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Abstract: Objectives: This review article aims to describe some of the roles of Matrix metallopro-
teinases (MMPs) in enamel, dentine, dental caries, hybrid layer degradation, pulp and periodontal
tissues, throwing light on their current inhibitors. The article addresses the potential of MMPs to
serve as biomarkers with diagnostic and therapeutic value. Design: The sections of this review
discuss MMPs’ involvement in developmental, remodeling, degradational and turnover aspects
of dental and periodontal tissues as well as their signals in the pathogenesis, progress of different
lesions and wound healing of these tissues. The literature was searched for original research articles,
review articles and theses. The literature search was conducted in PubMed and MEDLINE for articles
published in the last 20 years. Results: 119 published papers, two textbooks and two doctoral theses
were selected for preparing the current review. Conclusions: MMPs are significant proteases, of
evident contribution in dental and periapical tissue development, health and disease processes, with
promising potential for use as diagnostic and prognostic disease biomarkers. Continuing under-
standing of their role in pathogenesis and progress of different dental, periapical and periodontal
lesions, as well as in dentine-pulp wound healing could be a keystone to future diagnostic and
therapeutic regimens.

Keywords: matrix metalloproteinase (MMP); tissue inhibitors of metalloproteinases (TIMPs); dental
tissues; periodontium; degradation dentistry; biomarkers; orthodontic movement

1. Introduction

Peptidase is a term used to describe proteolytic enzymes that degrade peptide bonds
in protein molecules and actively contribute to various developmental, physiological and
pathological processes in animals and humans. They include serine, cysteine, aspartic,
N-terminal threonine peptidases, glutamate peptidases, asparagine peptidases and met-
allopeptidases. Peptidases are divided into exopeptidases and endopeptidases. While
endopeptidases identify certain amino acids in the middle of the protein molecule, exopep-
tidases target terminal amino acids in the peptide chain of a protein [1,2].
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Matrix metalloproteinases (MMPs) compose a group of more than 25 secreted or
cell surface linked calcium-dependent zinc-containing endopeptidases, which play an
important role in the dynamics of the extracellular matrix through specific disassembling
activities of extracellular matrix proteins and receptors. Although extracellular matrix is
basically composed of water, proteins and polysaccharides, it has a tissue-specific unique
composition that crucially determines the biochemical and biomechanical characteristics of
each respective tissue. The extracellular matrix actively mediates the different intercellular
adhesion and other biofunctional activities and changes with age [3–8]. MMPs are present
in different animal species and humans [5,8], have different substrates, while possessing
similar microstructural features [9]. Although the active site in MMPs involves metal ions,
predominately zinc, it sometimes includes other metals like cobalt, manganese or nickel [1].

In general, MMPs contain a pre-domain, defining secretion or membrane insertion,
a prodomain acting as an internal regulator by occupying the zinc in the following ac-
tive site. The main active zinc-containing catalytic site includes the highly conserved
histidine-rich consensus sequence [4,10,11], and is linked via a hinging sequence with the
hemopexin domain, which defines substrate specificity [10]. Together with other proteases,
MMPs and the natural endogenous (TIMPs) regulate the extracellular matrix, specifically
the synthesis [9], re-modelling and degradation of extracellular matrix and pericellular
substrates including proteinase, clotting factors, chemotactic substances, latent growth
factors, receptors, cell membrane receptors and intercellular adhesive molecules [4–8,12].
They therefore actively and dynamically contribute during developmental, physiological,
and pathological processes in different tissues [3–5,8]. The role of MMPs and TIMPs in
regulating cellular behavior via tightly controlled proteolytic processes includes various
developmental, physiological, and pathological aspects as well as disease resolution and
healing phases [13].

MMPs are secreted in the extracellular matrix as inactive proenzymes or zymogens that
are activated via complex biochemical processes to be responsible for proteolysis of specific
parts of the extracellular matrix depending on the subtype [6]. MMPs can be activated by
proteases, by physicochemical processes such as low pH or heat, and are controlled by their
TIMPs [9]. MMPs are classified according to their presumed target substrate specificity,
structure and biofunctionality, into five main classes: collagenases, gelatinases, stromelysins,
matrilysins and membrane-type MMPs in addition to others. Although the developmental,
physiological, and pathological roles of MMPs are evident, their exact mechanism of action
is not fully elucidated [4]. MMPs are generally activated in the extracellular matrix or
at the cell membrane but some can be activated intracellularly [4]. Their activation and
interaction are regulated by certain extracellular matrix constituents as well as by TIMPs.
Activation of MMPs occurs by cleavage of their NH2 terminal. Chemical interactions
of signaling molecules, cytokines, growth factors or other MMP family members or by
mechanical changes in the extracellular matrix can activate MMPs [14]. MMP inhibitors
operate by substituting zinc ions or chelating calcium at the active terminal or interacting
with zymogens before activation, or by coating the target substrate.

MMPs crucially contribute to all phases of tooth development, differentiation, growth,
shaping, apoptosis and degradation of different dental and periodontal tissues. MMPs
have become important as biomarkers of diseases including degradation of different dental
tissues, reversible and irreversible pulpitis and apical periodontitis, as well as gingival and
periodontal lesions [4,15–22].

This article reviews the role of MMPs in the development, remodeling and turnover of
dental and periapical tissues and their signals in the pathogenic progress of different lesions
affecting these tissues. The literature search was conducted in PubMed and MEDLINE
for articles published in WoS and/or Scopus indexed journals after the year 2000, with
one exception, that were selected according to relevance and significance and were used
in the current literature review. A total of 119 published papers (original research articles,
review articles), two textbook and two doctoral theses were selected for preparing the
current review.
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2. MMPs Grouping and Substrate

Based on respective substrate preference, domain structure and sequential similarity,
MMPs are grouped into collagenases, gelatinases, stromelysins, matrilysins, membrane-
type MMPs, and other MMPs [9].

