
292  ｜NEURAL REGENERATION RESEARCH｜Vol 16｜No.××｜×× 2021

Hyperglycemia in acute ischemic stroke: 
physiopathological and therapeutic complexity

Federica Ferrari, Antonio Moretti, Roberto Federico Villa*

Abstract  
Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute 
ischemic stroke and lead to worsened clinical outcome and increased mortality. However, 
post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute 
ischemic stroke, presumably as a stress response. The aim of this review is to summarize 
the main effects of hyperglycemia when associated to ischemic injury in acute stroke 
patients, highlighting the clinical and neurological outcomes in these conditions and after 
the administration of the currently approved pharmacological treatment, i.e. insulin. 
The disappointing results of the clinical trials on insulin (including the hypoglycemic 
events) demand a change of strategy based on more focused therapies. Starting from the 
comprehensive evaluation of the physiopathological alterations occurring in the ischemic 
brain during hyperglycemic conditions, the effects of various classes of glucose-lowering 
drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and 
sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date 
limitations and of evaluating the effectiveness of new potential therapeutic strategies.
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Introduction 
One of the conditions adversely affecting acute ischemic 
stroke (AIS) patients’ outcome is hyperglycemia. In this 
review, we firstly consider the clinical studies highlighting 
the detrimental relationships between high blood glucose 
levels at admission and patients’ functional outcome and 
mortality, both in diabetic and in non-diabetic patients. These 
studies support the observation that prompt management of 
hyperglycemia is mandatory.

Therefore, we subsequently discuss the pharmacological 
treatment with insulin, at present the only therapeutic 
strategy available according to international guidelines to 
control glycemic levels. However, both several randomized 
clinical trials, of which one of the more recent is the Stroke 
Hyperglycemia Insulin Network Effort trial (Johnston et al., 
2019), and meta-analyses (Fuentes et al., 2018; Klingbeil et 
al., 2020) show that intensive insulin i.v. treatment does not 
improve the functional outcome and does not reduce the 
mortality of AIS patients. On the contrary, the tight glycemic 
control increases the risk of hypoglycemia.

Given these premises, because several pieces of evidence 
exist that novel therapeutic strategies are needed to 
overcome these limitations and complications in the clinical 
settings, we finally consider the molecular, cellular and 
metabolic mechanisms of injury triggered by hyperglycemia 
and hypoglycemia in the ischemic brain, in the perspective of 
evaluating the effectiveness of new potential drug classes. 

Search Strategy and Selection Criteria 
The studies cited in this review were published from 1980 
and 2020, and they were searched on Pubmed Database 
using the following keywords: “stroke”, “brain ischemia”, 
“hyperglycemia”, “hypoglycemia”, “diabetes mellitus”, 
“insulin”, “DPP-4 inhibitors”, “glucose-like peptide-1 receptor 
agonists”, “sodium glucose cotransporter 2 inhibitors”. 

Hyperglycemia and Stroke 
Hyperglycemia is frequently found in patients admitted to 
hospital for acute ischemic stroke. Hyperglycemia can result 
from diabetes mellitus (more frequently the type 2, T2DM) 
through chronic hyperglycemia due the relative deficiency 
of insulin (Mitsios et al., 2018); T2DM has been positively 
associated with the enhanced risk of AIS, which is a well-
documented and modifiable risk factor for cerebral ischemia 
and for other co-morbidities such as hypertension (O’Donnell 
et al., 2010). However, hyperglycemia is also common in 
non-diabetic patients because of the acute stress responses 
involving the activation of the hypothalamic-pituitary-adrenal 
axis and the sympathetic nervous system in reaction to 
extensive brain injury (Christensen et al., 2004).

Hyperglycemia at hospital admission is an independent 
marker of larger ischemia, reduced functional and cognitive 
outcomes and increased risk of mortality (Tsivgoulis et al., 
2019). In particular, persistent hyperglycemia both at 6 and 
24 hours after stroke onset was correlated with increased 
risk of mortality within 30 days [odds ratio (OR) 24.0; 95% 
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confidence interval (CI): 2.8–199.3] and it was also correlated 
with hemorrhagic transformation (OR = 13.3; 95% CI: 2.7–66.1) 
(Mi et al., 2017). Bevers et al. (2017) demonstrated that 
hyperglycemia was associated with lower apparent diffusion 
coefficient (ADC, r = –0.32, P < 0.001), a magnetic resonance 
sequence predictive of swelling on subsequent imaging; 
moreover, both hyperglycemia and lower ADC signal were 
associated with worse patients’ outcome (OR = 0.239, P = 
0.017; OR = 1.11, P < 0.0001, respectively).

