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Choice-relevant information transformation along a
ventrodorsal axis in the medial prefrontal cortex
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Choice-relevant brain regions in prefrontal cortex may progressively transform information

about options into choices. Here, we examine responses of neurons in four regions of the

medial prefrontal cortex as macaques performed two-option risky choices. All four regions

encode economic variables in similar proportions and show similar putative signatures of key

choice-related computations. We provide evidence to support a gradient of function that

proceeds from areas 14 to 25 to 32 to 24. Specifically, we show that decodability of twelve

distinct task variables increases along that path, consistent with the idea that regions that are

higher in the anatomical hierarchy make choice-relevant variables more separable. We also

show progressively longer intrinsic timescales in the same series. Together these results

highlight the importance of the medial wall in choice, endorse a specific gradient-based

organization, and argue against a modular functional neuroanatomy of choice.

https://doi.org/10.1038/s41467-021-25219-w OPEN

1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA. 2 Center for Magnetic Resonance Research, University of Minnesota,
Minneapolis, MN, USA. 3 Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA. 4Department of Biomedical Engineering, University
of Minnesota, Minneapolis, MN, USA. ✉email: maiss002@umn.edu

NATURE COMMUNICATIONS |         (2021) 12:4830 | https://doi.org/10.1038/s41467-021-25219-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25219-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25219-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25219-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25219-w&domain=pdf
http://orcid.org/0000-0003-3819-7956
http://orcid.org/0000-0003-3819-7956
http://orcid.org/0000-0003-3819-7956
http://orcid.org/0000-0003-3819-7956
http://orcid.org/0000-0003-3819-7956
http://orcid.org/0000-0003-3345-6074
http://orcid.org/0000-0003-3345-6074
http://orcid.org/0000-0003-3345-6074
http://orcid.org/0000-0003-3345-6074
http://orcid.org/0000-0003-3345-6074
mailto:maiss002@umn.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Economic choice is mediated by a large number of brain
regions, including several in the prefrontal cortex1–3. The
principles delineating the allocation of specific choice-

related functions to specific regions remain unclear. On one hand,
modular theories hold that specific brain regions can be asso-
ciated with particular nameable functions, such as evaluation,
comparison, and action selection1,4–6. On the other hand, dis-
tributed approaches to understanding choice hold that particular
elements of choice do not correspond neatly to anatomical
regions7–10. These distributed approaches are inspired by classic
connectionist theories as well as by modern deep learning
approaches9,11–13. They are also inspired by cognitive and phi-
losophical theories of distributed cognition14–16, and by analogy
to the form vision system, where gradient-based models have
come to replace historically dominant modular models10,17.

Within the domain of distributed models, early mass-action
and equipotentiality models have lately been supplanted by
hierarchical distributed models3,18,19. We and others have pro-
posed a related but conceptually distinct approach defined by a
gradual transformation of information9,10,20,21. For example,
specific circuits within the prefrontal cortex may be organized
into a gradient, so that each anatomical region implements part of
a transformation of task-relevant information from a domain of
options to a domain of actions10. We have proposed that each
region untangles information about the best action, which is
latent in the early representations and which, through serial
processing, is transformed into appropriate choice actions10. This
view is inspired by and is an extension of, modern untangling-
based models of form vision17.

A critical prediction of gradient-based models is that it should
be possible to arrange medial prefrontal regions into a series on
the basis of their functional properties. Discussions of prefrontal
gradients have typically focused on the lateral surface, or, when
examining the medial wall, on the rostrocaudal axis22–28. How-
ever, even in the lateral prefrontal cortex, there is evidence of
shared functionality between distinct subregions. Differential
contributions appear to be quantitative and indicative of a graded
flow of information29. We were interested, instead, in the ven-
trodorsal dimension of the medial prefrontal cortex. Neuroeco-
nomists have long proposed that the orbitofrontal and
ventromedial prefrontal cortices serve as the entry point of
choice-relevant sensory information into the prefrontal cortex
and that the motor cortex serves as the output5,30–32. The medial
wall inferior to the premotor cortex, which includes areas 14, 25,
32, and dorsal anterior cingulate cortex (dACC), which we call
area 24, looks to be a likely pathway linking OFC to pre/motor
areas. These regions also have prominent limbic, visceral, and
reward-related functions, suggesting they may contribute to
valuation and perhaps to choice as well33–35.

However, there are several possible functional gradients that
are consistent with known anatomy. First, it could follow topol-
ogy in a rough ventrodorsal direction (14→25→32→24). Second,
it could match the contour of the genu of the corpus callosum
(25→14→32→24). Third, cytoarchitecture suggests that the less
differentiated cingulate areas (25, 32, and 24) may precede the
more differentiated area 1436. Other cytoarchitectural studies
suggest that pre- and subgenual regions (14, 25, and 32) may have
shared functions but differ qualitatively from the postgenual 2437.
These specific pathways have not, to our knowledge, been func-
tionally evaluated. Despite this, identifying the functional gra-
dient, if one exists, is critical for establishing the neuroscience of
economic choice1.

We examined a composite dataset consisting of single-unit
responses collected in these four brain regions. We included
previously published data for 14, 25, and 24, and newly collected
data for area 3238–40. Instead of looking for specific functions that

would distinguish these regions from each other, we took a
function-first approach: we selected key putative signatures of
participation in specific elements of choice before beginning the
study and then characterized each region in these functions.

Here, we show two major results. First, the regions all show
signatures of all tested functions and do not differ qualitatively in
whether they carry certain information or have signatures of
choice processes. Second, a decoding analysis shows both stronger
decodability on twelve dimensions consistent with a single gra-
dient, specifically one that progresses from 14→25→32→24 (that
is, that follows a ventrodorsal direction). This second result is
complemented by a demonstration that intrinsic timescale shows
the same pattern. Together these results support a specific ven-
trodorsal medial prefrontal gradient and, simultaneously, argue
against a modular view in which conceptually distinct functions
are reified in neuroanatomy.

Results
Behavioral results. Rhesus macaques (Macaca mulatta) per-
formed one of two structurally similar two-alternative forced-
choice gambling tasks38,39 (see Methods). Briefly, subjects chose
between two risky options presented asynchronously (Fig. 1A, B).
After the second offer was presented, a go cue indicated that the
subject was free to shift gaze toward the target option to indicate a
choice. Thus, the task was naturally divided into three epochs,
corresponding to the periods immediately following offer 1, offer
2, and choice. The offer 2 epoch was the first during which the
subject could compare subjective values and select an action.
Note, however, that subjects can and likely do form tentative
partial choices based solely on the value of the first offer39.