Collagenases degrade certain extracellular matrix proteins, but they mainly cleave
collagen type I, II, III, VII, X, gelatin, entactin, aggrecan, tenascin. This group contains
MMPs-1, -8, -13 with similar action, while MMP-18 belongs to this group with limited action
against type I collagen. Gelatinases decompose gelatin, collagen type I, IV, V, VII, X, XI in
addition to elastin, fibronectin, laminin, aggrecan, vitronectin. Both MMP-2 and MMP-9
fit into this group and work on the previous substrates, but MMP-9 works on decorin,
plasminogen and proTNF-α. Stromelysins have similar domain structure to collagenases,
but they do not cleave interstitial collagen. MMP-3, and 10 by working on types III,
IV, V, IX, X, XI collagens, proteoglycans, laminin, fibronectin, gelatin, aggrecan, elastin,
fibrin/fibrinogen, vitronectin, while MMPs-3 has extended action on perlecan, decorin,
proIL-1bc, plasminogen, Ecadherin, α2Ma, proTNF-α and MMPs-11 exist in this group
without a recognized substrate. Matrilysins work mainly on fibrinogen, fibronectin, type
IV collagen, gelatin, and laminin. Both MMP-7 and MMP-26 as members of matrilysins
have this common action, but MMP-7 has a more extended range of action on collagen
type I, III, V, IX, X, XI, tenascin, proteoglycans, pro α-defensin, vitronectin, proTNF-α,
elastin, plasminogen, E-cadherin and decorin. Membrane-type MMPs have their cleavage
effect commonly on gelatin and fibronectin, with a variable effect on laminin, perlecan,
factor XII, tenascin, aggrecan, nidogen, entactin aggrecan, fibrin, vitronectin, proTNF-ab,
transglutaminase, types I, II, III collagens, cartilage proteoglycan core protein, and α2Ma.
The membrane-type MMPs have the subtypes MMP-14, -15, -16, -17, -24 and -25. Other
minor MMPs were reported; MMP-12 as macrophage elastase has a similarity in its action
to MMP-3 except for its limited action on collagen (collagen I, IV only). MMP-19 also bears
some similarity to MMP-13 with limited action on collagen (collagen I, IV only) besides
targeting casein, laminin, nidogen and nascin-C. MMP-20 with specificity in enamel by
working on amelogenin, with some action on casein, gelatin, fibronectin, types IV, XVIII
collagens, laminin, tenascin C and aggrecan. Some MMPs have not yet had a substrate
determined, namely MMP-21 (xenopus) and MMP-23 (transmembrane type II). MMP-27
has action directed toward gelatin, collagen type II, fibronectin, while MMP-28 has activity
against casein [9,23–26]. Modern therapeutic strategies are designing and engineering
inhibitors of MMPs in promising endeavors to control and treat diseases [12], Figure 1.
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3. MMPs and Enamel

Enamel is the hardest human tissue of the body that forms the external layer of the
crowns of teeth; built by ameloblasts, the enamel forming cells are of ectodermal origin.
While mature enamel is formed of up to 96 wt% inorganic minerals, 3% of the composition
is water and less than 1% enamel proteins—at the secretory stage of enamel development
matrix proteins, mainly amelogenin, form more than 30% of enamel by providing a scaffold
for mineral growth. Proteases, mainly MMP-20 (enamelysin), with the substrates collagen V,
aggrecan, amelogenin [10,27] and kallikrein-related peptidase 4 (KLK4) undergo cleavage
of supporting enamel proteins, providing a space for the growth of crystalline minerals.
This selective proteolysis of enamel proteins is the major regulator of the tooth’s external
shape and quality of enamel. MMP-20 is expressed by ameloblasts early in the secretory
phase until the early phase of enamel maturation, and shares in the cleavage of amelogenin,
enamelin, and ameloblastin. At the bell stage of tooth development, MMP-20 degrades
the basement membrane that exists between ameloblasts and odontoblasts facilitating
their direct interactions. Accordingly, MMP-20 and KLK4 mutations can result in enamel
developmental defects like amelogenesis imperfecta, clinically characterized by pigmented,
soft, rough pitted enamel [28]. Broad spectrum drugs inhibiting effects on MMPs induce
disturbances in enamel and dentine formation and mineralization [10]. Additionally,
the genetic polymorphism rs478927 in MMP-13 is associated with caries occurrence and
developmental defects of enamel in children from the Amazon region in Brazil [29].

MMP-2 (gelatinase), specific for denatured collagens: I, II, III, IV, V, VII, X, XI, aggrecan,
elastin, fibronectin, gelatin, laminin, proteoglycan, MMP-9, MMP-13 [10], has additionally
been detected in vivo in mouse models during the mucosal penetration stage of tooth
eruption in the region of the lamina propria [30]. Gomes et al. (2010) conducted a study
about the role of MMPs in the odontogenic region of the adult rat incisor tooth under
different eruption conditions (normofunctional and hypofunctional). In the hypofunctional
group, the authors found a relationship between the increase in eruption rate and the level
of metalloproteinase bound to the cell membrane. MT1-MMP and TIMP-2 may have a role
in cell proliferation during the eruption of the rat incisor tooth [31].