Higher admission glucose levels affected functional outcome 
also in patients after thrombolysis and early reperfusion 
(Rosso et al., 2018). Coherently, Suissa et al. (2020) reported 
that hyperglycemia at admission had deleterious effects on 
the ischemic penumbra of patients with good recanalization 
scores, as confirmed by the fact that this condition was a 
predictor of functional outcome only in patients with National 
Institutes of Health Stroke Scale score ≥ 10, Alberta Stroke 
Program Early CT Score ≥ 6 and recanalization after mechanical 
thrombectomy (modified Treatment In Cerebral Ischemia - 
mTICI score 2b/3). In fact, higher glucose levels were reported 
to reduce the likelihood of good outcome among patients 
with good collaterals, while its effects were less significant 
when collaterals were poor (Kim et al., 2018).

Distinguishing between chronic and stress hyperglycemia, 
Tsivgoulis et al. (2019) did not report any difference in diabetic 
and non-diabetic AIS patients presenting hyperglycemia at 
admission. In particular, diabetic patients had lower rates of 
3-month favorable functional outcome (modified Rankin Scale 
– mRS scores 0–1, 34.1% vs. 39.3%, P < 0.001) and higher 
3-month mortality rates (23.7% vs. 19.9%, P < 0.001) respect 
to patients without hyperglycemia, and non-diabetic ones 
had lower 3-month functional independence rates (53.3% vs. 
57.9%, P < 0.001) and higher 3-month mortality rates (19.2% 
vs. 16.0%, P < 0.001) (Tsivgoulis et al., 2019). On the other 
hand, Tziomalos et al. (2017) demonstrated that patients 
presenting stress hyperglycemia at the second day after 
admission had more severe stroke than diabetic patients.

Given the different physiopathological background of chronic 
and stress hyperglycemia, a reliable method to measure the 
degree of stress hyperglycemia is the stress hyperglycemia 
ratio (SHR), expressed as the glucose concentration at 
admission divided by the estimated average glucose 
concentration resulting from glycosylated hemoglobin levels 
(Roberts et al., 2015), in this way controlling for background 
glucose concentrations.

The association between SHR and outcome at 3 months 
after mechanical thrombectomy was studied by Chen et al. 
(2019), showing that increased SHR was a strong predictor of 
poor clinical outcome (mRS score 3–6), with high predictive 
power (≥ 0.96) only in non-diabetic patients. The Authors 
hypothesized that this result was probably due to the chronic 
adaptations to hyperglycemia occurring in diabetic patients, 
who are more tolerant to varying glycemic levels, as will be 
discussed later in this review as well.

Finally, it should be reported that hyperglycemia at admission 
is correlated with post-stroke infections, a deleterious 
complication which seems to further affect particularly non-
diabetic patients’ prognosis: Zonneveld et al. (2017) observed 
that admission hyperglycemia was not associated with post-
stroke infection in diabetic patients (adjusted OR = 0.49, 95% 
CI: 0.15–1.58), while in non-diabetic ones the adjusted OR was 
2.31 (95% CI: 1.31–4.07), also associated with worse 3-month 
functional outcome (adjusted OR = 1.40, 95% CI: 1.12–1.73) 
and 3-month mortality (adjusted OR = 2.11, 95% CI: 1.40–
3.19). Moreover, fasting hyperglycemia is an independent 
risk factor for predicting stroke-associated pneumonia and 
combining its presence with the A2DS2 score (considering age 
≥ 75 years, atrial fibrillation, dysphagia, male sex and stroke 

severity) is more effective in predicting the risk of stroke-
associated pneumonia than A2DS2 score alone (Li et al., 2019).

Status of Pharmacological Treatment with 
Insulin
Hyperglycemia is pharmacologically treated with insulin paying 
attention to the risk of hypoglycemia (blood glucose level < 
60 mg/dL); subcutaneous (s.c.) or intensive intravenous (i.v.) 
infusion should normalize glycemia and improve functional 
outcome (Palaiodimou et al., 2019).

