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Abstract
The onset of the COVID-19 pandemic has increased volatility in financial markets,
motivating researchers to investigate its impact. Some use the GARCH family of
models to focus on long-memory persistence, while others use Markov chain models
to better identify structural breaks and regimes. However, no study has addressed the
occurrence of these two phenomena in a unified framework. Since both are important
features of the data, to ignore oneor the other could lead to poorly specifiedmodels. The
outcomewould be incorrect riskmeasurement, with implications for riskmanagement,
Value at risk, portfolio decisions, forecasting, and option pricing. This paper aims to
fill this gap in the literature. We assemble an international dataset for 16 stock market
indices in three continents over the period from August 1, 2019 to February 18, 2022,
totalling 669 business days. Using R, we estimate 80 GARCH family models, 16 pure
Markov-Switching models, and 900 combined GARCH/ Markov-Switching models
using daily stock market log-returns. We allow for two volatility regimes (low and
high). We also measure and incorporate News Impact Curves, which show how past
shocks affect contemporaneous volatility. Our main finding, across estimated models,
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is that COVID-19 affected both long-memory persistence and volatility regimes in
most markets. To describe the specific impact in each market, we report News Impact
Curves. Lastly, the first wave of COVID-19 had a much greater impact on volatility
than did subsequent waves linked to the emergence of new variants.

Keywords COVID-19 · Statistical models · Volatility · Stock indices

1 Introduction

Since the emergence of COVID-19 in December 2019, its wide-ranging effects on
society have been investigated by a large scientific literature. Much of this research
uses data science techniques, such as data mining, machine learning and big data
[1, 2]. Among the many impacts suffered by populations worldwide, one important
shock has been an increase in the volatility of financial markets around the world.
While markets have largely recovered from the initial crash in early 2020, they have
remained riskier and more unpredictable than before [3].

There are two main strands in the emerging literature on COVID-19 and volatility.
First, most of the early studies used standard GARCH models to show increases in
volatility persistence [4–15]. These papers have much in common : (1) They applied
univariate GARCH models to the first wave of COVID-19; (2) They tested a small
number of models using results from previous third-party studies; (3) They looked at
specific stockmarket indices; (4) They used dichotomous variables to capture the effect
of the pandemic; or (5) They estimated models by dividing the full sample in two,
namely before and during the COVID-19 crisis. These papers found that COVID-
19 increased stock market volatility, that volatility is persistent (i.e., displays long
memory), is time-varying and that the leverage effect is confirmed. The second wave
of COVID-19 contagion and spike in cases occurred in the winter (summer) months
of 2020-21 in the Northern (Southern) Hemisphere [16]. New studies examined the
impact of these new waves on financial markets [17–19]. Using similar methods as
the earlier literature, they found that subsequent COVID-19 waves have had less of an
impact on volatility than the first wave.

The second strand of the literature has described the impact ofCOVID-19 as causing
structural breaks in the time series of volatility. That is, there is a change in the model
coefficients describing the data-generating process for volatility. For instance, [20]
analyzed theS&P500 indexvolatility usingMarkov-SwitchingAutoregressivemodels
(MS-AR), while [21, 22] used Markov-Switching GARCH models (MS-GARCH) to
examine the volatility of stock market indexes. These studies identified the start of
the COVID-19 pandemic as an important contributor to structural breaks in volatility.
However, they only looked at the first wave and did not examine subsequent waves.

In light of these results, the question becomes: How best to measure the impact
of COVID-19 on stock market volatility? The papers in this literature use different
models but provide little or no comparisons between them. Moreover, the estimated
models are usually fairly standard and do not allow for as much flexibility as the data
could require. Answering this question is fundamental [24] to stakeholders such as
investors, portfolio managers, financial analysts and risk managers. Indeed, accurate
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volatility modeling provides investors with a better understanding of financial market
dynamics. In addition, it helps investors to value assets correctly and find the best
potential diversification opportunities. It also improves portfolio management practice
by suggesting the most appropriate models for conditional volatility dynamics. Lastly,
this can lead to improved hedging strategies by choosing the most suitable derivative
instruments and correctly estimating their Value at Risk (VaR) and Expected Shortfall
(ES).

The purpose of this paper is therefore (1) to determine, out of a large universe
of potential models, the best one(s) to describe the impact of COVID-19 on stock
market index volatility; and (2) to assess whether the impact has affected long-memory
persistence, structural breaks in the process, or both. To our knowledge, this type of
empirical analysis has been done for Bitcoin volatility [24–27] but not for international
stock market indices, especially accounting for the effect of COVID-19’s multiple
waves.

This paper considers a volatility modelling framework that allows for long memory
(e.g., a hyperbolic rather than geometric rate of decay), different potential distributions
for innovations (errors), and aMarkov-switching framework to capture regime changes
in volatility. To this end, we tested 80 univariate models from the GARCH family as
well as 916 Markov-Switching models for two regimes. We estimate these models
using time series data for 16 of the most important stock market indices in the world,
representing more than two-thirds of the global market capitalization (in value).

The main contribution of this paper is to significantly expand upon the number of
models tested on stock indices worldwide, which helps shed new light on the models’
ability to explain in-sample volatility (e.g., tracking) aswell as downside riskmeasures
(VaR and ES) for major stock indices before and during the COVID-19 period.

Lastly, the objectives of this paper also align with the concept of Big Data Analytics
and Data Mining techniques [28–31]. We apply algorithms for nonlinear regression
models to the analysis of a considerable amount of data acquisition and processing.
Moreover, the empirical approach uses statistical models for knowledge discovery
and data visualization (e.g., News Impact Curves from GARCH models) in order to
enhance the stakeholders’ decision-making, problem-solving and data learning out-
comes concerning stock index volatility.