4. MMPs and Dentine

Dentine is the second hardest tissue in the human body forming the main core of
the hard tooth structure. It consists of inorganic minerals, about 65 wt%, and 35 wt%
organic matrix: including in detail 90% type I, III and V collagens as well as 10% non-
collagenous proteins, for example dentine–sialo–phospho–protein and water [18,32]. These
scaffolding matrix proteins enable nucleation and growth of the crystalline minerals of
dentine together with mineral precipitation and cell-derived matrix vesicle mineraliza-
tion [33]. Odontoblasts, of mesenchymal origin, migrate pulpally during dentinogenesis,
laying down dentine matrix proteins and synthesizing, amongst others, MMPs for the
regulation and remodelling of dentine matrix during dentinogenesis. The principal MMPs
distinguished in pulp, predentine and dentine of sound non-carious teeth includes MMP-8
(collagenase), MMP-2 (gelatinase), MMP-9, MMP-13, MMP-14, and MMP-20 [4,28,34].

In sound dentine, MMP-2 is expressed most prevalently and progressively increases
with the beginning of dentinogenesis. MMP-2 plays a major role in degradation of the
basement membrane between ameloblasts and odontoblasts, allowing direct contact which
is essential for further differentiation [34]. MMP-9 plays a significant role in dentine
remodeling by targeting the dentine sialoprotein [34,35]. Later in dentinogenesis, MMP-2
and MMP-9 are located near the dentinoenamel junction, in association with increased
gelatinase activity in mantle dentine. MMP-2 and MMP-20 contribute to the extracellular
matrix formation. MMP-2 is also found in mature dentine and plays a role in caries
pathogenesis, MMP-3 is seen in predentine and contributes to dentine mineralization [34].
Recently, it has been demonstrated using electron microscopy and reverse zymography
analysis, that in sound human dentine TIMP1 is closely related to MMP-2 and MMP-9 and
can bind to different isoforms of MMPs [36].
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In addition to their presence in predentine, MMPs are detected extensively near the
dentinoenamel junction, which might explain the wider lateral spread of caries as they
penetrate the dentinoenamel junction. They were also detected in the dentinal fluid in
the dentinal tubules [4]. MMPs are involved in mature and secondary dentine formation
and mineralization in sound teeth, matrix degradation in dentine lesions, tertiary dentine
formation and pulp inflammation. Tumor growth factor expressed by mature odontoblasts
has a downgrading role on MMP-8, which might influence reparative dentine formation [4].

5. MMPs and Dental Caries

Caries are a multifactorial process, whereby according to the ecological plaque hypoth-
esis, an imbalance of oral microflora—normally more than 700 different species—leads to
an increase in the cariogenic bacteria mainly Streptococcus mutans and Lactobacillus types.
The accumulating cariogenic bacteria produce acids like lactic acid that reduce the local
pH, leading first to the demineralization and later to the destruction of the organic matrix
through the activation of endogenous MMPs in saliva, gingival fluid, and dentine [37,38].
Caries progress as demineralization cycles prevail and remineralization cycles cease [39].

Classically, bacterial proteases are blamed for the proteolytic process taking place
because of dental caries. However, activated endogenous MMPs in dentine, gingival
crevicular fluid and saliva, share in degrading the dentine matrix of demineralized dentine
at neutralized pH levels. Buffering of the saliva occurrs since MMPs operate only in neutral
pH values [4,14]. Moreover, activated endogenous MMPs and cystine cathepsins participate
in dentine matrix degradation in dental caries, in addition to bacterial proteases [40].
Collagen in the caries affected dentine retains the capability to remineralize until it is totally
devoid of mineral nanocrystals [14]. Modern biomimetic approaches have achieved success
in remineralizing completely demineralized dentine matrix [18,41].

Bacterial collagenases in addition to endogenous MMPs of salivary, gingival fluid
and dentinal origin share in the dentine matrix degradation process in active carious
lesions. The endogenous dormant MMPs are activated by local pH changes indicating the
contribution of bacterial acids. The comparatively higher levels of MMP-8 and -9 in the
outer zones relative to the inner caries affected zones indicate the role of MMPs of salivary
origin in the process. In addition to salivary MMPs, cystine cathepsins are identified in
saliva with potential collagenolytic activity in dental caries. Although it is not currently
feasible to fully elucidate the role of MMPs of salivary, dentinal, or pulpal origin (through
the dentinal fluid) in the process of dental caries, different reports support the contribution
of dentinal fluid as an origin of MMPs and cathepsins in dental caries. MMP-2 may play a
role in the lateral spread of caries beneath the dentinoenamel junction in early caries since
it occurs in higher levels in the outer versus inner caries layers [42]. Moreover, significant
gelatinolytic activities are seen in dentinal tubules with gelatinases showing a granular
appearance near the pulp and not towards the dentinoenamel junction. This might indicate
bulking of MMPs in matrix vesicles and their dentinal tubular transfer [22].

An enzyme linked immunosorbent assay of dentinal fluid collected from both shallow
and deep carious lesions found significant correlation between MMP-9 in shallow and deep
caries. These findings indicate that individuals with more MMP-9 in deep caries are likely
to have more MMP-9 in shallow caries [43]. Higher levels of MMP-1 and -2 are found in
the saliva of patients with caries rather than in healthy individuals. However, the levels of
MMP-1 and -2 decrease after treatment [19].

MMP-1 (collagenase-1), MMP-2 and -9 (gelatinase-A and -B), MMP-3 (stromolysin-1),
MMP-8 (collagenase-2) and MMP-20 (collagenase-3) are currently known to participate in
dental caries and dental restoration failure [42]. During the carious process, pro-MMPs
become activated through acidic pH (4.5). Following their activation, MMPs become stable
by pH neutralization due to the salivary buffering effect [42].