Behavior in these tasks has been explored at length and is not
reanalyzed here (the most detailed analyses are published in
ref. 41). Briefly, behavior reflected an understanding of all
important task variables with very weak order or side biases.
We defined the expected value of an offer as the product of the
offer magnitude (in µL juice) and the probability of reward. Thus,
for a basic characterization of behavior, we computed the
frequency with which a given offer was chosen when it had a
higher expected value. We determined the proportion of trials on
which the subject chose the first offer and we compared it to the
difference in expected values of the two offers for each trial.
Subjects’ behavior described a sigmoidal function (Fig. 1C).
Subjects most frequently chose the offer with the higher expected
value (ventromedial prefrontal cortex (vmPFC) sessions: 84.55%
of trials; subgenual ACC (sgACC) sessions: 78.62%; pregenual
ACC (pgACC) sessions: 74.97%; dACC sessions: 75.57%; p <
0.0001 in all cases; 1-sample t test), consistent with the idea that
they had a basic understanding of the task.

Firing rates in all regions encode values of offers. We recorded
neuronal activity from four brain regions: 156 neurons (106 from
subject B and 50 from subject H) in vmPFC area 14, 146 neurons
(77 from subject B and 69 from subject J) in sgACC area 25, 213
neurons (110 from subject B and 103 from subject V) in pgACC
area 32, and 129 neurons (55 from subject B and 74 from subject J)
in dACC area 24. The data from pgACC have not been previously
published. Some data from vmPFC, sgACC, and dACC have been
previously published, although the key analyses here have not pre-
viously been reported38–40,42–44. We collected these recordings from
4 subjects (B, H, V & J see Methods and Fig. 1D). For each area, we
recorded from two subjects, although we did not use the same
subjects for all areas. We did not observe marked behavioral dif-
ferences across subjects and therefore did not expect nor observe
qualitative differences between subjects. We collected data from
dACC and sgACC in the token risky choice task; we collected data
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from vmPFC and pgACC in the risky choice task (Fig. 1A, B). The
basic format for each of the tasks during the selected time period for
analysis, from within each trial, is essentially the same. We do not
believe the small differences between the two tasks influenced the
results we present here.

Neuronal activity is modulated by offer value. We examined the
proportion of neurons in each region selective for the value of

offer 1 during epoch 1. Figure 2B–E shows the average firing rate
responses of an example neuron from each of the four regions. In
all four regions, a significant proportion of neurons encoded the
value of offer 1 during the offer 1 epoch (vmPFC: 16.03%; sgACC:
10.27%; pgACC: 10.98%; dACC: 26.36%; p < 0.01 in all areas,
binomial test). Likewise, neurons in three of the four regions
encoded the value of offer 2 during epoch 2 (vmPFC: 14.1%;
sgACC: 7.53%; pgACC: 10.98%; dACC: 14.73%; p < 0.01 in all

Fig. 1 Tasks, behavior, and structures. A Risky choice task: the first offer is presented, followed by a delay period, after which the second offer is
presented. After another delay period, fixation is reacquired for a minimum of 100ms. Both offers are then presented, a choice is made, and the choice is
probabilistically rewarded. Offers consist of a reward magnitude (color of the non-red portion of the bar) and a probability (size of the colored portion).
B Token risky choice task: equivalent format but the reward is tokenized. Once tokens reach 6, a reward is delivered. C The sigmoid is plotted along with
the mean choice behavior across all subjects and recording sessions (n= 4 animals recorded across 525 sessions). Error bars reflect the standard error
across sessions. Source data are provided as a Source Data file. D MRI scans of the brain areas targeted for recordings (red= vmPFC, pink= sgACC,
purple= pgACC, blue= dACC). A single representative subject is chosen for each area even though two subjects were recorded for each. The right panels
denote the targeted brain areas on both transverse and coronal planes.
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areas except sgACC (trending at p= 0.063), binomial test).
Finally, neurons encoded the value of offer 1 during epoch 2 (i.e.,
presumably, working memory for value, vmPFC: 9.62%; sgACC:
10.27%; pgACC: 9.41%; dACC: 14.73%; p < 0.01 in all areas,
binomial test; Fig. 3). We also plotted the average explained
variance (r2 computed from the correlation analyses used to
demonstrate neuronal modulation by offer value), for each region
across time.

Putative signatures of the choice process are found in all four
regions. We next asked whether each brain region contains a
value signal that reflects the integration of the two features that
determine value: probability and magnitude44. For each brain
region, we computed regression weights for each neuron’s nor-
malized (z-scored) firing rates for the two variables. We then
examined how those variables related to each other across the
population. A positive correlation between regression coefficients
indicates that both offer features are encoded using a correlated
coding scheme. In other words, it indicates that the population of

neurons has thrown out information about the details of the
components and has begun to compute an integrated value
signal44. We observed a significant positive relationship in all
regions (p < 0.001 in all regions; Fig. 4A). This result indicates
that feature integration is not a unique feature of any region, but
instead, is broadly shared across the medial PFC.

When attention shifts from one option to another, it is possible
that the same population of neurons encodes the new option in
the same manner as it encoded the first one, like neurons in the
visual cortex do for visual stimuli45–47. In other words, neurons
may act as a flexible filter for value; we have called this principle
attentional alignment (as opposed to a labeled line code for
value46). We next asked whether the attentional alignment is a
principle shared in all four of our regions. To do so, we regressed
normalized firing rates from epoch 1 onto the expected value of
offer 1 and regressed normalized firing rates from epoch 2 on the
expected value of offer 2. We then correlated these resulting
coefficients. A positive correlation is evidence for attentional
alignment. All four regions exhibited significant (p < 0.01)
positive correlations (Fig. 4B).

Fig. 2 Response latency and traces of average firing rates across all trials drawn from responses of single sample neurons. A Bars plot the average
latency to maximal firing rates in response to the onset of both offer 1 and offer 2 (red= vmPFC: n= 156 neurons; pink= sgACC: n = 146 neurons; purple
= pgACC: n= 213 neurons; blue= dACC: n= 129 neurons). Error bars indicate the standard error across trials. Source data are provided as a Source Data
file. B–E Peri-stimulus time histogram responses of sample neurons with firing rates that are significantly correlated with the expected values of both offers.
Traces are grouped by trials on which the value of either offer 1 (darker color) or offer 2 (lighter color) was larger. Traces are smoothed, for display, with a
200ms sliding boxcar. Each trace (a measure of center) indicates the average firing rate for a given neuron across trials (B: n= 711 trials; C: n= 425 trials;
D: n= 766 trials; E: n= 429 trials). Average firing rates are computed in spikes per second. The onset of offer 1 is set to time 0. The vertical lines indicate
the start times of periods in the trial (the onset of offer 1, offer 2, and fixation). Error ribbons denote standard error. Source data are provided as a Source
Data file. F–I Same as B–E, except that these are the time-resolved population averages. Each trace (a measure of center) indicates the average firing rate
across neurons. Traces are smoothed with a 200ms sliding boxcar for display purposes. Error ribbons denote standard error. Source data are provided as a
Source Data file.
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We next asked if there was evidence for direct comparison
between offers by the principle of mutual inhibition38,39. We
regressed normalized firing rates from epoch 2 on offer 1 onto
responses from epoch 2 on offer 2. If the encoding for value 1 and
value 2 during the same epoch are anti-correlated, then the
encoding of one value comes at the expense of the other. It is an
indication of the direct comparison of offers and thus a signal of
choice. All recorded regions exhibited significant (p < 0.05)
negative correlations (Fig. 4C) between regression weights. This

result indicates that all four regions show evidence of value
comparison via mutual inhibition.

