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Simple Summary: Hepatocellular carcinoma is a kind of tumor with a high malignant degree and
mortality rate, and there is no effective treatment method. Currently, immunotherapy has shown good
prospects in treating hepatocellular carcinoma. As an important approach of immunotherapy, the
vaccine has become an attractive method for tumor treatment. This study developed an adenovirus
vaccine containing tumor antigen glypican-3 and adjuvant interleukin 12. The subcutaneous tumor
model was intramuscularly immunized three times with vaccines at a ten-day interval. Compared
with the control group, the proliferation of CD 8+ T cell, the induction of multifunctional CD 8+ T cell
and dendritic cells, and cytotoxic T lymphocyte activity were significantly increased in the combined
immunization group, and the growth of tumor was inhibited obviously. The therapeutic effect of the
vaccine of glypican-3 and interleukin 12 mainly depends on the anti-tumor effect of CD 8+ T cells
mediated by dendritic cells. Likewise, this vaccine also showed a good therapeutic effect in the lung
metastasis model of hepatocellular carcinoma. Therefore, the adenovirus vaccine of glypican-3 and
interleukin 12 might become a potential way to treat hepatocellular carcinoma.

Abstract: Hepatocellular carcinoma (HCC) is one of the cancers with the highest morbidity and
mortality in the world. However, clinical progress in the treatment of HCC has not shown a satisfac-
tory therapeutic effect. Here, we have developed a novel strategy to treat HCC with an adenovirus
(Ad)-based vaccine, which contains a specific antigen glypican-3 (GPC3) and an immunostimulatory
cytokine IL-12. In the subcutaneous tumor model, Ad-IL-12/GPC3 vaccine was injected into muscles
three times to evaluate its therapeutic effect. Compared with the control immunization group, the
Ad-IL-12/GPC3 immunization group showed a significant tumor growth inhibition effect, which
was confirmed by the reduced tumor volume and the increased tumor inhibition. Ad-IL-12/GPC3
co-immunization promoted the induction and maturation of CD11c+ or CD8+CD11c+ DCs and
increased the number of tumor-infiltrating CD8+ T cells. Furthermore, in the Ad-IL-12/GPC3 group,
the proliferation of CD8+ T cells, the induction of multifunctional CD8+ T cells, and CTL activity were
significantly increased. Interestingly, the deletion of CD8+ T cells abolished tumor growth inhibition
by Ad-IL-12/GPC3 treatment, suggesting that CD8+ T cell immune responses were required to
eliminate the tumor. Likewise, Ad-IL-12/GPC3 vaccine also effectively inhibited lung tumor growth
or metastasis by enhancing CD8+ DCs-mediated multifunctional CD8+ T cell immune responses
in the lung metastasis model. Therefore, these results indicate that IL-12 combined with Ad-GPC3
vaccine co-immunization might provide a promising therapeutic strategy for HCC patients.
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1. Introduction

Hepatocellular carcinoma (HCC) is considered to be the most common histological
form of liver cancer, and it is the fifth leading cause of tumor-related death worldwide,
especially in developing countries [1–3]. For the treatment of HCC, surgical resection,
transarterial chemoembolization, radiotherapy, and liver transplantation have been used
to improve the therapeutic effect and increase the patient’s survival rates. However, the
limitations of these treatments usually lead to high rates of deaths, mainly due to the
recurrence and metastasis of tumors [4,5].

HCC has always been regarded as typical cancer, and it is closely related to the
inflammation caused by long-term exposure to hepatitis viruses or toxic substances [6].
It has been found that antigen presentation dysfunction leads to poor T cell activation in
HCC [7,8]. Therefore, the specific niches in tumors become anergic to cancer neoantigens
due to chronic hypo-responsiveness and destroyed cytotoxic response [9]. Glypican-3
(GPC3) has an extremely high expression in HCC, but it cannot be detected in normal
tissue, or a minimal amount can be detected [10]. Increased expression of GPC3 can
promote the proliferation and invasion of cancer cells, so it is used as a diagnostic target
for tumors [11]. Due to the presentation and immunogenicity of GPC3 on the cell surface,
GPC3 has attracted people’s attention as an attractive therapeutic target for immunotherapy
for HCC patients [10,12]. Notably, GPC3 has become a specific antigen to induce protective
immunity against HCC [13]. However, the immunogenicity of the GPC3 vaccine alone is
weak, and it cannot effectively stimulate a strong anti-tumor immune response to treat HCC.

Previous studies have proved that combining tumor-cell-based vaccination and IL-
12 gene therapy can modulate the tumor microenvironment, resulting in the transition
from immunosuppression to immune stimulation niche [14]. IL-12 was first identified
as a cytotoxic lymphocyte maturation factor, which can stimulate the proliferation of T
lymphocytes and NK cells. These cells can exhibit anti-tumor response by enhancing the
induction and killing ability of CTL and NK cells [15–18]. The anti-tumor effect of IL-12
involves innate immunity and specific immunity, which is realized by regulating multiple
immune cells containing T lymphocytes, NK, or NKT in different tumor models. Moreover,
IL-12 confers the anti-tumor effect via enhancing IFN-γ production. IFN-γ can strongly
enhance the ability of phagocytes and DCs to produce IL-12, and acts as a positive feedback
mechanism leading to a powerful response to kill tumor cells [19]. Therefore, IL-12 might
be used as an immune adjuvant of the adenoviruses (Ad) vaccine to promote tumor-specific
immune responses.