Animal studies show that certain chemicals with MMP inhibitors such as modified
tetracycline and zoledronate, are effective in reducing dentine caries, which demonstrates
the significance of MMPs in dental caries [14,44]. During dental caries, MMPs develop pro-
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teolytic activity: MMP-20, MMP-2, -3, -9 and -8 are detected in carious dentine in dormant
and active forms. In detail, MMP-1 and especially MMP-8 work as collagenases, the most
powerful digesting type I collagen. MMP-2 and MMP-9 gelatinases, have the potential to
disrupt the C-terminal of the collagen molecule. However, while MMP-9 is identified in
greater concentrations in deep levels of caries, MMP-2 has no variation regarding caries
depth [14,43]. MMP-3 releases proteoglycans like decorin, followed by cytokines that
potentiate degradation of the demineralized dentine matrix [34]. Cysteine cathepsin of
dentine is able to activate latent MMPs. At increasing depth of carious lesion, cathepsin
activity becomes stronger with greater collagenolytic potential as more MMPs become
activated [45]. Regardless of the rate of progress of dental caries, endogenous dentine
MMPs decrease with aging [4]. TIMPs (1, 2, 3, 4) potentiate the proteolysis of dentine
matrix during the carious process through an imbalance with MMPs [46]. Dentine degrado-
nomics is a modern approach introduced in caries research to identify proteases and their
substrates in different physiological and pathological processes of dentine using genomic
and proteomic technologies. In this regard, genetic encoding, and definition polymorphism
analysis of MMPs are performed in different studies to identify the association with dental
caries in different populations [22,47]. Investigating the genetic association of MMP-10,
MMP-14, and MMP-16 with dental caries shows that MMP-16 SNP rs2046315 is associated
with dental caries [48].

The evident role of MMPs in the pathogenesis and progress of dental caries has
drawn the interest of researchers to stop dental caries, not only by combating cariogenic
microorganisms, but also by developing inhibitors for endogenous MMPs in dentine and
saliva in the form of gels and mouth washes and stop caries and promote healing and
remineralization [46]. Moreover, MMP inhibitors are suggested to resist dentine abrasion
and erosion [49].

Fluorides have long been used in dentistry to prevent caries and induce inhibitory ef-
fects of MMPs. Sodium fluoride and stannous fluoride inhibit salivary and purified human
gelatinases, MMP-2 and MMP-9. Treatment of dentine with sodium trimetaphosphate, a
synthetic compound that reduces dentine demineralization, inhibits MMP-2 and MMP-9
activities particularly at 1.5% concentration [50,51]. Silver diamine fluoride, in addition
to antibacterial and collagen remineralizing effects, has an inhibiting effect on MMPs that
increases the degradation resistance of demineralized collagen to the proteolytic activities
of MMP-2, -8 and -9, and inhibits the collagenolytic action of cysteine cathepsin but leaves
unaesthetic black stains [52]. Although the exact mechanism of inhibition of MMPs by
fluorides is not fully elucidated, fluorides, due their high electronegativity, might bind
to zinc and calcium cations essential for the effectiveness of MMPs [53]. Identification
of the peptide products of dentine matrix degeneration by MMPs in the carious process
might have potential therapeutic value in dentine and bone regeneration strategies [34].
Chlorohexidine, ethylene-diamine-tetra-acetic-acid and chemically modified tetracyclines
are among the MMP inhibitors for controlling dental caries [22].

6. MMPs in Pulpal and Periapical Lesions

Odontoblasts and fibroblasts of the pulp can also express MMPs, especially MMP-13
and MMP-1 [4,54]. In reversible and irreversible pulpitis, MMPs play a bifunctional role
of tissue destruction and downgrading, together with tissue protection and mediation
of host immune responses [4,55]. During progression of caries, proteolytic cleavage of
dentine matrix by MMP-1, -3, -8, -9, -13 and more significantly MMP-20, can play a
signaling inductive dentinogenesis for tertiary dentine formation and dentine-pulp wound
healing [56]. Although the application of MMP-3 could induce regeneration in rat teeth
with injured pulps and in teeth with irreversible pulpitis, it fails to produce similar valid
effects in human clinical trials [21].

On the other hand, there is a more increased release of active MMPs in pulpitis than
in healthy pulp tissue, indicating their role in pulp inflammation: released cytokines (IL-
1β) and tumor necrosis factor-α (TNF-α) in pulp inflammation, activate MMP-1, MMP-2
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and TIMP1 gene expression [45]. While MMP-2 expression was observed in the dental
papilla cells, dental follicle, ameloblasts, odontoblasts and bone cells from the coronal and
basal regions of the bony crypt [30], bacteroids and anaerobic bacteria can also stimulate
excretion of MMP-1, MMP-2 and TIMP1 by the pulp cells [45]. The level of MMP-2 in
root canal exudate of teeth with pulp necrosis or asymptomatic apical periodontitis is
reduced gradually with root canal treatment procedures, which might validate MMP-2 as a
biomarker [57].

Higher levels of MMP-8 are found in irreversible pulpitis with higher pain scores [58,59],
explicitly expressed by polymorphonuclear leukocytes, macrophages, plasma cells and
some endothelial cells of the blood vessels of the pulp tissue proper, suggesting the role of
MMP-8 in extracellular matrix degradation during pulp and periapical tissue inflammation.
The level of MMP-8 progressively decreases after 15 days of a mineral trioxide aggregate
(MTA) pulpotomy procedure in rat molars, significantly more than Biodentine and calcium
hydroxide pulpotomies, indicating the superiority of MTA for vital pulp therapy [60].