Ad hoc guidelines of American Heart and American Stroke 
Association (Jauch et al., 2013) and of the European Stroke 
Organisation (Fuentes et al., 2018) recommend keeping 
glucose levels in the range of 7.7–10 mM (140–189 mg/dL),  
but the American Diabetes Associat ion (2016) also 
recommends 6.1–7.7 mM (110–140 mg/dL) for critically 
ill patients. However, randomized and open cohorts did 
not confirm these results (Piironen et al., 2012), and the 
randomized Glucose Insulin in Stroke Trial (GIST-UK) did not 
demonstrate any benefit of post-ischemic intensive insulin 
infusion for 24 hours in stroke patients (Gray et al., 2007).

Comparing intravenous insulin treatment vs. the subcutaneous 
one, the Intensive versus Subcutaneous Insulin in Patients 
with Hyperacute Stroke (INSULINFARCT) trial demonstrated 
that in the intensive insulin therapy group the overall glucose 
control within the first 24 hours of stroke was improved, but 
this was associated with larger infarct growths at magnetic 
resonance imaging (MRI) controls [median, 27.9 cm3 (95% CI: 
14.6–40.7) vs. 10.8 cm3 (95% CI: 6.5–22.4); 60% of increase, 
P = 0.04] (Rosso et al., 2012). Coherently, also some meta-
analyses indicated that the glycemic control with insulin i.v. 
vs. no treatment/insulin s.c. did not improve either functional 
outcome [relative risk (RR) = 1.09; 95% CI: 0.87–1.37] or 
survival (RR = 0.99; 95% CI: 0.94–1.05) (Fuentes et al., 2018). 
These observations were confirmed by a further meta-analysis 
by Cerecedo-Lopez et al. (2020), considering the results of the 
Stroke Hyperglycemia Insulin Network Effort trial, which was 
stopped for futility because interim analyses revealed that 
intensive i.v. insulin was not superior respect to s.c. insulin in 
attaining a favorable outcome at 90 days (adjusted RR = 0.97, 
95% CI: 0.87–1.08, P = 0.55) (Johnston et al., 2019).

Moreover, maintaining a glycemic range < 6.1 mM is 
associated with 4-fold to 9-fold increased risk of hypoglycemia 
(Yatabe et al., 2017), which after i.v. insulin occurs with a 
relative risk of 4.75 (95% CI: 1.52–14.85) vs. no treatment/
s.c. insulin (Fuentes et al., 2018). As well as hyperglycemia, 
hypoglycemia leads to several molecular and metabolic 
changes in the ischemic brain (see later), which further affect 
patients’ outcome, as recently reviewed by Klingbeil et al. 
(2020).

Physiopathological Mechanisms of 
Hyperglycemic Brain Injury
The reproducible association between T2DM, acute 
hyperglycemia and poor outcomes in acute ischemic patients 
suggests a potential causal relationship. Nevertheless, the 
etiological and clinical complexity of hyperglycemia effects 
is mirrored in the multiplicity of their potential mechanisms 
which have been postulated and discussed below.

Brain energy metabolism
Ischemia is characterized by anaerobic glycolysis which in the 
absence of O2 continues to produce adenosine triphosphate 
(ATP), albeit inefficiently, from glucose and glycogen stores, 
leading to deficient cell functions. Hyperglycemia exacerbates 
this situation through the enhancement of anaerobic 
metabolism and the resulting accumulation of lactate and 
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tissue acidosis in proportion to blood glucose level (Table 1).

In normoglycemic situations, there is a rapid recovery of high-
energy phosphate metabolites (mainly ATP) in accordance 
with the metabolic and functional resistance of mitochondria, 
as demonstrated during post-ischemic recovery up to 96 hours 
in adult and aged rats (Villa et al., 2013a; Ferrari et al., 2018). 
On the other hand, hyperglycemia worsens cortical acidosis 
and mitochondrial function, thus delaying the recovery of 
high-energy phosphates and pH. Moreover, experimental 
evidence showed the increased production of reactive 
oxygen species (ROS) by ischemia-damaged mitochondria, 
in particular of superoxide, by transfer of glucose-derived 
reducing equivalents to O2. Additionally, ROS may be produced 
by the NADPH oxidase pathway through the glucose-sustained 
hexose monophosphate shunt (animal studies by Wagner 
et al., 1992; Widmer et al., 1992; MRI study in patients by 
Parsons et al., 2002).