Overlapping neuronal populations. Next, we asked if there were
distinct or shared populations of neurons encoding the previously
described functions. We repeated the integration, alignment, and
inhibition analyses (i.e., the correlations of select regression
weights), but now with absolute (i.e., unsigned) values of the

Fig. 3 Selectivity of firing rates to offers and choice. A–D The proportion of neurons that have firing rates that are correlated with the expected value of offer 1
(darker color) and offer 2 (lighter color) across a 3-s period during the trial (red= vmPFC, pink= sgACC, purple= pgACC, blue= dACC). The onset of offer 1 is
set to time 0. The vertical lines indicate the onsets of offer 1 and offer 2. Source data are provided as a Source Data file. E A summary of the proportion of neurons
selective to offers and choice, within given epochs. Each bar indicates the proportion within a given brain area. Source data are provided as a Source Data file. F–I
The average variance explained (r2) across neurons, from correlating firing rates with the expected values of offer 1 (darker color) and offer 2 (lighter color). Each
trace (a measure of center) indicates the average explained variance across neurons. Vertical lines and shading on the x-axis indicate trial events. Error ribbons
denote standard error. Source data are provided as a Source Data file. J A summary of average explained variance, collapsed across the respective offer epoch
(500ms window), relative to each of the offers (vmPFC: n= 156 neurons; sgACC: n= 146 neurons; pgACC: n= 213 neurons; dACC: n= 129 neurons). Error bars
denote the standard error across neurons. Source data are provided as a Source Data file.
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regression weights. We have previously shown that such corre-
lations indicate shared or overlapping functional populations48. If
the (unsigned) strength of encoding of one offer (or feature) is
positively correlated with the degree of encoding of the other
offer, then the populations associated with encoding the two
variables overlap more than expected by chance. We found a
significant positive correlation (vmPFC: r= 0.31; sgACC: r=
0.31; pgACC: r= 0.44; dACC: r= 0.41; p < 0.001, all areas,
Pearson’s correlation) between unsigned regression coefficients
for the integration function (epoch 1 firing rates regressed on
offer 1 magnitude and on offer 1 probability). We also found a
significant positive correlation between unsigned regression
coefficients for all areas (vmPFC: r= 0.34; sgACC: r= 0.23;
pgACC: r= 0.33; p < 0.01, Pearson’s correlation), except for
dACC (r= 0.17, p= 0.058, Pearson’s correlation), representing
alignment (epoch 1 firing rates regressed on expected value 1 and
epoch 2 regressed on expected value 2). Finally, vmPFC (r= 0.29)

and pgACC (r= 0.25) showed significantly positive correlations
(p < 0.001 in both cases, Pearson’s correlation) between unsigned
regression coefficients for inhibition (epoch 2 firing rates on the
expected value of each offer). These results indicate that, in most
areas and across functions, encoding is mostly supported by the
same, or at least overlapping, sets of neurons.

Intrinsic timescales are longest at the top of the anatomical
gradient. The results presented so far demonstrate broadly
overlapping functions across regions. We next asked whether
there is evidence of a functional gradient. We first considered
intrinsic timescales. Intrinsic timescales are a population-level
statistic describing fluctuations in a neuronal signal that are
agnostic to the task and corresponding variables32. Murray and
colleagues32 proposed that intrinsic fluctuations are a function of
increased modulatory strength. They suggested that increased
modulation is due to increased recurrent network activity, which

Fig. 4 Economic choice functions. A Feature integration. From left to right: Scatter plots of regression coefficients from regressing normalized epoch 1 firing
rates on the probability of offering 1, against the regression coefficients from the magnitude of offer 1 (red= vmPFC, pink= sgACC, purple= pgACC, blue
= dACC). The diagonal black line indicates the slope of the correlation between regression coefficients (Pearson’s correlation, with p-value computed as a
two-sided test). The red ribbons indicate the 95% confidence intervals. Source data are provided as a Source Data file. B Attentional alignment. Scatter
plots are of coefficients from regressing normalized epoch 1 firing rates on the expected value of offer 1, against the regression coefficients from epoch 2
firing rates on the expected value of the offer. The diagonal black line indicates the slope of the correlation between regression coefficients (Pearson’s
correlation, with p-value computed as a two-sided test). The red ribbons indicate the 95% confidence intervals. Source data are provided as a Source Data
file. C Mutual inhibition. Scatter plots are of coefficients from regressing normalized epoch 2 firing rates on the expected value of offer 1, against the
regression coefficients from epoch 2 firing rates on the expected value of offer 2. The diagonal black line indicates the slope of the correlation between
regression coefficients (Pearson’s correlation, with p-value computed as a two-sided test). The red ribbons indicate the 95% confidence intervals. Source
data are provided as a Source Data file.
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in turn increases along an anatomical gradient. Thus, longer
intrinsic timescales would be indicative of increased modulatory
strength and, therefore, a higher position along the gradient.

We estimated and compared the intrinsic timescales of each
recorded region from a temporal decay function. The neural
activity used to estimate the intrinsic timescales came from the
last two seconds of the inter-trial interval, that is, before the onset
of the first offer on the next trial (similar to ref. 32). This period is
absent of any cues or information about either the previous or
pending trial. We used the decay function to fit the autocorrela-
tion of pre-trial spike data across a range of lags (see Methods).
We found an increase of intrinsic timescale that seemed to map a
medial prefrontal gradient onto a rough ventrodorsal gradient
(vmPFC: 109.8 ms; sgACC: 152.76 ms; pgACC: 321.85 ms; dACC:
446.51 ms; Fig. 5). We confirmed a positive monotonic relation-
ship by correlating the intrinsic timescales with the observed
order (1–4) across the areas. The results showed a significant
positive correlation between increasing order across the four
areas, and the increasing intrinsic timescale (r= 0.98, p= 0.022,
Pearson’s correlation).

Decoding accuracy supports a clear functional gradient. We
hypothesized that the accuracy with which expected value and
choice can be decoded from firing rate patterns should increase
along the anatomical gradient. To test this hypothesis, we trained
(and cross-validated) a linear classifier to decode ten binary labels
(specifically: high/low expected values for offer 1 and for offer 2,
the difference between expected values of the two offers, offer
position, choice, chosen offer position, chosen offer value,
unchosen offer value, the choice on the previous trial, and reward
on the previous trial) from firing rates. We investigated decoding
accuracy for two of these variables (expected value of offer 1 and
chosen offer position) in two different epochs, thereby yielding a
total of 12 independent decoding analyses (see Methods).