MMP-9 expression is enhanced in inflamed pulps, especially in endothelial cells,
inflammatory infiltrate, odontoblasts, and fibroblasts [61]. In patients with symptomatic
irreversible pulpitis treated with a single visit mineral trioxide aggregate pulpotomy, active
MMP-9 concentration in pulpal blood has a significant correlation with the outcome,
possibly indicating a prognostic biomarker [62].

In a recent clinical study, inflammatory cytokines and MMPs were assessed in col-
lected dentinal fluid after selective caries removal and treating dentine with self-etching
adhesives in patients with deep caries. They were used in immunoassays as biomarkers
of inflammation to detect the influence of clinical procedures of selective caries removal
and adhesive materials on the pulp tissue. Eight weeks following selective caries removal,
MMP-8 and TIMP1 levels increase [63].

In an animal study, MMP-9 and MMP-2 have a strong correlation with progression
of apical periodontitis [64]. Melatonin and 5-methoxytryptophol are effective in reducing
MMP-1 and -2 levels in the serum and pulp tissue of acute pulpitis models in rats pointing
to future potential therapeutic measures [65].

Bone resorption in apical periodontitis is linked to host inflammation and immune
response. As osteoclasts start their bone resorption activity, MMPs such as MMP-9 should
be functional since they contribute to degradation of the bone organic matrix. Biomarkers
of bone resorption in apical periodontitis including MMP-9 in controlled diabetic and nor-
moglycemic patients are not significantly different [66]. In patients with apical periodontitis
presented clinically by a negative sensibility test and apical radiolucency, MMP-9 is re-
duced by sodium hypochlorite and sodium hypochlorite limewater. When an intracanal
medication of calcium hydroxide and chlorohexidine is used, reduction in MMP-9 and
MMP-8 levels is potentiated [67].

7. MMPs and Hybrid Layer Degradation

Resin bonding to dentine is a routine practice in restorative dentistry for direct and
indirect restorations [68]. The procedure involves either etch-and-rinse or self-etch ap-
proaches. In the etch-and-rinse approach, acid etching is performed on the dentine surface
to remove the smear layer and preferentially demineralize the superficial layer of dentine
exposing the collagen plexus which becomes infiltrated with the resin adhesive in a subse-
quent step. With the self-etch approach, acidic monomers undergo the etching together
with a synchronized infiltration of the exposed collagen [14,69–72].

Endogenous collagenolytic enzymes, MMPs, are bound in mineralized dentine. The
acidic treatment of the dentine surface activates MMPs present in dentine matrix in an
inactive form, which become responsible for degradation of collagen in the hybrid layer.
With the etch-and-rinse approach, the incomplete penetration of the collagen plexus of the
hybrid layer leaves a denuded collagen layer at the bottom of the hybrid layer vulnerable
to MMPs degradational activities [72]. Deterioration of resin dentine interfacial bonds
can be due to degradation of the hybrid layer collagen fibrils, time dependent hydrolytic
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degradation of the hybrid layer resin component and the exogenous proteases including
MMPs produced due to bacterial metabolic activities. Adverse clinical consequence of such
deterioration includes increased hypersensitivity, recurrent caries, marginal discoloration,
and development of reversible and irreversible pulpitis [14,69].

8. MMPs and Periodontal Tissues

MMPs play a significant role in the regulation and pathogenesis of periodontal diseases.
Several medications and natural products could restore periodontal tissues inflammation
through inhibition of MMPs and other related molecular cascades [73]. These findings are
documented in clinical, in-vivo, and in-vitro studies. In this section, different pharmacolog-
ical compounds that influenced periodontal tissues via modulation of matrix MMPs will
be discussed.

Medications might have an impact on periodontal tissues via regulating MMPs. The
antidiabetic medications, exenatide and sitagliptin, reduced the gingival expression of
MMP-9 in ligature-induced periodontitis in rats without stabilizing the altered alveolar
bone and collagen degradation [74]. Fluoxetine, a selective serotonin reuptake inhibitor,
attenuated periodontal bone resorption and downregulated the activity of MMP-9 in the
gingival tissues of Wistar rats with ligature-induced periodontal disease [75]. Celecoxib and
omega-3 fatty acid treatments reduced gingival expression of MMP-8 and increased MMP-
13 expressions in a Sprague-Dawley rat model of periodontitis by lipopolysaccharide [76].
Nifedipine, a calcium channel blocker, might increase the gene and protein expression of
MMP-1 alone or in combination with interleukin-1alpha in human gingival fibroblasts [77].
Chlorhexidine mouthwash as an adjunctive therapy in patients with plaque-induced gin-
givitis had no effect on the levels of matrix metalloproteinase-8 in gingival crevicular
fluid [78]. Chlorhexidine chip intraoral application following scaling and root planning
lowered MMP-8 levels in the gingival crevicular fluid of chronic periodontitis patients [79].
Two synthesized bisphosphonic compounds and zoledronate, decreased the expression of
MMP-9 and matrix metalloproteinases-14, while zoledronate increased MMP-8 expression
in human gingival fibroblasts after exposure to lipopolysaccharide [80]. Another example
of bisphosphonates, tiludronate, inhibited the activities of matrix metalloproteinase-1 and
MMP-3 in human periodontal ligament cells in a dose dependent manner [81]. Batimastat
inhibited the progression of periodontal tissue destruction in Sprague-Dawley rats through
MMP inhibition [82]. S-nitrosoglutathione, a nitric oxide donor, reduced the MMP-1 and
MMP-8 in the periodontium of Wistar rats in a ligature-induced periodontitis model [83].
Relaxin, a hormone that belongs to the insulin superfamily, increased MMP-1 and MMP-8
expression in human periodontal ligament cells [84]. A metal chelator namely phendione
reduced the growth of Enterococcus faecalis in human root through inhibition of MMP-
2 [85]. Moreover, excessive fluoride consumption increases MMP-2 expression in gingival
and periodontal tissues of experimental rabbits [86]. Table 1 summarizes the MMPs that
have been reported to contribute to gingival and periodontal lesions and wound healing,
function, and associated diseases.

