S166.

23. Marcelli E, Plicchi G, Parlapiano M, Marini S. Epicardial vibrations
vector assessed with a triaxial micro-accelerometer in experimental

Figure 3 Scatter diagram plot of LV dP/dtmax % variations vs. (peak endocardial acceleration) PEAarea % variations, for each patient in the
optimal pacing configuration.

Endocardial acceleration-based algorithm to optimize cardiac resynchronization 807



left ventricular dysfunction (abstract). Pacing Clin Electrophysiol 2003;
26:1081.

24. Plicchi G, Marcelli E, Parlapiano M, Bombardini T. PEA I and PEA II based
implantable haemodynamic monitor: pre-clinical studies in sheep. Euro-
pace 2002;4:49–54.

25. Melzer C, Knebel F, Ismer B, Bondke H, Nienaber CA, Baumann G et al.
Influence of the atrio-ventricular delay optimization on the intra left
ventricular delay in Cardiac Resynchronization Therapy. Cardiovasc
Ultrasound 2006;4:5.

26. Sogaard P, Egeblad H, Pedersen AK, Kim WY, Kristensen BO, Hansen PS
et al. Sequential versus simultaneous biventricular resynchronization
for severe heart failure: evaluation by tissue Doppler imaging. Circula-
tion 2002;106:2078–84.

27. Auricchio A, Ding J, Spinelli JC, Kramer AP, Salo RW, Hoersch W et al.
Cardiac resynchronization therapy restores optimal atrioventricular
mechanical timing in heart failure patients with ventricular conduction
delay. J Am Coll Cardiol 2002;39:1163–9.

28. Jansen AH, Bracke FA, van Dantzig JM, Meijer A, van der Voort PH,
Aarnoudse W et al. Correlation of echo-Doppler optimization of

atrioventricular delay in cardiac resynchronization therapy with invasive
hemodynamics in patients with heart failure secondary to ischemic or
idiopathic dilated cardiomyopathy. Am J Cardiol 2006;97:552–7.

29. Van Gelder BM, Bracke FA, Meijer A, Pijls NH. The hemodynamic effect of
intrinsic conduction during left ventricular pacing as compared to biven-
tricular pacing. J Am Coll Cardiol 2005;46:2305–10.

30. Mortensen PT, Sogaard P, Mansour H, Ponsonaille J, Gras D, Lazarus A
et al. Sequential biventricular pacing: evaluation of safety and efficacy.
Pacing Clin Electrophysiol 2004;27:339–45.

31. Van Gelder BM, Bracke FA, Meijer A, Lakerveld LJM, Pijls NHJ. Effect of
optimizing the VV interval on left ventricular contractility in cardiac
resynchronization therapy. Am J Cardiol 2004;93:1500–3.

32. Perego GB, Chianca R, Facchini M, Frattola A, Balla E, Zucchi S et al. Sim-
ultaneous vs. sequential biventricular pacing in dilated cardiomyopathy:
an acute hemodynamic study. Eur J Heart Fail 2003;5:305–13.

33. Peraldo C, Achilli A, Orazi S, Bianchi S, Sassara M, Laurenzi F et al.
Results of the SCARTstudy: selection of candidates for cardiac resynchro-
nisation therapy. J Cardiovasc Med 2007;8:889–95.

P.P. Delnoy et al.808