We first looked at how accurately the offer 1 value could be
decoded from firing rates in epoch 1 (Fig. 6A). The classifier
decoded whether offer 1 on each trial had greater or lesser value

than the mean offer value across trials significantly better than
chance (binomial test, p < 0.0001) for all regions: vmPFC (61.4%),
sgACC (63.1%), pgACC (69.8%), and dACC (73.7%). Notably,
when we compared the proposed gradient order with the
decoding accuracy distributions, decoding accuracy increased
with gradient order (⍴= 0.81, p < 0.001, Spearman’s correlation).
The same principle applied to offer 1 value in epoch 2 (a putative
signature of working memory for value49; Fig. 6B). The classifier
decoded whether offer 1 on each trial had greater or lesser value
than the mean offer value (binomial test, p < 0.001) for all regions:
vmPFC (57.7%), sgACC (60.1%), pgACC (68.5%), and dACC
(69.4%). As above, decoding accuracy increased with gradient
order (⍴= 0.69, p < 0.001, Spearman’s correlation).

We next looked at how accurately offer 2 values (greater or less
than mean) could be decoded from firing rates in epoch 2
(Fig. 6C). As above, the proposed gradient order (binomial test, p
< 0.0001) for all regions: vmPFC (62.6%), sgACC (64.9%), pgACC
(69.2%), and dACC (66.6%), accuracy increased with gradient
order (⍴= 0.24, p < 0.001, Spearman’s correlation). The same
pattern is observed with the difference between offer values
(greater or less than mean) in epoch 2 (Fig. 6D, binomial test, p <
0.001) for all regions: vmPFC (54.9%), sgACC (62.3%), pgACC
(67%), and dACC (70.2%). Decoding accuracy increased with
gradient order (⍴= 0.82, p < 0.001, Spearman’s correlation).

Next, we looked at how accurately the chosen offer (offer 1 or
2) could be decoded from firing rates in the choice epoch
(Fig. 6E). Note that this variable is orthogonal to the offer side
since we observed essentially no spatial biases in choice. The
classifier decoded choice on each trial (binomial test, p < 0.0001)
for all regions: vmPFC (64.2%), sgACC (70.5%), pgACC (70.6%),
and dACC (72.5%). Decoding accuracy increased with gradient
order (⍴= 0.77, p < 0.001, Spearman’s correlation). The same
pattern is observed with the expected value of the chosen offer
(Fig. 6F, binomial test, p < 0.0001) for all regions: vmPFC (66.1%),
sgACC (69.1%), pgACC (69.8%), and dACC (70.8%). Decoding
accuracy increased with gradient order (⍴= 0.59, p < 0.001,
Spearman’s correlation). This pattern was also observed with

Fig. 5 Intrinsic timescales. A Spike-count autocorrelations calculated at increasing lags for each of the four brain areas (red= vmPFC: n= 156 neurons;
pink= sgACC: n= 146 neurons; purple= pgACC: n= 213 neurons; blue= dACC: n= 129 neurons). The decay of autocorrelation amplitude with lag was
fitted by an exponential decay function with offset (black line). Error bars indicate the standard error for autocorrelation amplitude across neurons at a
given lag. Source data are provided as a Source Data file. B A summary table of the intrinsic timescales, extracted from the exponential decay function. The
figure demonstrates a smooth increase of intrinsic timescale along a gradient. Source data are provided as a Source Data file.
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the expected value of the unchosen offer (offer 1 or 2, Fig. 6G,
binomial test, p < 0.0001) for all regions: vmPFC (67.1%), sgACC
(68.1%), pgACC (69.3%), and dACC (66.4%). Although the effect
was nearly significant, decoding accuracy did not significantly
increase with gradient order (⍴=−0.03, p= 0.058, Spearman’s
correlation).

Finally, we looked at how accurately the chosen offer (offer 1 or
2) from the previous trial could be decoded from firing rates in
the current choice epoch (Fig. 6H). The classifier decoded choice

on each trial (binomial test, p < 0.0001) for all regions: vmPFC
(61.3%), sgACC (67.1%), pgACC (67.4%), and dACC (67.9%).
Decoding accuracy increased with gradient order (⍴= 0.51, p <
0.001, Spearman’s correlation). The same pattern was observed
with experienced reward (rewarded or not rewarded) from the
previous trial (Fig. 6I, binomial test, p < 0.0001) for all regions:
vmPFC (66.7%), sgACC (68.1%), pgACC (72.1%), and dACC
(70.3%). Decoding accuracy increased with gradient order
(⍴= 0.66, p < 0.001, Spearman’s correlation).

Fig. 6 Decoding analysis. A–M Summary of classification accuracies for each of the given labels (red= vmPFC, pink= sgACC, purple= pgACC, blue=
dACC; n= 1000 bootstrapped samples). Bars plot the average decoding accuracy across cross-validation iterations. In a given epoch, a linear classifier was
trained to identify the value of a binary label (indicated on the x-axis). The accuracy of the trained model was tested by cross-validation to predict the label
value on untrained data (permutation average indicated on the y-axis). The accuracy of a model trained on randomly shuffled data is indicated by the gray
bar. Error bars represent the standard error over the variance across cross-validations. Source data are provided as a Source Data file.
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Graded organization of coding of spatial information. We
looked at how accurately the position of the offer on the monitor
could be decoded from firing rates in epoch 1 (Fig. 6J). The
classifier decoded whether offer 1 on each trial was on the right or
left (binomial test, p < 0.0001) for all regions: vmPFC (64.5%),
sgACC (69.5%), pgACC (72.6%), and dACC (77.2%). Decoding
accuracy increased with gradient order (⍴= 0.94, p < 0.001,
Spearman’s correlation). We also looked at how accurately the
position of the chosen offer on the monitor could be decoded
from firing rates in the choice epoch (Fig. 6K). The classifier
decoded whether the chosen side on each trial was on the right or
left (binomial test, p < 0.0001) for all regions: vmPFC (64.7%),
sgACC (70%), pgACC (70.4%), and dACC (75.6%). Decoding
accuracy increased with gradient order (⍴= 0.93, p < 0.001,
Spearman’s correlation).

We also looked at how accurately the position of the chosen
offer on the monitor could be decoded from firing rates in the
post-choice epoch50 (Fig. 6L). The classifier decoded whether the
chosen side on each trial was on the right or left (binomial test, p
< 0.0001) for all regions: vmPFC (69.3%), sgACC (72.4%), pgACC
(70.8%), and dACC (83%). Decoding accuracy increased with
gradient order (⍴= 0.81, p < 0.001, Spearman’s correlation).
Finally, we looked at the average accuracy across all 12 decoders
(Fig. 6M). Average accuracy across all decoders was above chance
(binomial test, p < 0.0001) for all regions: vmPFC (63.4%), sgACC
(67.1%), pgACC (69.8%), and dACC (71.9%). Average decoding
accuracy significantly increased with order (⍴= 1, p= 0.017,
Spearman’s correlation).