Table 1. MMPS in periodontal lesions modified from the work of Ionut Luchian et al. (Luchian I,
Goriuc A, Sandu D, Covasa M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in
Periodontal and Peri-Implant Pathological Processes. Int J Mol Sci. 2022, 23, 1806. https://doi.org/10.3
390/cells9051313. PMID: 35163727; PMCID: PMC8837018. (MDPI open access source) [87].

Type of
MMP Name Substrate Production Physiological

Function Associated Diseases

MMP-1

Collagenase
1/Interstitial
Collage-
nase/Fibroblast
Collagenase

Collagen I, II, III, VII,
VIII, X, XI, Gelatin,
Fibronectin,
Aggrecan, Entactin,
Tenascin, Ovostatin,
Casein

Fibroblast,
Keratinocytes,
Endothelial cells,
Macrophages,
Osteoblast,
Chondrocytes, Platelet

Wound healing,
re-epithelialization,
cell proliferation,
keratinocyte migration

Periodontitis,
rheumatoid arthritis,
atherosclerosis,
fibrosis,
autoimmune disease,
cancer

https://doi.org/10.3390/cells9051313
https://doi.org/10.3390/cells9051313
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Table 1. Cont.

Type of
MMP Name Substrate Production Physiological

Function Associated Diseases

MMP-2
Gelatinase
A/72-kDa type
IV collagenase

Collagen, Elastin,
Endothelin,
Fibroblast growth
factor, MMP-9,
MMP-13,
Plasminogen, and
TGF-β,

Cardiomyocytes,
Fibroblasts, and
Myofibroblasts.

Neovascularization,
Angiogenesis,
Promoting and
inhibiting
Inflammation,

Cancer, asthma, lung
diseases,

MMP-8
Collagenase
2/Neutrophil
Collagenase

Collagen I, II, III,
Fibronectin,
Aggrecan, Ovostatin

Chondrocytes,
Endothelial cell,
Macrophages, Smooth
muscle cell

Periodontal tissue
turnover,
Anti-inflammatory
activity, Wound
healing

Periodontitis,
rheumatoid arthritis,
asthma, cancer

MMP-9
Gelatinase
B/92-kDa type
IV collagenase

Gelatin, Type V
collagen, Laminin,
Fibronectin

Neutrophils,
Eosinophils, Epithelial
cells

Wound healing,
embryo implantation,
neovascularization,
immune cells function,
tissue remodeling

Arthritis, metastasis,
pulmonary disease,
infections,
cardiovascular
disease, periodontal
disease

MMP-12 Macrophage
elastase

Elastin, Laminin,
Fibronectin,
Vitronectin, Type IV
collagen

Endothelial cells,
Neutrophils,
Fibroblasts, T-cells,
Myocytes,
Macrophages,

degrade extracellular
matrix component

Emphysema,
arthritis, cancer,
periodontal disease

MMP-13 Collagenase 3

Collagen I, II, III, IV,
IX, X, XIV,
Fibronectin, Laminin,
Gelatin, Aggrecan,
Plasminogen,
Osteonectin

Epithelial cell,
Neuronal cell,
Connective tissue
(Cartilage and Bone)

Osteoclastic activation,
anti-inflammatory
activity

Periodontitis,
osteoarthritis, liver
fibrosis, cancer

9. MMPs in Orthodontic Tooth Movement

Orthodontic tooth movement results from the forces exerted on a tooth that trans-
mit pressure to periodontal ligaments (PDL) [88]. These mechanical stimuli trigger an
inflammatory response in the periodontal tissues that elicit biochemical changes within
the PDL leading to alveolar bone remodeling [89]. In addition, orthodontic tension as well
as compression forces cause a continuous reorganization of the PDL extracellular matrix
(ECM), which contributes to ECM deposition by secreting matrix proteins [90,91]. Expres-
sion of various proteolytic enzymes such as matrix-metalloproteinases (MMPs) are related
to ECM protein degradation affecting PDL and alveolar bone remodeling [92]. MMPs-1,
-2, -3, -7, -8, -12 and -13 are expressed in gingival crevicular fluid during orthodontic tooth
movements [92]. Garlet et al. [93], showed increased MMP-1 expression levels in the PDL
tissue at both the tension and compression areas with a significantly higher expression
level at the compression zone. This indicates a potential higher importance of MMP-driven
ECM protein degradation at the compression site.

Various studies involving in vivo models [89,94,95] using gingival crevicular fluid sam-
ples from healthy human orthodontic patients revealed increased levels of MMPs, including
MMP-1, MMP-8 and MMP-13 collagenases within a broad time range after orthodontic treat-
ment initiation at both the compression and tension zone. The increased MMP expression
levels were partially higher at the compression zone [96]. In vitro studies [90,97] involving
simulated orthodontic forces applied to cells isolated from the PDL revealed varying ex-
pression levels of MMPs and TIMPs, verifying a significant influence of mechanical forces.
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An increased expression of MMP-8 and MMP-13 mRNA in the PDL of rats during
active tooth movement has also been demonstrated [98]. Orthodontic tooth movement can
be delayed or prevented in mice by the use of MMP inhibitors [99], which signifies their
role in orthodontic tooth movement [96].