Penumbra is the under-perfused part of the ischemic region 
that surrounds the irreversible infarct core and can potentially 
be salvaged thanks to a less severe blood flow reduction. 
Penumbra may still receive residual flow (through collateral 
circulation) and glucose supply. As mentioned before, this 
can attenuate energy failure through glycolysis, but it also 
aggravates acidosis, thus making penumbra particularly 
susceptible to hyperglycemia, less liable to be salvaged and 
more likely prone to infarction (Anderson et al, 1999; Rosso 
et al, 2011). Incidentally, this observation might explain the 
lower susceptibility of lacunar stroke in which penumbra is 
not present. 

Cellular factors
Acidosis may induce cytotoxicity and cell death: this result 
was reported by Back et al. (1994) by measuring the reduction 
of ADC in rats and reproduced in diabetic and non-diabetic 
AIS patients, also in association with worse outcome (90-
day mRS), as previously stated (Bevers et al., 2017). In turn, 
cytotoxicity can increase brain edema (Song et al., 2003).

Moreover, the oxidative stress may promote the disruption 

of the blood-brain barrier (BBB) (experimental studies by 
Dietrich et al., 1993; Zhang et al., 2016; clinical study by 
Venkat et al., 2017). The increased permeability of BBB might 
further worsen edema and raise the rate of hemorrhagic 
transformation of infarcts (clinical studies by Paciaroni et al., 
2009; experimental studies by Won et al., 2011; McBride et 
al., 2016).

Not unexpectedly in the context of cerebral ischemia, 
hyperglycemia raised extracellular glutamate accumulation 
in neocortex and elevated intracellular Ca2+. In turn, this 
promoted the release of cytochrome c into the cytoplasm 
and the activation of caspase-3, thereby worsening neuronal 
ischemic death (Li et al., 2001).

Neurovascular factors
Neurovascular injury (Table 2) is shown by the relationships 
between many factors, as outlined as follows:

(i) Impaired re-canalization related to increased coagulation 
and reduced fibrinolytic activity (Lemkes et al., 2010). 
Compared to  euglycemia,  both hyperglycemia and 
hyperinsulinemia enhanced plasminogen activator inhibitor 
and significantly reduced the tissue Plasminogen Activator, 
thus affecting thrombolytic therapy (Pandolfi et al., 2001). 
Notably, in the study by Rosso et al. (2011), hyperglycemia 
was deleterious in both recanalized and non-recanalized 
patients, but in the latter group the ischemic transformation 
was 2.8 times larger than in the former. Ribo et al. (2005) also 
reported that hyperglycemia had a major impact on the speed 
of infarct growth in non-recanalized patients;

(ii) Decreased perfusion as shown by reduced hemispheric 
relative cerebral blood flow and cerebral blood volume 
measured by MRI in rats (Quast et al., 1997). Penumbral 
blood flow is particularly affected (Venables et al., 1985). 
This was associated with the lowering of endothelium-
dependent vasodilatation mediated by oxidative stress (Tsuruta 
et al., 2010) and with the decline of endothelium-derived 
nitric oxide synthesis by endothelium nitric oxide synthase 

Table 1 ｜ Metabolic mechanisms of hyperglycemia effects in acute ischemic stroke: studies in hyperglycemic animals

Species Glucose/energy metabolism Oxidative stress Glutamate/Ca2+ Brain injury References

Monkey ↓pH Marsh et al., 1986
Rabbit ↓pH  ↑NADH (ischemic penumbra)  ↑Infarct volume Anderson et al., 1999
Rat  ↑Lactate; pH < 6 vs. 6.45 Widmer et al., 1992
Rat ↓CBF;  ↑lactate; hypermetabolism 

(a) of glucose mainly in ischemic 
penumbra; increased glycolysis both 
in anaerobic and aerobic conditions

BBB disruption; apoptosis Arnberg et al., 2015

Cat ↓CBF;  ↑lactate, time dissociation 
with ↓pH; ↓PCr (but not ATP) 
related to ↓pH;

↑ Infarct size correlated with 
lactate post-occlusion

Wagner et al., 1992

Rat  ↑•O2 
– during ischemia;