Additional decoding controls reveal a consistent functional
gradient. We next asked whether the number of neurons collected
in each region had some effect on measures of decodability, in case
the different number of neurons collected for each region was
contributing to our effects. We, therefore, decimated our datasets
until each had the same number of cells (specifically, 125, a number
chosen before analysis). We observed that for all of our twelve
measures the order was unchanged, relative to the original results.
Importantly, when we averaged the decoding accuracy across all
decoders, we found a significant increase with gradient order. We
conclude from this control analysis that our original findings are
robust and do not depend on the number of cells in each sample.

Another possible confound comes from the fact that the expected
value here is a continuous variable. If some structures have graded
coding of the variable, a binary classifier may not be sensitive to this
property. To address this concern, as an additional control, we
performed a regression-based multinomial classifier for decoding
multiple EV bins. To discretize EV, while still ensuring there would
be a usable number of trials in each bin, we separated the expected
value into six equally sized, consecutive bins. We separated trials
based on the corresponding binned EVs and used these separated
responses to construct pseudo-samples, following the same approach
already described. We then trained the SVM and used the model to
predict the offered and the chosen EV on an untrained cross-
validation set. We found that the proposed gradient in the majority
of our other findings (vmPFC->sgACC->pgACC->dACC) was also
evident when we decoded these variables using multiple bins. As the
results remain unchanged from the binary decoding of EV, we do
not discuss them further.

Baseline firing rates do not differ between structures. First, we
asked whether there were any differences in the intrinsic firing
properties of neurons between the target structures. To measure
baseline firing rates in each structure, we computed the average
firing rate for each neuron during the 1-s pre-trial period, from
−2 s to 0 s, where time 0 was set to the onset of offer 1. (Note that

this is the same time window on which we performed our analysis
of intrinsic timescales, see Methods). The baseline firing rate in
vmPFC was 3.11 spikes/s. The baseline firing rate in sgACC was
3.69 spikes/s. The baseline firing rate in pgACC was 0.75 spikes/s.
Finally, the baseline firing rate in dACC was 5.06 spikes/s. A
Spearman correlation of these baseline firing rates with the pro-
posed order was not significant (⍴= 0.4, p= 0.75, Spearman
correlation). As the results are non-significant, we cannot draw
any additional conclusions from this analysis.

Next, we wanted to determine if variability in the firing rates
differed between structures. To measure firing rate variability, we
computed the average Fano Factor (FF) across neurons in each
region, replicating the procedure outlined in Chang et al.51. We
segmented each 500 ms epoch into 100 ms bins. For each neuron,
we calculate the variance and mean across trials within a given
100 ms bin. We then computed the FF as the variance divided by
the mean and averaged this FF across neurons. Finally, in order to
compare the FF across structures against the proposed gradient,
we performed a Spearman correlation between the average FF
across time bins and the expected gradient order. Across the time
bins in epoch 1, the average FF in vmPFC was 1.93 ± 0.199
(SEM). The average FF in sgACC was 1.24 ± 0.023. The average
FF in pgACC was 1.23 ± 0.025. The average FF in dACC was 1.35
± 0.042. (Epoch 2, vmPFC: 1.92 ± 0.171; sgACC: 1.24 ± 0.025;
pgACC: 1.23 ± 0.024; dACC: 1.32 ± 0.042). There was no
significant correlation between gradient order and FF across the
structure in either epoch 1 (ρ=−0.4, p= 0.75, Spearman
correlation) or epoch 2 (ρ= 0.4, p= 0.74, Spearman correlation).
As the results are nonsignificant, we cannot draw any additional
conclusions from this analysis.

Lastly, we reasoned that qualitative encoding differences
between structures would be associated with differences in the
degree of dimensionality in neural activity between structures. To
measure intrinsic dimensionality, we performed a principal
component analysis on the normalized firing rates across neurons
in each of the offer epochs, independently for each structure. For
each neuron, we isolated the firing rates from both offer epochs.
We calculated the mean firing rate across trials for each 20 ms
time bin. Using these average responses, we composed a matrix of
time X neurons. We performed an eigenvalue decomposition and
computed the explained variance due to each of the first three
principal components (PCs). We then calculated the degree of
change, by calculating the slope, in explained variance from the
first PC to the second PC, and again from the second PC to the
third. We performed this same analysis for each offer epoch
independently. Finally, we asked if the change in explained
variance between the first three PCs was significantly correlated
with the proposed order. We found that in epoch 1, the change in
explained variance between PC1 and PC2 did not significantly
change with gradient order (⍴=−1, p= 0.083, Spearman
correlation). Similarly, the change in explained variance between
PC2 and PC3, in epoch 1, did not significantly change with
gradient order (⍴=−1, p= 0.083, Spearman correlation). We
found that in epoch 2, the change in explained variance between
PC1 and PC2 did not significantly change with gradient order (⍴
=−1, p= 0.083, Spearman correlation). The change in explained
variance between PC2 and PC3, in epoch 2, did not significantly
decrease with gradient order (⍴=−0.4, p= 0.75, Spearman
correlation). As the results are not significant, in any of these
three analyses of intrinsic properties, we were unable to identify
any qualitative differences in signatures of neural activity between
the target structures.

Offer encoding latency does not differ between areas. First, we
confirmed our hypothesis that there would be no differences
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between areas in stimulus (i.e., the offer) response latencies. For
both offer 1 and offer 2, we computed the latency of neural
responses (see Methods). We defined latency as the time elapsed
from the onset of the offer stimulus until firing rates in the
respective epoch reached their maximum within the epoch. We
used a 4 (area) × 2 (offer 1 or 2) ANOVA to test for differences.
Neither the main effect of area (F= 1.96, p= 0.297) nor offer
number (F= 5.04, p= 0.110) was statistically significant
(Fig. 3A). Neuronal responses to the onset of offer 1 reached
maximum firing (spikes per millisecond) in epoch 1 after an
average of 258.55 ms from the offer onset (vmPFC= 265.6 ms;
sgACC= 242.5 ms; pgACC= 252 ms; dACC= 274.1 ms). Neu-
ronal responses in epoch 2 reached their maximum, on average,
245.04 ms after the onset of offer 2 (vmPFC= 241.8 ms; sgACC
= 242.2 ms; pgACC= 245.6 ms; dACC= 250.5 ms).