In this study, we proved the concept of combined co-immunization of IL-12 and
GPC3 to treat HCC through the Ad delivery system. The anti-tumor effect of Ad-IL-
12/GPC3 was evaluated in different tumor models. The results show that the Ad-IL-
12/GPC3 vaccine displayed a more substantial anti-HCC effect by reprogramming the
tumor microenvironment and enhancing the response of induced multifunctional CD8+ T
cells. In addition, the application of the Ad-IL-12/GPC3 vaccine significantly prevented
lung tumor metastasis mediated by similar mechanisms. Therefore, we present evidence
that Ad-IL-12/GPC3 may become the future therapeutic drug for HCC.

2. Materials and Methods
2.1. Animals

Six-week-old C57BL/6J male mice were provided by the Experimental Animal Center
of Xuzhou Medical University. All animals were kept under pathogen-free conditions.
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2.2. Cell Lines and Cell Culture

Human embryonic kidney cell lines 293T and 293 were purchased from ATCC, and
mouse cell line Hepa1-6 was purchased from Beytime (Shanghai, China). They were
grown in a DMEM (Gibco, Waltham, MA, USA; Invitrogen, Waltham, MA, USA) medium
containing 10% fetal bovine serum (FBS, ExCell Bio, Shanghai, China), 1% penicillin (Sangon
Biotech, Shanghai, China) and streptomycin (Sangon Biotech), at 37 ◦C, 5% CO2 incubator.
To establish the Hepa1-6 cell line expressing hGPC3, the sequence of hGPC3 was cloned by
EcoRI (Takara Bio, Dalian, China) and BamHI (Takara Bio) and inserted into the pCDH-
CMV-MCS-EF1α-Puro vector. To package lentivirus, pCDH-hGPC3 or pCDH vector was co-
transfected with psPAX2 and pMD2.G plasmid into 293T cells. The supernatant containing
lentiviruses was collected after 48 h transfection and infected Hepa1-6 cells. Twenty-four
hours after infection, cells were screened with puromycin, and a stable hGPC3-Hep1-6 cell
line was established.

2.3. Construction of Plasmid

The Ad vector was constructed as follows. The coding sequence of human GPC3
was amplified by PCR from the pcDNA3.1-hGPC3 (Miaoling Bio, Wuhan, China) us-
ing primers of GPC3 (Forward primer, 5′-TTGAATTCGCCACCATGGCCGGGACCG
TGCGCACCGCGTGC-3′; Reverse primer, 5′-TGCGGATCCTCAGTGCACCAGGAAG
AAGAAGCACAC-3′). After purification and obtaining the target product, it was subcloned
into the pCA13 vector using EcoRI and BamHI sites. In addition, the vector pCA13-IL-12
was generously donated by Professor Lin Fang. Then, the shuttle vector expressing the
antigen GPC3 or IL-12 was co-transfected with pPE3 plasmid into 293 cells. The cytopathic
effect of cultures was monitored continuously. The recombinant Ads were separated and
purified by ultracentrifugation with cesium chloride. 293 cells were used to measure the
virus titer by plaque assay.

2.4. PCR Assay

A genome extraction kit (QIAGEN) was used to isolate DNA from target cells by the
freeze-thaw cycle. The primers are described as follows: The primers for GPC3 were men-
tioned above, and the primers for IL12 were below (Forward primer, 5′-TTAAGCTTATGGC
TCCCCTGTGCCCCAGC-3′; Reverse primer, 5′-TTGATGGCCTGGAACTCTGTC-3′). PCR
products were amplified from Ad-GPC3, Ad-IL-12, or control infected cells, and elec-
trophoresis was carried out on 1.5% agarose gel. Then, the gel image was captured under a
gel imaging system (FireReader).

2.5. Western Blotting

Protein was extracted by treating with RIPA buffer containing protease inhibitor. After
quantification, an equal amount of protein from the Ad-GPC3 group, Ad-IL-12 group, or
control group was added to the SDS sample buffer, and then protein was denatured by
heating. The protein was separated by SDS polyacrylamide gel electrophoresis and trans-
ferred into PVDF membranes. Then the membranes were blocked with skim milk. After
blocking, the membranes were separately incubated with the primary antibodies (GPC3,
Proteintech; IL-12, Sino Biological, Beijing, China) overnight at 4 ◦C. After incubation, the
membranes were washed with TBST. Then, the target proteins were revealed by the ECL
WB detection system (Beyotime, Shanghai, China).

2.6. Animal Models and Vaccine Immunization

To study the therapeutic effect of this vaccine, mice were injected subcutaneously with
5 × 106 over-expressing hGPC3-Hepa1-6 cells. On the 7th day after the tumor challenge,
mice were randomly divided into four groups, and 2 × 108 units of Ad-control (Ad-Ctrl),
Ad-IL-12, Ad-GPC3, or Ad-IL-12/GPC3 vaccine was injected intramuscularly respectively.
Meanwhile, the animals injected with the same volume of PBS were used as negative
controls. To ensure the same amount of adenovirus, animals immunized with Ad-Ctrl,
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Ad-IL12, or Ad-GPC3 were injected with another control vaccine. All animals were vac-
cinated three times every 10 days to stimulate immune responses. After inoculation, the
growth of the tumor was monitored by volume. The tumor volume was calculated as
(length × width2)/2. After animals were sacrificed, the tumor tissues were taken out, and
the tumor weight was recorded. The tumor inhibition rate was calculated by dividing the
average tumor volume of Ad vaccine groups by that of the negative control group.