Table 2 summarizes the MMP groups and their involvement in dental and periodontal
tissues and their role in orthodontic tooth movement.

Table 2. MMP groups and their roles in dental and periodontal tissues and in orthodontic tooth
movement. (MMP groups were used from Jain A, Bahuguna R. Role of matrix metalloproteinases in
dental caries, pulp, and periapical inflammation: An overview. J. Oral Biol. Craniofac. Res. 2015, 5,
212–218. https://doi.org/10.1016/j.jobcr.2015.06.015. PMID: 26605147; PMCID: PMC4623218 with a
permission to use [4].

MMPs Groups Enamel Dentine Pulp and
Periapical Lesions

Periodontal
Ligament

Dental
Caries

Orthodontic
Tooth Movement

1. Collagenases
MMP-1
MMP-8
MMP-13

MMP-13
mucosal
penetration
during tooth
eruption

MMP-8 and
MMP-13
Dentinogenesis
MMP-8
reparative
dentine formation

MMP-1, -8, -13
reparative dentine
formation
MMP-1 acute
pulpitis

MMP-1
periodontitis
MMP-8 gingivitis
MMP-13
periodontitis

MMP-1, 8
pathogene-
sis of
caries

MMP-1, -8, -13
expressed in
crevicular fluid
during
orthodontic
treatment

2. Gelatinases
MMP-2
MMP-9

MMP-2,
MMP-9
mucosal
penetration
during tooth
eruption

MMP-2, 9
dentinogenesis

MMP-9 reparative
dentine formation
MMP-2 acute
pulpitis
MMP-2, -9
progression of
apical periodontitis
MMP-9 alveolar
bone resorption

MMP-9 gingivitis

MMP-2, 9
pathogene-
sis of
caries

MMP-2 expressed
in crevicular fluid
during
orthodontic
treatment

3. Stromelysins
MMP-3
MMP-10
MMP-11
MMP-12

MMP-3 dentine
mineralization

MMP-3 reparative
dentine formation

MMP-3
pathogene-
sis of
caries

MMP-3, -12
expressed in
crevicular fluid
during
orthodontic
treatment

4. Matrilysins
MMP-7
MMP-26

MMP-7 expressed
in crevicular fluid
during
orthodontic
treatment

5. MT-MMPs
(Membrane type)
MMPs-14(MT1-MMP)
MMPs-15(MT2-MMP)
MMPs-16(MT3-MMP)
MMPs-17(MT4-MMP)
MMPs-24(MT5-MMP)
MMPs-25(MT6-MMP)

MMPs-14
dentinogenesis
MT1-MMPs
and TIMP-2
correlate to the
rate of tooth
eruption

MMP-16
pathogene-
sis of
caries

6. Other MMPs
MMPs-18
MMP-19
MMPs20(enamelysin)
MMPs21
MMPs-23
MMPs-27
MMPs-28

MMPs-19
dentinogenesis
MMPs-20
(amelogenesis
and dentino-
genesis)

MMP-20 reparative
dentine formation

MMP-20
pathogene-
sis of
caries

10. MMP Inhibitors

MMPs can be inhibited by endogenous and exogenous inhibitors. Endogenous tissue
inhibitors (TIMPs 1, 2, 3, 4) regulate and control MMP expression and function. Each TIMP
has a specific gene regulation pattern, expression profile and binding affinity to specific
MMPs [100]. TIMPs are present in the ECM in a soluble form, except for TIMP-3, which

https://doi.org/10.1016/j.jobcr.2015.06.015
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is bound to the ECM. All TIMPs inhibit MMPs through reversible blockage, forming 1:1
stoichiometric complexes [101].

Both MMPs and TIMPs have important roles in the maintenance of health and disease
and their abnormal regulation has a relevant role in pathological conditions. Therefore,
MMPs and TIMPs could be important biomarkers of disease [102]. For instance increased
levels of MMP-8 and the MMP-8: TIMP-1 ratio in saliva and serum seem to be more
pronounced in women with polycystic ovarian syndrome and they are potentiated by
gingival inflammation [103]. TIMP1 might have a role in dental pulp inflammation [104].
Moreover, TIMP-1 is associated with acute apical periodontitis probably as a defense
mechanism to avoid extensive destruction [105]. Accumulating evidence shows that both
MMPs and TIMPs play a role in development, progress, and wound healing of apical
periodontitis. However, more research is needed to elucidate the exact role of respective
MMPs and TIMPs in the different stages of apical periodontitis and influences on severity
of bone destruction and wound healing [106].

Designing exogenous MMP inhibitors traditionally aimed at displacing the zinc-bound
water molecule by using zinc binding globulin. Current research focuses on fabricating
MMP inhibitors that have selective specificity and ability to target MMPs with active
site-directed potentials and structural identification capacity. Modern protein engineering
technologies enabled the evolution of smart MMPs, responsive therapeutics and drug
delivery vehicles.

Exogenous inhibitors in dentistry include multiple synthetic and natural compounds
that can protect dentine and prevent the demineralization process via inhibition of the prote-
olytic activities of MMPs. Chlorhexidine, fluorinated products, indomethacin, tetracyclines,
sodium trimetaphosphate, stannous chloride benzalkonium chloride, alcohols like ethanol,
quaternary ammonium compounds [107], as well as other crosslinking and medicinal plants
like green tea, grape seed extracts and curcumin are famous examples [10,23,102,103]. This
section highlights the role of some chemical agents with MMP inhibiting effects and the
therapeutic potential of pharmacological inhibition of MMPs in restorative dentistry.