We also tested latency using an alternative method. Specifically,
we focused on the time at which firing rates reached a significance
threshold in response to the variable. We defined latency as the
time elapsed from the earliest point in the epoch at which firing
rates register as significantly correlated with the expected value
until firing rates reached their maximum within the epoch. We
used a 4 (area) × 2 (offer 1 or 2) ANOVA to test for differences.
Neither the main effect of area (F= 0.89, p= 0.538) nor offer
number (F= 1.23, p= 0.346) was statistically significant. Using
this definition of a significance threshold, we also computed the
time elapsed from the onset of the offer to the first time point at
which firing rates were significantly correlated with the expected
value. We averaged latency across neurons and used a 4 (area) × 2
(offer 1 or 2) ANOVA to test for differences. Neither the main
effect of area (F= 1.14, p= 0.457) nor the offer number (F=
0.041, p= 0.853) was statistically significant.

Finally, we also calculated latency as the time elapsed from the
onset of an offer (in each epoch) to both the peak change in firing
rate and to the first significant change in firing rate, irrespective of
variable encoding. To do this, we calculated the mean firing rate
for each neuron across trials. We then calculated both the mean
and standard deviation in firing rate across each epoch. Next, for
each time bin, we calculated the absolute value of the difference
between firing rate and mean firing rate. We then identified the
time bin of the peak change in firing rate relative to the mean
firing rate for each neuron. For each epoch, we calculated the time
elapsed from the onset of the offer to the peak change in firing
rate and averaged these latencies across neurons. We performed a
4 (area) × 2 (offer 1 or 2) ANOVA to look for differences in time
elapsed to peak change in firing rate. For both the main effect of
area (F= 0.44, p= 0.742) and the main effect of offer (F= 3.84, p
= 0.145) we found no significant differences. We then defined the
time of the first significant change in firing rate as the first time at
which firing rates were either greater than 2 standard deviations
above or below (to account for neurons with firing rates that
decrease) the mean. For each neuron, we then calculated the time
elapsed between the onset of the offer and this first significant
change in firing rate. For each epoch, we averaged latencies across
neurons and performed a 4 (area) × 2 (offer 1 or 2) ANOVA to
look for differences in time elapsed to the first significant change
in firing rate. For both the main effect of area (F= 0.76, p=
0.448) and the main effect of offer (F= 0.17, p= 0.912) we found
no significant differences.

Discussion
Here, we examined neuronal correlates of multiple elements of
economic choice in four medial prefrontal cortex regions. Con-
firming and extending our previous results, we find that these
regions show largely similar value-related signals38,40. Indeed, by
none of the measures we chose did these regions differ

qualitatively. This result suggests that the regions do not have
conspicuous qualitative differences along the dimensions we
studied but leaves open the possibility that they differ quantita-
tively. Our major finding is that, by several measures, the regions
appear to be organized by the functional gradient. First, twelve
basic task variables are consistently more decodable later in the
gradient. These include both abstract (economic) and spatial
variables. Second, the intrinsic timescale is longer later in the
gradient. Overall, our results are consistent with the idea that the
four regions serve as part of a roughly ventral-to-dorsal func-
tional gradient that gradually transforms neural encodings10.

The idea that prefrontal regions have a largely gradient-based
organization was pioneered by Fuster, who proposed a functional
gradient from the sensory to the motor areas and involving the
“association cortex” between them18. Although he (like many
subsequent thinkers) was mainly focused on the lateral prefrontal
cortex, the same logic may extend to medial areas. However, the
most logical organization of such areas is not obvious, either
anatomically or functionally. There are many possibilities. Pri-
marily using anatomical connectivity patterns, Price and collea-
gues classify all four of our recorded regions in his “medial
network”, which they propose are responsible for visceromotor
functions, and contrasting with the “orbital network”, responsible
for sensory functions52,53. Based on cytoarchitecture and laminar
connectivity patterns, Barbas and Pandya36 take a somewhat
different view. For them, areas 25, 24, and 32, as relatively
undifferentiated cingulate cortex, are all placed in a similar, low
position in a mediodorsal gradient. Area 14, split between the
mediodorsal and basoventral trends, occupies a somewhat higher
position in the gradient. Our results (although we interpret them
differently with respect to a gradient) are not necessarily incon-
sistent with such a framework, as increased decodability and
timescales may simply be a hallmark of less-differentiated PFC
regions.

Alternatively, topology would suggest possible ventrodorsal
(14→25→32→24) or genu-adhering (25→14→32→24) gra-
dients. The first one is consistent with the idea that OFC (Price’s
orbital network) serves as the entryway for economic information
to the prefrontal cortex, and area 14 as its next station3,54. Our
work supports the ventrodorsal hypothesis most strongly, thereby
offering the first electrophysiological evidence for one specific
medial prefrontal gradient. One prediction of this gradient is that
medial area 9 (dorsomedial prefrontal cortex) should be one step
above the recorded areas in our analyses55. We might also expect
that sensory choice information is received by orbitofrontal cor-
tical area 13, and then relayed to the medial prefrontal cortex;
thus we would expect area 13 to be below the recorded areas in
this gradient, to have shorter intrinsic timescales, and to have less
decodable information.

Our results suggest that these four regions have largely over-
lapping functions in the domain of economic choice. Notably, our
results do not imply that these regions have identical functions,
nor that their differences are solely quantitative. Indeed, there is
plentiful evidence that these regions have important qualitative
differences37,56,57. To give an example, in a social aggression
paradigm, activation of the ventral medial prefrontal cortex cor-
relates with skin conductance response, perhaps reflecting its
strong interactions with the hypothalamus and periaqueductal
gray, while activation of the dorsal medial prefrontal cortex is
more cognitive in nature58. Our results do not challenge or
invalidate such categorical functional differences. Rather, they
suggest that these regions have qualitative differences in some
domains and quantitative differences in at least one domain, the
domain of economic choice. Indeed, our results do point to a
potential limitation too much of traditional functional neuroa-
natomy. Much of that work is focused exclusively on identifying
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the unique contributions of particular regions. While that work is
critically important, it necessarily ignores the kinds of brain
functions that are not uniquely implemented by specific regions.
We believe that economic choice is one such function10.

We propose that there are essentially three primary organi-
zations the system could take: (1) modular, (2) hierarchical, and
(3) a continuum/gradient. In a modular organization, each
structure would be responsible for performing some unique and
distinct set of computations. The differences between structures
would be qualitative. That is, the type of information encoded
would differ, but there would not necessarily be differences in
the amount of information encoded or the speed at which it is
encoded. In a hierarchical organization, information encoding
would differ both quantitatively and qualitatively between
structures. By contrast, in a gradient organization information
encoded by distinct structure would differ primarily only in the
amount of encoded information of a given type. There is a
general view in neuroeconomics that early reward representa-
tions encoded offers and value and later ones encode choice27.
While there is a large body of empirical work supporting that
view, our results are in keeping with several studies, included
some of our own, that argue against it. In particular, in previous
studies, we have demonstrated robust spatial selectivity in
putative early reward regions, an indication of an action plan
involving the spatial orientation of the intended choice43,59. In
keeping with these previous findings, our results support an
alternative view. Rather than a goods-to-action transformation,
information is the same earlier in the functional gradient as it is
later, which is more in line with a cognitive map that tracks
choices and potential outcomes. Such representational schemes
are particularly likely to be useful in complex and continuous
decision-making tasks60. One possibility is that there is a
modular organization of a somewhat different form than we
have proposed. Specifically, it is possible that each region in the
series represents a large qualitative step from the one before.
Unfortunately, our data are not sufficient to differentiate this
organization from smoother ones. Either way, our data are
consistent with a series in which each area carries information in
a progressively more legible format.