To establish the lung metastatic model, 200 µL-PBS dissolved Hepa1-6 cells (1 × 106)
were injected into C57BL/6J mice via the tail vein. The mice were randomly divided
into four groups: Ad-control (Ad-Ctrl), Ad-IL-12, Ad-GPC3, or Ad-IL-12/GPC3. After
inoculating tumor cells, muscle immunization with 2 × 108 units of the vaccine was carried
out three times on the 1st, 11th, and 21st days, respectively. At the end of the experiment,
the lungs of mice were taken out, and the numbers of metastatic nodules in the lungs of
mice bearing tumors were quantified.

2.7. Preparation of Single-Cell Suspension

The single cell suspension was obtained by grinding the spleens in phosphate buffer
through a 70 µm filter. Red blood cells were lysed through ACK buffer solution for 2 min
on ice. The remaining cells were analyzed by flow cytometry or used for further culture.
For the single cell suspension of tumors, at the end of the experiment, tumors were isolated
immediately from mice, cut into about 1 mm3 small pieces, and incubated in digestion
buffer (100 U/mL collagenase type I (Sigma-Aldrich, Burlington, MA, USA), 500 U/mL
collagenase type IV (Sigma-Aldrich), and 0.01% DNase (Sigma-Aldrich) in RPMI-1640
medium (Gibco) at 37 ◦C for 30 min. At 10-min intervals, the digested cells were pipetted
up and down repeatedly. After digestion, the cells were washed with medium and filtered
using 70 µm mesh cell strainers to remove debris. The red blood cells in the suspensions
were lysed with ACK lysis buffer. Tumor-infiltrating leukocytes (TILs) were separated from
the single-cell suspensions using a 33% Percoll (VicMed, Xuzhou, China) gradient method.

2.8. Flow Cytometry Analysis

Immune cell surface staining was used with the following antibodies, including anti-
CD3ε PE, anti-CD4 PerCP-Cy5.5, anti-CD8α PerCP-Cy5.5, anti-NK1.1 FITC, anti-CD11b
FITC, anti-CD11c APC, anti-Gr-1 PerCP-Cy5.5, anti-CD103 PE, anti-80 PE, anti-86 PE,
anti-MHC-II PE, and anti-F4/80 PerCP. All of these antibodies were purchased from Bi-
oLegend (San Diego, CA, USA). For 293 cells and tumor cells, an anti-GPC3 antibody
(APC-conjugated, Sino Biological) was used. The target cells were incubated with anti-
bodies at 4 ◦C for 30 min. For intracellular cytokine staining, splenocytes were stimulated
with 10 µg/mL hGPC3 protein for 72 h. Ionomycin (500 ng/mL, Sigma-Aldrich), PMA
(50 ng/mL, Sigma-Aldrich), and Brefeldin A (5 ng/mL BFA, eBioscience, San Diego, CA,
USA) were used to stimulate splenocytes at 37 ◦C and 5% CO2 for the last 5 h. The cells
were firstly stained with antibodies against CD8α (PerCP-Cy5.5) and then conducted using
intracellular staining (IFN-γ, APC; TNF-α, FITC; IL-2, PE). For IL-12 staining, 293 cells
were performed using intracellular staining with IL-12/IL-23p40 (PE, BioLegend). Flow
cytometry analysis was performed using BD FACS CantoII (BD Biosciences, Shanghai,
China) or Cytek® Northern Lights (Cytek Biosciences, Fremont, CA, USA) and analyzed by
FlowJo software (Tree Star Inc., San Francisco, CA, USA).

2.9. Determination of CD8+ T Lymphocyte Proliferation

The spleen cells from immunized animals were counted and spread on 48-well flat-
bottomed tissue culture plate. The cell density was 4× 105 cells per well. To stimulate CD8+

T lymphocytes, IL-2 (50 U/mL) and hGPC3 protein (10 µg/mL) were used in cell culture.
These cells were kept at 37 ◦C under a 5% CO2 incubator for five days, and the medium
was changed every three days. BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor
647 (Beytime, Shanghai, China) was used to measure the growth of CD8+ T lymphocytes
according to the operating instruction.
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2.10. Cytotoxic T Lymphocyte (CTL)-Mediated Tumor Cell Killing Assay

Spleen cell suspensions were prepared from the immunized animals and cultured
in a 5% CO2 incubator at 37 ◦C in the presence of IL-2 (50 U/mL) and hGPC3 protein
(10 µg/mL). After five days in culture, the stimulated splenocytes were harvested and
co-cultured with hGPC3-Hep1-6 cells. The treated splenocytes were washed and used as
effector cells. hGPC3-Hepa1-6 cells were used as target cells. The ratio of the effector cells to
target cells was 50:1 in a 24-well plate with a round bottom. After three days of co-culture,
the whole cells were harvested and stained with anti-CD8α and anti-GPC3 antibodies. The
killing effect was measured by FACS.

2.11. ELISPOT Assay

ELISPOT kit (eBioscience) was applied to detect the release of IFN-from lymphocytes
in each group after being stimulated with hGPC3 protein (10 µg/mL) for 60 h at 37 ◦C under
a humid incubator with 5% CO2. After washing, the biotinylated antibody was added and
incubated. After washing the plate, streptavidin-horseradish peroxidase (HRP) was added
and incubated. Then, after washing again, the AP-colorimetric substrate was added to the
plate and incubated at room temperature. The spot-forming cells were captured by the
ELISPOT reader system (AID).

2.12. In Vivo Depletion of CD8+ T Cell

CD8+ T cells were depleted, as described below. Two days before immunization, the
animals in the therapeutic model received 0.5 mg of the purified anti-mouse CD8αmAb
(clone 53–6.7) intraperitoneally and then twice a week for three weeks. The deletion of
CD8+ T cells was examined in the splenic lymphocytes by FACS.