  ↑↑ during reperfusion
Weir et al., 1997;
Li et al., 1999

Rat •OH formation via NO mechanism  ↑GLU release  ↑Cytotoxic lesion Wei and Quast, 1998
Rat  ↑•O2 

– during ischemia;    
↑↑during reperfusion

Tsuruta et al., 2010

Cat ↓Pi/PCr ratio (b),  ↑lactate ↑Lesion in occluded area Chew et al., 1991
Rat  ↑extracellular GLU in 

neocortex
Li et al., 2000

Cat  ↑Ca2+ during reperfusion Araki et al., 1992
Rat BBB: severe protein extravasation Dietrich et al., 1993
Rat ↑ Infarct volume, brain swelling, 

HT
McBride et al., 2016

Rat (c) ↑ caspase-3,  ↑BACE1 Zhang et al., 2009
Rat ↑ caspase-3, cyt c release Li et al., 2001

(a) 2-DG: uptake of [2-18F]-2-fluoro-2-deoxy-D-glucose (PET scans); (b) 31P NMR spectroscopy; (c) diabetic rat BACE1: β-site amyloid precursor protein-cleaving 
enzyme; GLU: glutamate; HT: hemorrhagic transformation; NO: nitric oxide; •O2 

–: superoxide anion radical; •OH: hydroxyl radical; ROS: reactive oxygen species. 
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(Srinivasan et al., 2004);

( i i i )  Increased reperfus ion in jury  developing when 
revascularization is delayed, so that the prompt restoration of 
oxygenated blood results in increased ischemic damage and 
raised risk of hemorrhagic transformation. Hyperglycemia 
exacerbates this condition by acting through oxidative stress 
(Won et al., 2011) and inflammation (Zhou et al., 2015).

Neuroinflammation
Hyperglycemia triggered massive neutrophil infiltration in 
post-ischemic rat brain (Lin et al., 2000) and increased the 
expression of cyclo-oxygenase-2 and interleukin-1β in a 
rat model of focal cerebral ischemia (Bémeur et al., 2005), 
pointing to enhanced inflammatory response to ischemia/
reperfusion. Moreover,  hyperglycemia raised mRNA 
expression of pro-inflammatory cytokine interleukin-1β and 
tumor necrosis factor α after ischemia (Bémeur et al., 2007). 
Neuroinflammation also plays a key role in worsening the 
cerebral ischemic damage in diabetics (Shukla et al., 2017).

Experimentally (Table 2), hyperglycemia exacerbated the 
downstream microvascular events secondary to proximal 
arterial occlusion, as well as the thrombo-inflammatory 
response (plasma levels of metalloproteinase-9, serotonin 
and thrombin-anti-thrombin complex) to middle cerebral 
artery occlusion in diabetic rats. Impairment of reperfusion, 

neurovascular damage, BBB disruption and hemorrhagic 
transformation were also reported (Desilles et al., 2017).

To sum up, hyperglycemia aggravates the molecular and 
metabolic changes triggered by cerebral ischemia. The main 
goal of future experimental studies should be to identify 
the most meaningful affected pathways by hyperglycemia 
during acute ischemic stroke in the perspective of identifying 
accurate pharmacological targets. Therefore, the observed 
association between hyperglycemia and outcome in patients 
affected by ischemia emphasizes the crucial issue of glucose-
lowering treatment and its impact on clinical outcome.

Hypoglycemic Brain Injury: the Other Side of 
the Coin 
Clinical studies have highlighted that intensive glucose 
lowering strategies are linked to the increased risk of 
hypoglycemia, a condition that should be avoided because it 
further affects AIS patients’ recovery. In fact, several molecular 
and cellular mechanisms of injury are activated by low blood 
glucose levels.

First of all, it is long known that the autonomic nervous 
system triggers the release of catecholamines so to restore 
normal glucose concentrations by increasing glucose 
hepatic production and glycogen breakdown (Exton, 1987). 