10.1. Chlorhexidine

Chlorhexidine is extensively used in dental clinics as an antimicrobial agent to treat
gingivitis and periodontitis. In addition, it prevents dental plaque and can be used as an
adjunct to mechanical debridement. Chlorhexidine has marked effects as an exogenous
inhibitor against matrix metalloproteases. It effectively and nonspecifically reduces collagen
degradation by collagenolytic enzymes like MMPs and cysteine cathepsin [108].

It also provides inhibitory effects against MMPs in acidic environments produced
by acid etching and dental caries. In an experimental study, pH sensitive nanocarriers
of mesoporous silica loaded with chlorohexidine were incorporated in an experimental
resin bonding agent to provide an MMP inhibiting effect in acidic microenvironments
produced by acid etching and dental caries [109]. The controlled release of chlorohexidine
at the dentine surface by adding clays to dentine bonding agents was found to improve
durability of resin bonds to dentine [110]. Different studies and systematic reviews, indicate
that chlorohexidine improves the long-term stability of resin bonds to dentine with some
limitations concerning the test aging periods and the need for more supportive clinical
data [111]. Osorio et al. also investigated whether the degradation of the dentine hybrid
layer might be restricted by chlorhexidine digluconate following multiple demineralization
techniques using phosphoric acid, EDTA or acidic monomers. They found that chlorhexi-
dine has a partial inhibitory effect against MMPs in case of the acidic monomers, which
was prolonged in comparison with phosphoric acid or EDTA [112]. Notably, the inhibitory
activity of chlorhexidine, at concentrations of 0.5%, 1.0% and 2.0%, against MMPs were
maintained after treating dentine powder with two-step self-etching primers [113].
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10.2. Fluorinated Products

Fluorinated products are a useful tool in dentistry to prevent dental caries. Studies
showed that they have MMP inhibitory effects. It was suggested that fluoride, in the
form of sodium fluoride, might prevent dental caries through inhibition of salivary and
purified human gelatinases MMP-2 and MMP-9 [51]. In contrast, it was reported that
sodium fluoride might show low efficiency as a direct inhibitor of dentine matrix-bound
matrix metalloproteinases [114]. Another study by the same research group demonstrated
that potassium fluoride might inhibit the proteolytic properties of dentine matrix-bound
cysteine cathepsins without a visible efficacy against dentine MMP activity [115]. Treatment
of dentine with sodium trimetaphosphate, a synthetic compound that reduces dentine
demineralization, inhibited MMP-2 and MMP-9 activities particularly at 1.5% concentra-
tion [116]. Other synthetic compounds that preserve dentine mineralization via MMP-2
and MMP-9 include stannous chloride and stannous fluoride [117].

Dentifrices that contain MMP inhibitors including sodium fluoride, green tea extract,
or chlorhexidine digluconate can markedly decrease dentine loss [49], preserve the surface
properties of eroded dentine specimens and counteract dentine abrasions and erosions [49].

10.3. Tetracyclines

Tetracyclines have innate MMP inhibitory capacity. Doxycycline is indicated for use
in periodontal disease and is the only collagenase inhibitor approved by the US Food and
Drug Administration for any human disease [118].

Chemically modified tetracycline-3 showed preservative ability against the progres-
sion and prevalence of dentine caries in rats [44]. Oliveira et al., 2016 reported that pretreat-
ment with doxycycline either as acidic or neutral solutions had no effect on bond strength
of dentine adhesive [119]. Moreover, encapsulated doxycycline, as a MMP inhibitor, might
improve the durability and performance of hybrid layers in adhesively bonded resin used
in restorative dentistry [120]. Inhibition of MMP activities using chemically modified
tetracycline-3 lowered the organic bone matrix degradation in rats and resulted in reduced
tooth movement [121].

Other synthetic inhibitors of matrix metalloproteinases such as galardin were assessed
to determine their inhibitory effects in dentine [122]. Indomethacin was also assessed to
evaluate its inhibitory effect against the enzymatic activity of MMPs in dentine. In this
context, indomethacin-treated dentine samples had hindered enzymatic activities [123].

11. Concluding Remarks

Understanding the role and biofunctional aspects of MMPs constitutes an integral part
in figuring out the micromolecular basis of health and disease processes. This can open
the door for future paradigm shifts in diagnostic and therapeutic strategies. The active
and dynamic participation of MMPs in developmental, degradational and pathological
processes in dental tissues is increasingly drawing the attention of researchers. Research
endeavors highlight the role of MMPs in the formative amelogenesis and dentinogenesis
as well as in degradation of collagen in the hybrid layer, progress of dental caries, pulp
and periapical inflammation, in addition to the healing of wounds of the dentine-pulp
organ. Nevertheless, the role of MMPs in periodontal pathology and remodeling during
orthodontic tooth movements is evident. Ongoing research should continue to develop
clinically effective MMP inhibitors with sustained potency to protect dentine matrix and
provide adequate therapy for dentine caries, preserve the collagen hybrid layer, and
maintain the long-term integrity of resin-dentine bonds, and facilitate remineralization,
repair and regeneration of dental tissues. Moreover, future studies should continue to
validate the suitability of using MMPs as diagnostic and prognostic biomarkers in dental
caries, pulp, and periodontal lesions.
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