2.13. IHC Staining

Tissue sections of mouse tumor tissues were immediately fixed in 4% PFA overnight for
two days, dehydrated in alcohol, cleared in xylene, and then embedded in paraffin. Paraffin-
embedded tumor slides were deparaffinized and subjected to heat-induced epitope retrieval
using 0.01 M citrate buffer. The sections were blocked and incubated with antibodies against
CD8 (eBioscience). The DAB Detection Kit (Zhongshan Biotech, Zhongshan, China) was
applied for the following immunohistochemical staining. Images were randomly captured
by Nikon SCLIPSS TE2000-S microscope (Nikon, Melville, NY, USA) using ACT-1 software,
and the original magnification was 200 times.

2.14. Statistical Analyses

Data analysis was preceded using GraphPad Prism (GraphPad Software, San Diego,
CA, USA). The data are displayed as mean ± SD in the figures. Quantitative results
were compared by a two-tailed independent Student’s t-test or one-way ANOVA between
groups. A p values < 0.05 was considered significant (* p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001).

3. Results
3.1. Preparation and Identification of Ad-IL-12/GPC3 Vaccine

Previous studies have shown that vaccines based on Ad vector is one of the most
effective delivery platforms for gene expression in vitro and in vivo. To verify the successful
construction of this system in vitro, the Ad-IL-12 and Ad-GPC3 were conducted and
identified by the detection of the target protein, either IL-12 or GPC3, expressed in the
infected 293 cells (Figure 1A–D). The Ad vector pCA13 was used as the corresponding
control. Flow cytometry showed that after Ad-IL-12 or Ad-GPC3 infection, compared
with the control cells, the expression level of IL-12 or GPC3 in 293 cells was significantly
increased. In order to further confirm the in vivo expression of the vaccine, the expression
of Ad-IL-12 or Ad-GPC3 was identified in the injected animal target muscles. Western
blot analysis showed that the strong expression of IL-12 or GPC3 was also detected in
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mice treated with Ad-IL-12 or Ad-GPC3 of sufficient size compared with mice treated with
Ad-Ctrl at the adequate size (Figure 1E,F). Therefore, our data indicate that Ad-IL-12/GPC3
vaccine could be effectively expressed in vivo.
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Figure 1. The construction and expression of Ad-IL-12 and Ad-GPC3. (A) The cytopathic effect (CPE)
in 293 cells infected with Ad-Ctrl, Ad-IL-12, or Ad-GPC3. (B) Identification of the recombinant Ads by
PCR. (C,D) The transduction efficiency of 293 cells infected with Ad-IL-12 or Ad-GPC3 was detected
by flow cytometry, and the quantification of IL-12 or GPC3 expression was performed. (E) Western
blot analysis of IL-12, GPC3, and GAPDH expression for muscular tissues from mice immunized
with vaccines; Full pictures of the Western blots are presented in Figure S1. (F) Quantification of
IL-12 and GPC3 expression by densitometry in (E); The densitometry readings/relative intensity
of each band of the densitometry scans are presented in Table S1. Data are from one representative
experiment of three performed and presented as the mean ± SD. The different significance was set at
** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.2. Ad-IL12/GPC3 Vaccine Inhibits Tumor Growth and Stimulates Cytotoxic T Cells

The cell line human GPC3 (hGPC3)-Hepa1-6 was established by hGPC3-expressing
lentivirus to infect Hepa1-6 cells. Flow cytometry analysis revealed that compared with the
control cells, the expression of GPC3 in hGPC3-Hep1-6 cells was significantly upregulated
(Figure 2A,B). Next, hGPC3-Hep1-6 cells were used to establish subcutaneous tumor
models. One week after the inoculation of hGPC3-Hepa1-6 cells, mice were immunized
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intramuscularly with Ad-Ctrl, Ad-IL-12, Ad-GPC3, or Ad-IL-12/GPC3 vaccine, respectively.
The tumor volume and weight were monitored at the indicated time. Compared with
the mice immunized with Ad-GPC3, the development of tumors in mice vaccinated with
Ad-IL-12/GPC3 was inhibited. The subcutaneous tumors of operated animals were isolated
and weighted to evaluate the development of tumors (Figure 2C). The tumor size and
weight were dramatically reduced (Figure 2D,E). In the Ad-IL-12/GPC3 group, the tumor
inhibition rate was markedly increased (Figure 2F), suggesting Ad-IL-12/GPC3 vaccine
could suppress the tumor growth of the subcutaneous tumor models.
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Figure 2. Therapeutic effects of Ad-IL-12/GPC3 vaccine in a subcutaneous tumor model. (A) The
ratio of hGPC3 expression was determined by flow cytometry in Hep1-6 cells infected with hGPC3
lentivirus. Mice were inoculated subcutaneously at the right flank with 5 × 106 hGPC3-Hep1-6 cells.
Seven days later, mice were intramuscularly immunized with various vaccines. (B) Tumor growth
was monitored once a week following the vaccination. (C) Tumor volumes. (D) Tumor weights.
(E) Tumor inhibition rate. (F) Mice were sacrificed on the 42nd day after tumor inoculation. (G,H) The
frequencies and total numbers of T, CD4+ T, CD8+ T, NK, DCs, macrophages, or MDSCs in TILs were
analyzed. The experiments were performed with five mice per group. Data shown are representative
of three experiments. Data means ± SD. The different significance was set at *, p < 0.05; ****, p < 0.001;
n.s, not significant.