Table 2 ｜ Neurovascular and neuroinflammatory mechanisms of hyperglycemia effects in acute ischemic stroke: studies in hyperglycemic animals

Species Neurovascular factors Neuroinflammation
Neurological 
outcome Brain injury References

Cat ↓CBF in ischemic 
penumbra during 
reperfusion

Venables et al., 1985

Rat ↓CBF, CBV;  ↑edema;   
↑HT

Kawai et al., 1997

Rat  ↑Neocortical (but not 
striatal) infarction; strong 
correlation with increasing 
glucose level; collaterally-
perfused areas more 
susceptible

Prado et al., 1988

Rat ↓CBF, CBV Cellular injury (MRI) during 
reperfusion correlated with 
↓CBV, CBF

Quast et al., 1997

Rat BBB disruption, ↑HT,    
↑edema

No worsened effects vs. 
normoglycemia

Xing et al., 2011

HG in control and 
diabetic GK rat

Elgebaly et al., 2011

STZ mice  ↑HT during reperfusion 
(see mechanism in brain 
injury)

In vitro: in human 
endothelial cells exposed 
to high concentration of 
glucose→mitochondrial 
functional and 
morphological alterations 
leading to ↑ apoptotic cell 
death (caspase-3);

Mishiro et al., 2014

GK rat  ↑Edema; ↑HT ↓sensory motor Infarct volume ↓24 h;  
↑7 d

Li et al., 2013

Rat  MPO 24 h post-stroke in pial, parenchima 
vessels and parenchima

Lin et al., 2000

db/db mice  ↑Edema  ↑inflammatory markers, extravasated 
macrophages/neutrophils,
 ↑proinflammatory gene expression

↑severity of 
neurological score

 ↑Infarct volume Tureyen et al., 2011

STZ rat BBB disruption,  ↑HT, 
↑edema; cerebral 
hypoperfusion

 ↑DMT: early platelet and leukocyte 
adhesion to endothelial cells in cortical 
microvessels, leukocytes extravasation, 
postcapillary microthrombosis; ↑plasma 
MMP-9, 5-HT, TAT

 ↑severity of 
neurological score

↑Infarct volume Desilles et al., 2017

STZ rat  ↑Oxidative stress; BBB 
disruption, ↑edema

↑MMP-9 Kamada et al., 2007

5-HT: 5-Hydroxytryptamine, serotonin (platelet activation); BBB: blood brain barrier; CBF: cerebral blood flow; CBV: cerebral blood volume; DMT: thrombo-
inflammatory response to occlusion; GK: GOTO-KAKIZAKI (a spontaneous model of T2DM); HG: hyperglycemia; HT: hemorrhagic transformation; MMP-9: 
metalloproteinease-9 (indicator of neutrophil activation); MPO: myeloperoxidase (polymorphonuclear leukocytes); MRI: magnetic resonance imaging; STZ: 
streptozotocin; TAT: thrombin-antithrombin complex (coagulation activator). 
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Nevertheless, this adaptive stress response is accompanied 
by detrimental effects, such as tachycardia, increased systolic 
blood pressure, enhanced myocardial contractility and 
decreased central venous pressure (Hanefeld et al., 2013). As 
suggested by Klingbeil et al. (2020), the hypertensive response 
to hypoglycemia could add up to post-ischemic hypertension 
and increasing the risk of hemorrhagic transformation.

On the other hand, hypoglycemia has been associated with 
alterations in fibrinolytic balance: Dalsgaard-Nielsen et al. 
(1982) observed that serum fibrinogen and coagulation factor 
VIII were increased in acute hypoglycemic episodes, while the 
total platelet count was reduced, because of the enhanced 
platelet aggregation. The resulting pro-coagulant state is 
furtherly supported by the increase of von Willebrand factor 
(Fisher et al., 1991) and of thrombin formation (Ibbotson 
et al., 1995). Moreover, several inflammatory and adhesion 
molecules are produced upon hypoglycemia, i.e. interleukin-6, 
tumor necrosis factor α, C-reactive protein, endothelin-1 
and P-selectin (Galloway et al., 2000; Wright et al., 2010), 
leading to eventual secondary ischemic episodes due to 
vasoconstriction and to the formation of new thrombi, but 
also to BBB disruption and consequent vasogenic edema and 
hemorrhagic events.

Finally, Agardh et al. (1981) observed in a seminal study that 
acute severe hypoglycemia was linked to the decrease of 
brain energy metabolites, such as phosphocreatine, ATP and 
adenosine monophosphate. More recently, a metabolomic 
analysis through magnetic resonance spectroscopy confirmed 
that insulin-induced hypoglycemia led to various metabolic 
variations (Ennis et al., 2017), as also extensively reviewed by 
Rehni and Dave (2018).