Our results demonstrate a clear monotonic organization of
decodability across areas. One important question that our results
do not address is the specific form of this monotonic organiza-
tion. For example, it is possible that the processing occurs in a
smooth and gradual form; another possibility is that it occurs in a
series of steps; indeed, our data cannot reject the hypothesis that
it is steplike for some variables and smooth for others. Successful
adjudication between these two hypotheses would require two
things, (1) much denser sampling of the medial prefrontal cortex,
including medial prefrontal areas that we did not sample at all
and sampling across all layers of the cortex, and (2) the devel-
opment of statistical techniques that can unambiguously dis-
sociate ramping from stepping. We are optimistic that new
recording technologies will enable (1) and that the existence of
data from (1) will motivate that development of (2). In any case,
the specific structure of the organization of change across areas
remains an open question.

A broad reading of the electrophysiological literature highlights
that many functions have traces that are quite similar in multiple
regions9. Many scholars draw a distinction between sensory areas,
for which a strong modularity case can be made, and “association
areas”. For example, as Prinz15 points out, even Fodor, a great
advocate of modularity, was more willing to consider distributed
function outside of sensory and motor regions61. Likewise,
Uttal14 identifies Olds’ work on classical (trace) conditioning
(1972), which shows that correlates of trace conditioning can be
found in nearly every part of the rat brain.

Methods
Surgical procedures. The University Committee on Animal Resources at the
University of Rochester and the University of Minnesota approved all animal
procedures. Animal procedures were designed and conducted in compliance with
the Public Health Service’s Guide for the Care and Use of Animals. All of the
animals were handled according to approved institutional animal care and use
committee (IACUC) protocols (#2005-619 38127A) of the University of Minne-
sota. The protocol was approved by the Committee on the Ethics of Animal
Experiments of the University of Minnesota (NIH permit number: A3456-01).
Four male rhesus macaques (Macaca mulatta) served as subjects for both tasks. A
small prosthesis head fixation was used. Animals were habituated to laboratory
conditions and then trained to perform oculomotor tasks for liquid rewards. We
place a Cilux recording chamber (Crist Instruments) over the area of interest (see
Behavioral tasks for breakdown). We verified positioning by magnetic resonance
imaging with the aid of a Brainsight system (Rogue Research). Animals received
appropriate analgesics and antibiotics after all procedures. Throughout both
behavioral and physiological recording sessions, we kept the chamber with regular
antibiotic washes, and we sealed them with sterile caps.

Recording sites. We approached our brain regions through standard recording
grids (Crist Instruments) guided by a micromanipulator (NAN Instruments). We
recorded neuronal activity from four brain regions: 156 neurons (106 from subject
B and 50 from subject H) in vmPFC, 146 neurons (77 from subject B and 69 from
subject J) in sgACC area 5, 213 neurons (110 from subject B and 103 from subject
V) in pgACC area 32, and 129 neurons (55 from subject B and 74 from subject J) in
dACC area 24.

Here, vmPFC (coordinates corresponding to area 1462) is defined as the
structure rostral to the interaural plane by 29–44 mm, on the coronal plane. On the
horizontal plane, it is located from 0 to 9 mm from the brain’s ventral surface. On
the sagittal plane, the structure is located 0–8 mm from the medial wall (Fig. 2B).

Here, sgACC (coordinates corresponding to area 2562) is defined as the
structure rostral to the interaural plane by 24–36 mm, on the coronal plane. On the
horizontal plane, it is located from 17.33 to 25.12 mm from the brain’s dorsal
surface. On the sagittal plane, the structure is located 0–5.38 mm from the medial
wall (Fig. 2B).

Here, pgACC (coordinates corresponding to area 3262) is defined as the
structure rostral to the interaural plane by 30.90–40.10 mm, on the coronal plane.
On the horizontal plane, it is located from 7.30 to 15.50 mm from the brain’s dorsal
surface. On the sagittal plane, the structure is located 0–4.5 mm from the medial
wall (Fig. 2B).

Here, dACC (coordinates corresponding to area 2462) is defined as the structure
rostral to the interaural plane by 29.50–34.50 mm, on the coronal plane. On the
horizontal plane, it is located from 4.12 to 7.52 mm from the brain’s dorsal surface.
On the sagittal plane, the structure is located 0–5.24 mm from the medial wall
(Fig. 2B).

To confirm the recording sites, we used our Brainsight system. We corroborated
the sites against structural magnetic resonance images that were acquired prior to
the start of the experiment. These structural images were taken on a Siemens 3 T
MAGNETOM Trio Tim, at the Rochester Center for Brain Imagine (0.5 mm
voxels). During recording, loci were confirmed by listening for white and gray
matter signatures and checked against the Brainsight system, to be within an error
of ~1 and ~2 mm in the horizontal and vertical planes, respectively.

For consistency in how we plot our data, each brain area was assigned a color.
That color was repeated in all figures corresponding to the data generated from that
specific brain area. Importantly, we used an online palette generator specifically
designed to allow for selecting color schemes that are visually distinguishable to
people with protanopia, deuteranopia, and tritanopia (https://davidmathlogic.com/
colorblind).

Electrophysiological techniques. Either single (FHC; starting impedance 4MΩ)
or multi-contact electrodes (V-Probe, Plexon) were lowered using a microdrive
(NAN Instruments) until waveforms between one and three neuron(s) were iso-
lated. Individual action potentials were isolated on a Plexon system (Plexon, Dallas,
TX) or Ripple Neuro (Salt Lake City, UT). Neurons were selected for study solely
on the basis of the quality of isolation; we never preselected based on task-related
response properties. All cells were hand-sorted using Plexon OLS. All collected
neurons for which we managed to obtain at least 300 trials were analyzed; no
neurons that surpassed our isolation criteria were excluded from the analysis.

Eye-tracking and reward delivery. Eye position was sampled at 1000 Hz by an
infrared eye-monitoring camera system (SR Research). Stimuli were controlled by a
computer running Matlab (Mathworks) with Psychtoolbox and Eyelink Toolbox.
Visual stimuli were colored rectangles on a computer monitor placed 57 cm from
the animal and centered on its eyes (Fig. 1A). A standard solenoid valve controlled
the duration of juice delivery. Solenoid calibration was performed daily.