To clarify the possible mechanisms of anti-tumor effects induced by Ad-IL-12 com-
bined immunization, we detected the proportion and quantity of several critical immune
indexes, such as T cells, NK cells, DCs, macrophages, and MDSCs. Compared to other
groups, Ad-IL-12/GPC3 treatment group showed an increase in DCs and macrophages, a
decrease in MDSCs, and a similar number of NK cells (Figure S2). Compared with the Ad-
GPC3 group, the proportion and number of cytotoxic T cells in the combined immunization
group increased significantly, but there was no difference in CD4+ T cells (Figure 2G,H).
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Therefore, co-immunization with Ad-IL-12 could enhance the stimulation of immune cells
in the tumor microenvironment, especially cytotoxic T cells.

3.3. Co-Immunization with Ad-IL-12 Promotes the Increase and Maturation of CD11c+ and
CD8+CD11c+ DC Subsets and Induces Strong Immune Responses of CD8 T Cells

According to previous reports, CD8+CD11c+ DC subgroup is responsible for inducing
DCs-medicated tumor-specific cytotoxic T cells to kill tumor target cells [20]. In order to
further explore the possible mechanism of the anti-tumor effect of the Ad-IL-12/GPC3
vaccine, we first determined the DCs induced in the splenic cells of immunized animals.
Compared with the animals immunized with the single vaccine, the proportion of CD11c+

DCs in the co-immunized animals was significantly increased (Figure 3A,B). Meanwhile,
an increased ratio of CD8+CD11c+ DCs subset from the splenocytes was determined in
the co-immunized group (Figure 3A,C). As shown in Figure 3C,D, in Ad-IL-12/GPC3
co-immunization group, the activation of markers on CD11c+ DCs, such as CD80, CD86, or
MHC-II, was significantly up-regulated (Figure 3C,D). These results indicate that Ad-IL-
12/GPC3 combined immunization promotes the increase and maturation of CD11c+ and
CD8+CD11c+ DC subset in the HCC tumor model (Figure 3E,F).

In most therapies, the killing ability of tumor-specific cytotoxic T cells to target cells in-
duced by DCs is essential to evaluate the lytic functions of rejecting the formed tumor cells.
To assess the immune responses after Ad-IL-12/GPC3 immunization, the proliferation
potential of CD8+ T cells induced by GPC3 was measured by the EdU incorporation method
in vitro. The co-immunized Ad-IL-12/GPC3 group showed higher cell proliferation ability
than the other immunized groups (Figure 4A,B). We also assessed the function of CD8+ T
cells expressing cytokines, including TNF-α, IL-2, and IFN-γ by ELISPOT assay or FACS.
The number of GPC3-specific IFN-γ producing cells from the co-immunized animals was
remarkably higher than that of other animals (Figure 4C,D). To assess the lytic function of
tumor-specific cytotoxic T cells, hGPC3-Hep1-6 cells were used as target cells, and spleen
lymphocytes from immunized mice were used as effector cells. Cell killing effect was
detected in vitro by co-culture test. The lytic potential of lymphocytes in co-immunized
animals was improved, but the cytolysis caused by other groups was significantly reduced
(Figure 4E,F). The results of intracellular staining by flow cytometry revealed that compared
with other animals, the proportion of CD8+ T cells expressing specific immune factors, such
as TNF-α, IL-2, and IFN-γ in co-immunized animals, increased significantly (Figure 4G,H).
These results show that Ad-IL-12/GPC3 co-immunization strongly promoted the prolifera-
tion and killing ability of functional CD8+ T cells induced by tumor-specific antigen GPC3.
Collectively, these results indicate that co-immunization with Ad-IL-12/GPC3 promotes
the increase and maturation of DCs and the immune responses of antigen-specific CD8+

T cells.

3.4. The Multifunctional CD8+ T Cell Immune Responses Are Necessary for the Anti-Tumor Effect

Multifunctional CD8+ T lymphocytes, producing TNF-α, IL-2, and IFN-γ, are associ-
ated with immunity protection. Therefore, we tested whether tumor vaccine therapy has a
protective effect. We examined the stimulation of GPC3-mediated multifunctional CD8+ T
lymphocytes in spleen cells and tumor-infiltrating lymphocytes of tumor models immu-
nized with various vaccines. Remarkably, the rate of two-marker-expressing CD8+ T lym-
phocytes (TNF-α+IL-2+, TNF-α+IFN-γ+, and IL-2+IFN-γ+) and three-marker-expressing
CD8+ T lymphocytes (TNF-α+IL-2+IFN-γ+) were increased in co-immunized animals com-
pared to other groups (Figure 5A–D). The result indicates that the co-immunization of
the Ad-GPC3 vaccine and IL-12 could effectively stimulate GPC3-specific multifunctional
CD8+ T lymphocytes. Therefore, we predicted that multifunctional CD8+ T lymphocytes
are necessary for the anti-tumor effect induced by Ad-IL-12/GPC3 vaccine.
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Figure 3. Enhancement of Ad-IL-12/GPC3 vaccine on recruitment and maturation of CD11c+ DCs 
and CD8+CD11c+ DCs subset. 42 days after tumor inoculation, spleen cells were isolated from im-
munized mice, and analyzed by flow cytometry. (A) The proportion of splenic CD11c+ DCs or 
CD8+CD11c+ DCs subset. A representative result of flow cytometry was shown. (B) Statistical 
analysis of the frequency of splenic CD11c+ cells. (C) Statistical analysis of the frequency of splenic 
CD8+CD11c+ subset; (D) the frequency of CD80, CD86, or MHC-II expression on CD11c+ cells in the 
spleen. (E,F) Statistical analysis of the frequency of CD11c+CD80+, CD11c+CD86+ or CD11c+MHC -II+ 
cells in spleen. Data are from one representative experiment of three performed and presented as 
the mean ± SD. The different significance was set at * p < 0.05, ** p < 0.01, and *** p < 0.001. 