Modifications in brain energy metabolism is one of the key 
events in the ischemic brain injury (Villa et al., 2013a; Ferrari 
et al., 2018) and therefore hypoglycemia may worsen the 
bioenergetic deficit occurring in the ischemic brain. In fact, 
mitochondrial ROS are increased by hypoglycemia in both 
in vitro and in vivo studies, together with the decrease in 
the mitochondrial membrane potential (Dave et al., 2011). 
Moreover, Shukla et al. (2019) recently demonstrated that 
recurrent hypoglycemia in a model of cerebral ischemia 
in insulin-treated rats increased post-ischemic damage 
enhancing mitochondrial dysfunction, particularly through 
the decrease of complex I activity in CA1 hippocampus, that 
is the more vulnerable area to the ischemic injury also from 
a bioenergetic point of view (Villa et al., 2013b; Ferrari et al., 
2015).   

Novel Therapeutic Strategies
Given the several disappointing results and drawbacks in 
clinical trials evaluating insulin treatment of hyperglycemia in 
AIS patients, novel therapeutic strategies are emerging in an 
attempt to treat more effectively this detrimental condition, 
taking into account not only the glucose lowering effects, but 
also the several physiopathological mechanisms linked to the 
hyperglycemic brain injury in ischemic conditions previously 
discussed.

A first alternative approach to insulin could consist in the 
use of glucose-like peptide-1 (GLP-1) receptor agonists, i.e. 
albiglutide, dulaglutide, exenatide, liraglutide, lixisenatide, 
semaglutide (Aroda et al., 2018). GLP-1 is a peptide hormone 
devoid of hypoglycemic effect and better maintains 
normoglycemia in the ischemic brain. GLP-1 plays a crucial 
role in glucose homeostasis and in the pathophysiology of 
T2DM: GLP-1 stimulates the expression and secretion of 
insulin, while it inhibits that of glucagon. The complex effects 
are exerted through the cell-membrane glucagon-like peptide 
receptor (GLP-1R), whose activation enhances the glucose-
dependent insulin secretion through the up-regulation of 

cyclic adenosine monophosphate and subsequent activation 
of PKA and Epac2 (Mayo et al., 2003). Because GLP-1 is rapidly 
degraded by the endoprotease dipeptidyl-peptidase-4 (DPP-
4) resulting in a half-life of about 2 minutes, the possibility 
to employ a series of analogs resistant to DPP-4 degradation 
has prompted further studies in clinical settings, considering 
that these drugs rarely cause hypoglycemia (Meloni et 
al., 2013) and their main disadvantages are the mild to 
moderate gastrointestinal adverse effects. Several studies 
have highlighted the neuroprotective effects exerted by this 
drug class, like the anti-apoptotic and anti-edema actions, and 
the support to microcirculation and to BBB integrity (Zhu et 
al., 2016). Clinical trials confirmed as well the beneficial role 
of GLP-1 receptor agonists in treating hyperglycemia in AIS 
patients: exenatide (5 μg s.c.) started after 9 hours following 
stroke onset and continued for six days reduced glycemic 
variability (Daly et al., 2013). Moreover, some pilot trials have 
been undertaken about the effects of GLP-1 receptor agonists 
on hyperglycemic AIS patients with or without T2DM, but 
results have not been published yet (review in Ferrari et al., 
2020). 

Another strategy is to block the activity of GLP-1 degrading 
enzyme through DPP-4 inhibitors, i.e. alogliptin, linagliptin, 
saxagliptin, sitagliptin, vildagliptin. DPP-4 has exopeptidase 
activity through its membrane-tethered form (Mulvihill and 
Drucker, 2014) and GLP-1 is an ideal substrate. In fact, DPP-
4 inhibitors mainly act through the enhancement of GLP-1 
levels (Andersen et al., 2018). However, DPP-4 inhibitors are 
involved also in the regulation of blood pressure and cerebral 
perfusion, inflammation, oxidative stress and immune 
system (Ahrén, 2007). These actions are due to the fact that 
several other oligopeptides may serve as substrates to DPP-4 
(Mentlein, 1999). At present, clinical trials failed to show any 
effect of DPP-4 inhibitors on preventing cardiovascular events, 
including stroke (Barkas et al., 2018); nevertheless, failure to 
prevent stroke does not imply that these drugs are ineffective 
in reducing ischemic injury and in improving functional 
outcome. Therefore, further studies are recommended, 
particularly because several neuroprotective effects exerted 
by DPP-4 inhibitors have been observed in many experimental 
studies (Darsalia et al., 2018; El-Marasy et al., 2018). 