Behavioral tasks. Four monkeys performed two different tasks with the same basic
structure. For the neuronal recordings in vmPFC, subjects B and H performed the
risky choice task; and for dACC and sgACC, subjects B and J performed the token
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risky choice task (Fig. 2C). Both tasks made use of vertical rectangles indicating
reward amount and probability. We have shown in a variety of contexts that this
method provides reliable communication of abstract concepts such as reward,
probability, delay, and rule to monkeys63–66.

Risky choice task (vmPFC and pgACC 32). All tasks were based on a
standardized general structure for gambling tasks67–70. The task presented two
offers on each trial. A rectangle 300 pixels tall and 80 pixels wide represented each
offer (11.35° of visual angle tall and 4.08° of visual angle wide; Fig. 2B). Two
parameters defined gamble offers, reward size, and probability. Two portions
divided each gamble rectangle, one red and the other either gray, blue, or green.
The size of the color portions signified the probability of winning a small (125 μL),
medium (mean 165 μL), or large reward (mean 240 μL), respectively. We drew a
uniform distribution between 0 and 100% for these probabilities. Red-colored the
rest of the bar; the size of the red portion indicated the probability of no reward.
Offer types were selected at random with a 43.75% probability of blue (medium
magnitude) gamble, a 43.75% probability of green (high magnitude) gambles, and a
12.5% probability of gray options (safe offers).

On each trial, one offer appeared on the left side of the screen and the other
appeared on the right. We randomized the sides of the first and second offers
(left and right). Each offer appeared for 400 ms and was followed by a 600-ms
blank period. After the offers were presented separately, a central fixation spot
appeared, and the monkey fixated on it for 100 ms. Following this, both offers
appeared simultaneously and the animal indicated its choice by shifting gaze to
its preferred offer and maintaining fixation on it for 200 ms. Failure to maintain
gaze for 200 ms did not lead to the end of the trial but instead returned the
monkey to a choice state; thus monkeys were free to change their mind if they
did so within 200 ms (although in our observations, they seldom did so).
Following a successful 200-ms fixation, the trial immediately resolved the
gamble and delivered the reward. We considered trials that took ~7 s as
inattentive trials and we did not include them in the analyses (this removed
~1% of trials). Outcomes that yielded rewards were accompanied by a visual
cue: a white circle in the center of the chosen offer. All trials were followed by
an 800-ms intertrial interval with a blank screen.

Token risky choice task (sgACC 25 and dACC 24). Another similarly structured
gambling task, where gambles each had two potential outcomes, wins or losses in
terms of “tokens” displayed on the screen as cyan circles. A small reward (100 μL)
was administered concurrently with gamble feedback on each trial, regardless of
gamble outcome. Trials in which the monkey accumulated six or more tokens
triggered an extra “jackpot” epoch in which a very large reward (300 μL) was
administered (Fig. 2C).

Behavioral analysis. To confirm the statistical validity of the behavioral results, we
first identified the chosen offer (first or second) for each trial. We then calculated
the proportion of trials, for each recording session, in which the offer with the
higher value was chosen. We then analyzed the vector of choice proportions using a
one-sample t-test, to determine if the average proportion of greater value choices
was statistically different from zero.

Reuse of data. Some of these data were previously published (vmPFC dataset in
Strait et al.38; sgACC and dACC data sets in Azab and Hayden, 201739; data from
pgACC have not been previously published).

Statistical methods. We constructed peristimulus time histograms by aligning
spike rasters to the presentation of the first offer and averaging firing rates across
multiple trials. We calculated firing rates in 20-ms bins, but we generally analyzed
them in longer (500 ms) epochs. For display, we smoothed peristimulus time
histograms using a 200-ms running boxcar. Some statistical tests of neuron activity
were only appropriate when applied to single neurons because of variations in
response properties across the population. In such cases, a binomial test was used
to determine if a significant portion of single neurons reached significance on their
own, thereby allowing conclusions about the neural population as a whole.

Offer encoding latency. We computed an average latency score for each area and
both offers. First, we isolated firing rates for both epochs, as each was binned to the
onset of one of the offers. Each epoch consisted of a 500 ms window constituted by
20 ms bins. Next, we calculated the average firing rate for each neuron, for each 20
ms bin, across trials. Then, for each neuron, we determined how much time (in ms)
passed for a given neuron to reach its peak firing rate for the epoch. Finally, we
calculated the average latency to peak firing rate across all neurons in the region.

Intrinsic timescales. To measure intrinsic timescales, we followed similar steps
previously described32. We isolated a 2-s time window preceding the onset of offer
1, to remain independent of trial variables. Using a 20 ms sliding window, we then
computed the autocorrelation for the 2 s window with a given lag kΔ between time i
and time j, where kΔ= |i− j|. The lag ranged from 20 and 720 ms. We then
determined that the autocorrelation decay in each structure could be well-fit by an
exponential decay function

RðkΔÞ ¼ A½expð�kΔ=τÞ þ B�;

where A= the amplitude of the autocorrelation, kΔ= the lag, τ = intrinsic time-
scale, and B= the offset to account for long timeframes outside of the measured
window. This formula follows what was previously described32.

Decoding analysis. We built a pseudo-population of pseudo-trials. First, we iso-
lated each epoch and collapsed the firing rates for each trial into an average for the
500 ms period. Then, we separated the data set for each neuron by the given
variable label (choice of first or second offer; choice of left or right offer; offer one
position left or right; offer two positions left or right; offer one value higher or
lower than the mean value and offer value higher or lower than the mean). We
randomly selected 1000 samples for each neuron resulting in 2n × 1000 matrices
(one for each label level), where n represented the number of neurons recorded
from each region. This constituted the pseudo-population or pseudo-trials. To
execute the decoder, each matrix was split in half and concatenated with the half
from the other label. We used one of these matrices to train a binary support vector
machine, the other was used for cross-validation. We used the trained model to
predict the binary label for each pseudo-trial in the cross-validation set. We then
compared the predicted outcome to the known choice outcome and an accuracy
rate was calculated across pseudo-trials. This process was repeated 1000 times for
each target structure and for each of the given labels and epochs to get a dis-
tribution of accuracy rates. Thus, the standard error of the mean, used in displaying
the error bars, represents the standard error over the variance of the cross-
validations. In addition, the exact process was repeated on randomly shuffled data,
to confirm that expected prediction accuracy was 50% when randomized.

We performed a Spearman correlation across decoding accuracy distributions
from all structures. For each decoder, we generate a distribution of decoder
accuracies from 1000 permutations per brain area. Each accuracy in the
distribution was assigned a value from 1 to 4, corresponding to the proposed
gradient order (1= vmPFC, 2= sgACC, 3= pgACC, and 4= dACC). We then
aggregated the distributions into a single matrix and performed a Spearman
correlation between the distribution of accuracies and the assigned gradient order.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source Data, the relevant raw data used to generate each
figure, is available as a Source Data file on Dryad (https://doi.org/10.5061/
dryad.18931zcxv) and provided with this manuscript. Source data are provided with
this paper.
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