Figure 3. Enhancement of Ad-IL-12/GPC3 vaccine on recruitment and maturation of CD11c+ DCs
and CD8+CD11c+ DCs subset. 42 days after tumor inoculation, spleen cells were isolated from
immunized mice, and analyzed by flow cytometry. (A) The proportion of splenic CD11c+ DCs or
CD8+CD11c+ DCs subset. A representative result of flow cytometry was shown. (B) Statistical
analysis of the frequency of splenic CD11c+ cells. (C) Statistical analysis of the frequency of splenic
CD8+CD11c+ subset; (D) the frequency of CD80, CD86, or MHC-II expression on CD11c+ cells in the
spleen. (E,F) Statistical analysis of the frequency of CD11c+CD80+, CD11c+CD86+ or CD11c+MHC
-II+ cells in spleen. Data are from one representative experiment of three performed and presented as
the mean ± SD. The different significance was set at * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 4. Antigen-specific CTL responses elicited by Ad-IL-12/GPC3 vaccine. (A) Splenocytes of 
immunized mice were isolated and then stimulated with hGPC3 protein. EdU incorporation assay 
was performed to evaluate cell proliferation ability for every group; (B) quantification of EdU+ 
subpopulations in CD8+ T cells; (C,D) antigen-specific IFN-γ-secreting T lymphocyte cells were 
quantified by ELISPOT assay. (E,F) CTL activity was conducted to assess the killing ability of 
splenocytes of immunized mice by FACS. (G,H) The splenocytes were analyzed by flow cytometry 
to evaluate the proportion of TNF-α+CD8+, IL-2+CD8+, and IFN-γ+CD8+ T cells. Results from one 
representative experiment are shown for each group of mice. Data are from one representative 
experiment of three performed and presented as the mean ± SD. The different significance was set 
at * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 
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Figure 4. Antigen-specific CTL responses elicited by Ad-IL-12/GPC3 vaccine. (A) Splenocytes
of immunized mice were isolated and then stimulated with hGPC3 protein. EdU incorporation
assay was performed to evaluate cell proliferation ability for every group; (B) quantification of
EdU+ subpopulations in CD8+ T cells; (C,D) antigen-specific IFN-γ-secreting T lymphocyte cells
were quantified by ELISPOT assay. (E,F) CTL activity was conducted to assess the killing ability of
splenocytes of immunized mice by FACS. (G,H) The splenocytes were analyzed by flow cytometry
to evaluate the proportion of TNF-α+CD8+, IL-2+CD8+, and IFN-γ+CD8+ T cells. Results from one
representative experiment are shown for each group of mice. Data are from one representative
experiment of three performed and presented as the mean ± SD. The different significance was set at
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.
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Figure 5. Anti-tumor response induced by Ad-IL-12/GPC3 vaccine was CD8+ T cell-dependent.
(A,B) The percentages and amounts of cells expressing TNF-α+IL-2+, TNF-α+IFN-γ+, IL-2+IFN-γ+,
and TNF-α+IL-2+IFN-γ+ by gating on CD8+ T cells from splenocytes stimulated with 10 µg/mL
GPC3 protein for 72 h, with 500 ng/mL ionomycin (Sigma-Aldrich) and 50 ng/mL PMA plus
5 ng/mL BFA for the last 5 h. (C,D) CD8+ T cells expressing TNF-α+IL-2+, TNF-α+IFN-γ+, IL-
2+IFN-γ+ or TNF-α+IL-2+IFN-γ+ were detected in the stimulated TILs. In the CD8 depletion group,
mice were intraperitoneally injected with 0.5 mg anti-mouse CD8 mAb 2 days before the vaccine’s
first administration. The antibody injection was repeated on the 5th and 12th days after the first
vaccination. (E,F) Mice were sacrificed on the 42nd day after tumor inoculation in Ad-IL-12/GPC3
and Ad-IL-12/GPC3+Ctrl Ab groups, while mice in other groups were sacrificed before the 42nd day
due to the heavy tumor burden and tumor volumes in four groups were measured on the 35th day
after tumor inoculation. (G) Weights of tumor; (H) survival rate. (I,J) The proportions of CD8+ T cells
or CD8+CD11c+ cells were assessed in spleen or TILs. The experiments were performed with five
mice per group. Data shown are representative of three experiments. Data, mean ± SD, * p < 0.05,
** p < 0.01, and *** p < 0.001.



Cancers 2022, 14, 4512 12 of 18

In order to test whether the therapeutic benefit of the Ad-IL-12/GPC3 vaccine regimen
in the tumor model depended on CD8+ T lymphocytes, we used anti-CD8 monoclonal anti-
bodies (mAbs) to carry out a deletion test. Results show that elimination of this specificity
significantly inhibited the anti-tumor effects related to Ad-IL-12/GPC3 (Figure 5E–J). This
finding indicates that CD8+ T cells are indispensable for the efficacy of Ad-IL-12/GPC3 vaccine.