Even if GLP-1 receptor agonists and DPP-4 inhibitors have 
been the most studied drug classes as novel therapeutic 
strategies to lower blood glucose levels in AIS patients, other 
drugs are under evaluation. For example, the sodium glucose 
cotransporter 2 (SGLT-2) inhibitor empagliflozin was shown to 
have several neuroprotective effects in a cerebral ischemia/
reperfusion model in hyperglycemic rats when administered 
intraperitoneally at 1 and 24 hours after reperfusion, 
decreasing oxidative stress, inflammation and apoptotic 
markers, along with the improvement of neurological 
functions and histopathological alterations (Amin et al., 
2020). Moreover, this drug slowed down the progression 
of atherosclerotic plaques in streptozotocin-diabetic mice 
(Pennig et al., 2019). At present, clinical evidence is however 
scarce and so far contradicting to draw significant conclusions 
regarding the beneficial effects of SGLT-2 inhibitors after 
stroke (review in Al Hamed and Elewa, 2020): for example, 
in the EMPA-REG OUTCOME trial, a trend towards increased 
stroke risk was observed in the empagliflozin-treated group, 
likely because of hematocrit elevation in these patients 
(Imprialos et al., 2017). These latter disappointing results were 
not confirmed in the CANVAS trial (Neal et al., 2017), where a 
non-significant trend was observed towards the reduction of 
stroke risk. 

On the other hand, anti-diabetic treatment with sulfonylurea 
class has been hypothesized to define a potential additive 
risk factor for stroke (Szeto et al., 2018); even if these drugs 
are now third-line agents for T2DM patients for their side 
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effects and hypoglycemic risk, they are widely used above all 
in Third World countries. In fact, sulfonylureas act by blocking 
K+ATP channels, which are activated when glucose enters 
the cells and it is metabolized by glucokinase, increasing the 
ATP/ADP ratio; ATP triggers the channel closure and β-cell 
depolarization, the voltage-gated Ca2+ channel activation and 
finally the calcium-dependent insulin release. During brain 
ischemia, ATP is lacking and the rise of ADP/ATP ratio activates 
this type of channel, which was shown to exert several 
neuroprotective effects (Sun and Feng, 2013), on the contrary 
respect to sulfonylurea mechanism of action. Moreover, 
repaglinide, a drug acting on the same sulfonylurea receptor, 
increased the risk of hypoglycemic events in AIS patients 
concomitantly under treatment with clopidogrel, whose main 
metabolite exerts a pharmacometabolic interaction towards 
repaglinide metabolism through cytochrome P450 2C8 (Akagi 
et al., 2020).

Conclusions and Future Perspectives
Several clinical and experimental studies have highlighted 
that diabetes mellitus and post-stroke hyperglycemia 
worsen AIS clinical conditions, increasing infarct extension, 
hemorrhagic risk and death rate, overall impairing functional 
recovery. Moreover, hyperglycemia also affects the efficacy of 
thrombolysis and thrombectomy, likely because this condition 
leads to increased coagulative state and reduced fibrinolytic 
activity.

Given the lack of convincing results of i.v. insulin treatment 
in clinical trials evaluating functional outcomes, neurological 
sequelae and mortality rate, together with the concomitant 
increase of hypoglycemia, new strategies are needed. The 
most promising roadmap to be followed is to start from 
the complex pathophysiological mechanisms of brain 
hyperglycemic injury in ischemic conditions, in the attempt 
to boost neuroprotective pathways. In this perspective, 
the most promising drug classes are firstly GLP-1 receptor 
agonists and DPP-4 inhibitors, which have been proven 
effective in several experimental studies and in some clinical 
observations (for GLP-1 receptor agonists); secondarily, 
preliminary evidence is available also for the SGLT-2 inhibitors. 
Therefore, the feasibility of these new therapeutic strategies 
requires thorough experimental and clinical studies, 
taking into consideration also the pharmacokinetic and 
pharmacometabolic profiles of these drugs, which could be 
modified in ischemic hyperglycemic conditions respect to the 
hyperglycemic alone ones, with important consequences also 
for their safety aspects.
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