3.5. Ad-IL-12/hGPC3 Vaccine Inhibits Tumor Lung Metastasis by Promoting Multifunctional
CD8+ T-Cell Responses in the Lung Metastasis Model

In order to evaluate the therapeutic potential of Ad-GPC3 vaccine and IL-12 co-
immunization in preventing tumor metastasis in the animal model, we established a
model of lung metastasis of liver cancer in mice. Inoculating hGPC3-Hep1-6 cells, animals
were immunized with Ad-IL-12/GPC3 or the control vaccine by intramuscular injection.
Twenty-one days after inoculation with hGPC3-Hep1-6, animals were sacrificed. The
lungs were isolated from mice, and then the metastasis was recorded. Compared with
other immunization groups, the number of lung metastases was generally reduced in
Ad-IL-12/GPC3 immunization group (Figure 6A–C). During the experiments, the weights
of the animals were also recorded, and there was no significant difference between the
groups. This finding indicates that this combined immunization is safe, which is an essential
indicator in vaccine-based therapy.

Cytotoxic CD8+ T lymphocytes can hardly be detected in tumor tissues, and it shows
impaired functions in patients with HCC, accompanied by lymphocyte reduction. These
changes are attributed to the immunosuppressive tumor microenvironment and have an
adverse effect on tumor prognosis, which indicates that preventing T cell loss is helpful
to treatment results. To ensure that activated T cells could be collected in the tumor
after treatment, we measured the ratio of DCs and CD8+ T cells. Compared to other
groups, a remarkable rise in infiltrating CD8+CD11c+ DCs or CD8+ T lymphocytes in tumor
tissues was found in co-immunization animals (Figure S3 and Figure 6D,E). The result of
immunohistochemical staining showed that the number of tumor-infiltrating CD8+ T cells
in the Ad-IL-12/GPC3 group was significantly higher than that in other groups (Figure 6F).
These results indicate that co-immunization with IL-12 promotes multifunctional CD8+ T
cell responses and inhibits the metastasis in lung metastasis models of liver cancer.

In order to further verify the function of CD8 T cells treated with Ad-IL-12/GPC3
vaccine, intracellular staining was conducted on splenic cells after stimulation with GPC3
protein. The ratios of one marker (TNF-α, IL-2, and IFN-γ), two markers (TNF-α+IL-2+,
TNF-α+IFN-γ+, and IL-2+IFN-γ+), and three markers (TNF-α+IL-2+ IFN-γ+) producing
CD8+ T lymphocytes in the animals immunized with Ad-IL12/hGPC3 was dramatically
increased compared to that from others. In addition, the ratio of infiltrating multifunctional
CD8+ T cells in tumor tissues was significantly higher in the co-immunization animals com-
pared to other groups. CD8+ T cells expressing two- and three-marker displayed the most
significant rise in co-immunized animals compared with other vaccine-immunized mice
(Figure 6G). This finding indicates that immunization with Ad-IL-12/GPC3 significantly
promotes the stimulation of GPC3-specific multifunctional CD8+ T cells.

Meanwhile, compared with other animals, the increase of IFN-γ-producing T cells was
observed in the co-immunized animals (Figure 6H). To better understand the stimulation
of CD8+ T lymphocytes, the proliferation of CD8+ T cells in spleen cells mediated by GPC3
protein was detected by the EdU method. The growth capacity of CD8+ lymphocytes was
improved in co-immunization animals related to others (Figure 6I). The killing ability of
CD8+ lymphocytes in the Ad-IL12/GPC3 group against tumor target cells was significantly
higher than that of other groups (Figure 6J). Consequently, this observation indicates that
this combined vaccine could enhance the specific anti-tumor immune response mediated
by CD8+ T lymphocytes in the lung metastasis mice model of liver cancer.
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Figure 6. Therapeutic effects of Ad-IL-12/GPC3 vaccine in lung metastasis model. (A) Schematic
of the timeline of the model; (B) the present images of the lung tumor removed from mice; (C) the
numbers of metastatic nodules were quantified in the lung of the tumor-bearing mice; (D,E) mice
were sacrificed on day 28 after tumor inoculation, and the frequencies of CD8+CD11c+ cells and
CD8+ T cells in the lung tumor tissues of each vaccine groups were analyzed. (F) Immunochemistry
staining for CD8+ T cells in lung tumor tissues. (G) The percentages of TNF-α+IL-2+CD8+ T cells,
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TNF-α+IFN-γ+CD8+ T cells, IL-2+IFN-γ+CD8+ T cells or TNF-α+IL-2+IFN-γ+CD8+ T cells were
detected in splenocytes stimulated with GPC3 protein (10 µg/mL) for 72 h, and stimulated with
500 ng/mL ionomycin and 50 ng/mL PMA plus 5 ng/mL BFA for the last 5 h. (H) Antigen-specific
IFN-γ-secreting T lymphocyte cells were detected by ELISPOT. (I) Quantification of EdU+CD8+

subsets in CD8+ T cells. (J) CTL activity. The experiments were performed with five mice per group.
Data shown are representative of three experiments. Data, mean ± SD, * p < 0.05, ** p < 0.01, and
*** p < 0.001.

4. Discussion

Immunotherapy is growing among the interventions designed to treat tumors and is
considered one of the most effective approaches [21–23]. A critical factor in developing
a CTL-based therapy is to develop epitope-based vaccines that can trigger this response.
According to research, the genetic engineering of vectors expressing virus antigens has
progressed, indicating that virus-specific CTL has been an indispensable part of medicating
immune response [24]. In order to optimize the therapeutic effect of the tumor vaccine, the
combinations of tumor antigen and immunologic adjuvant should be explored to ensure
good clinical results [25].

Adenovirus has become a competitive system for developing gene therapy and vac-
cine applications, which depends on the possibility of manipulating foreign fragments and
stably integrating them into the Ad genome. Because of their excellent safety and effective-
ness, Ad-based vectors are gradually being used in clinical and preclinical trials [26,27].
Thus, they are being explored as attractive carriers of tumor immunotherapy [24,28,29].
Here, we chose the recombinant Ad type 5 for non-replication and robust expression level
of the target gene. For this study, we employed Ad-IL-12 and Ad-GPC3 to determine
their anti-tumor effects on hepatoma cells. Fortunately, Ad-IL-12/Ad-GPC3 revealed ideal
expression levels both in vitro and in vivo.

According to previous research, GPC3 is now becoming an attractive TAA for de-
veloping HCC vaccines, specifically in HCC patients. However, the antibody-mediated
immunological therapy by GPC3 antibodies was ineffective in treating HCC, and the reason
was the specificity against cancer [30–32]. Therefore, the stimulation of anti-tumor CTL has
become an attractive tumor therapy with a synergistic effect [33]. As our research shows,
the tumor volume and weight of the animals immunized with Ad-GPC3 were reduced. In
order to improve the anti-tumor effect of the immune system and the surrounding environ-
ment of tumors, vaccine-induced immunotherapy intervention has shown an optimistic
approach in clinical practice [34,35].

To improve therapeutic efficiency, researchers have designed different strategies by
upregulating the affinity of antibodies to antigens, developing a bispecific for GPC3 and the
T-cell-specific antigen CD3, or using multikinase inhibitors for combination therapy [36–38].
In this study, to stimulate a strong immune response and functional anti-tumor effects, ade-
novirus vaccine vector expressing GPC3 were generated for a prime-boost regimen. Mean-
while, IL-12 was used as an adjuvant to enhance immune function. IL-12 has been proved to
be a mediator in promoting Th1/Tc1 response and T cell recruitment to tumors [17,39–41].
In our research, Ad-GPC3 induced a neutral immune response but showed unsatisfactory
results. Remarkably, IL-12 could be used as an adjuvant, significantly promoting the tumor
antigen-specific immune responses to GPC3. In this study, co-immunization with IL-12
effectively increased the proportion of CD8+CD11c+ DCs subgroup and up-regulated the
activation markers of DCs. In addition, compared with single Ad-IL-12 or Ad-GPC3 vac-
cine alone, the combined vaccine could stimulate the growth of T cells, CTL activity, and
the induction of functional CD8+ T cell. After combined immunization, compared with
Ad-IL-12 or Ad-GPC3 alone, the numbers of immune effector CD 8+ T cells and dendritic
cells were increased in the tumor, indicating that there was a synergistic effect in stimulating
immunity. Although the effector immune cells by injection of IL-12 were not the same as in
other papers, it may result from different tumor cells and delivery tools [42]. In addition,
it was reported that IL-12 could enhance the memory responses of CD8+ T cell effector
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and the challenge of tumor cells would be confirmed in future work [43,44]. However,
these results indicate that co-immunization with IL-12 significantly promoted cytotoxic
T-cell-mediated immune responses. Therefore, Ad-IL-12/GPC3 combined immunization
significantly suppressed tumor development, reduced tumor weight, and improved the
tumor inhibition rate of the immunized tumor model. These results indicate that IL-12
combined immunization seems to be an effective and safe approach for HCC.

Strategies focused on restoring inherent anti-tumor immunity to reverse the milieu
beneficial to the development of HCC. Although the anti-GPC3 antibody was used to block
the signal transduction pathway to suppress tumor cells and showed good tolerance, it
is almost impossible to eliminate the tumor in the mouse model (14, 15). Moreover, in
the clinical trials, limited responses of HCC patients were observed (10, 16). Therefore,
immunotherapy using a specific antibody against a GPC3 antibody may be ineffective for
HCC treatment because of the lack of a tumor-specific CTL response (15, 17, 18). Based on
these observations, anti-tumor CTL should be improved in cooperation. Due to the opti-
mization of anti-tumor immunity and the reprogramming of the tumor microenvironment,
vaccine-mediated immunotherapy strategy is expected to be applied in clinic.

Our results demonstrated that this co-immunization vaccine suppressed the tumor
development of multiple hepatocarcinoma by generating anti-tumor immune response
via cytotoxic T cell provoked by CD8+CD11c+ DCs, suggesting that strengthening co-
immunization could stimulate CD8+ T cell immune responses ideally. To better understand
the importance of CD8+ T cells under the condition of tumor burden, we used mAb against
CD8+ T cells for deletion experiments. In the animals injected with Ad-IL-12/GPC3,
the therapeutic effect was destroyed, which indicates that this co-immunization vaccine
requires CD8+ T cell responses provoked by CD8+CD11c+ DCs. In addition, we further
detected the proportion of CD4+ T cells in vaccine-immunized animals, but there was
no significant difference among the groups. However, CD4+ T cells could be detected in
every group of tumor tissues, and CD4+ T cells also play an essential role in inducing and
stimulating tumor-specific CD8+ T cells.

5. Conclusions

In conclusion, our research shows that it is adequate to stimulate cytotoxicity T cell
responses in mice by using HCC-specific antigen-GPC3 and IL-12 adjuvant recombinant Ad.
This co-immunization in our study promoted the immunogenicity of HCC-specific antigen-
GPC3 and efficiently suppressed tumor development of HCC. This finding indicates that
the antineoplastic effects provoked by this co-immunized vaccine are necessary to induce
cytotoxic T cell functionally relaying on CD8+CD11c+ DCs. Therefore, Ad-IL-12/GPC3
vaccines might be applied to treat HCC.
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cells was detected by flow cytometry. Figure S3: The percentages of CD8+CD11c+ cells were detected
in DCs from lung tumor by flow cytometry. Table S1: The densitometry readings/relative intensity of
each band of the densitometry scans.
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