2 Theoretical Support

2.1 Nested GARCH Family

Since the seminal works of [32] and [33], a large family of models has grown to
to explain the stylized facts established by the financial econometrics literature on
economic and financial time series, such as volatility clustering, asymmetry, long
memory and fat tails.

The GARCH family of models is the leading econometric framework to model
volatility because it provides a parsimonious approximation of the process generating
asset return volatility dynamics [34–36]. While this family has grown considerably,
[37] proposed a model encompassing some of the most useful GARCHmodels (ALL-
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GARCH). This model can be represented as in function (1). As for the number of
lags, we have chosen the GARCH(1,1) specification because it is the most common
and because research finds that additional lags typically do not improve performance
[38].

σλ
t − 1

λ
= ω + ασλ

t−1

[|Zt−1 − η2| − η1 (Zt−1 − η2)
]δ + β

(
σλ
t−1 − 1

λ

)

(1)

Equation (1) is a Box-Cox transformation of the conditional volatility σt , where ω

is the intercept and α and β are the persistence of the standardized lagged shocks Zt−1
and the conditional volatility, respectively. Moreover, λ determines the shape of the
function and δ transforms the absolute value function. For the latter, η1 and η2 control
the rotations and shifts.

Table 1 shows ten possible GARCHmodel specifications that can be obtained from
Eq. (1), depending on the specific constraints on the λ, δ, η1 and η2 coefficients. Note
that the ARCH model is a special case of the GARCH model when β is zero. The
table also summarizes how each GARCH specification yields particular effects on
the News Impact Curve (NIC), essentially showing how past shocks affect present
volatility. Depending on the model, the effects can be to shift (small shocks) or rotate
(large shocks) the NIC [40, 46]. Thus, NIC is an invaluable graphical tool to display
how volatility incorporates new information (shocks).

max ln (Z , σ ) = max
T∑

t=1

ln

(
1

σt
f (Zt )

)
(2)

We obtain the coefficients of Eq. (1) by maximizing the log-likelihood function (2),
where Zt = εt/σt is the shock εt standardized by σt . For flexibility, we allow f (Zt )

to be drawn from a broad set of univariate probability distributions, as seen in Table 2.
As a result, the specifications in Tables 1 and 2 can be combined to provide 80 dif-

ferent model specifications to investigate longmemory effects in stock index volatility.

2.2 Markov-SwitchingModels

The emerging popularity and widespread use of GARCH models to estimate con-
ditional volatility in financial markets soon led to questions about the degree of
persistence in the volatility process. That is, how much does past volatility explain
the present? Early empirical results suggested that persistence in GARCHmodels was
high. This led [50] to confirm that GARCHmodel coefficients can vary over time, thus
explaining high persistence. To capture this, the literature has considered structural
breaks: following large-scale events in the market, the structure of the time series pro-
cess changes significantly. For instance, the market may switch from a low-volatility
to a high-volatility environment. Locating the structural break becomes a fundamental
question [51].

A useful framework to deal with this issue is the pure Markov-Switching model
(MSwM) of variance proposed by [52]. To describe this model, first consider the log-
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Table 2 Probability Distributions Functions (PDF’s) for Zt . Source: summary by the authors

Function Equation

Normal (norm) f (Zt ) = e−0.5Z2t√
2π

Student-t (std) f (Zt , ν) =
�(

ν + 1

2
)

√
(ν − 2)π�( ν

2 )

(
1 + Z2t

ν−2

)−(ν + 1)

2

Generalized Error Distribution (ged) f (Zt , ν) = νe−0.5(|κZt |)ν

κ2(1+1/ν)�(1/ν)
; κ =

√
2(−2/ν)�(1/ν)

�(3/ν)

Skewed Normal (snorm) See [47], equation 1

Skewed Student-t (sstd) See [47], equation 1

Skewed ged (sged) See [47], equation 1

Generalized Hyperbolic (ghyp) See [48]

Johnson’s reparametrized SU (jsu) See [49]

return (shocks) yt of anyfinancial asset at time t,withmean zero andno autocorrelation.
This model can be represented by the following set of equations under the assumption
of two volatility regimes:

yt = N (0, σ 2
t ) (3)

σ 2
t = σ 2

1 S1t + σ 2
2 S2t (4)

σ 2
1 < σ 2

2 (5)

Skt = 1, i f St = k; otherwise, Skt = 0, k = 1, 2 (6)

p(St = 1|St−1 = 1) = p11; p(St = 2|St−1 = 1) = 1 − p11 (7)

p(St = 2|St−1 = 2) = p22; p(St = 1|St−1 = 2) = 1 − p22 (8)

max ln (y, θ) = max
T∑

t=1

2∑

i=1

ln

⎡

⎣ pii√
2πσ 2

i

exp

(
−(yt − μi )

2

2σ 2
i

)⎤

⎦ (9)

In this model, variance is persistent: earlier values continue to affect later values.
This occurs because there is a change in the variance regime, which is defined by
the latent variable St , a first-order ergodic homogeneous Markov chain with transition
probabilities described byEqs. (6)–(8). For instance, p12 is the transition probability of
going from state 1 (low volatility) to state 2 (high volatility). While a larger number of
distinct volatility regimes could be considered, this is generally not necessary to obtain
well-performing models in financial time series. In this setting, parsimony is prefer-
able. P’s transition probability matrix is constructed using p11 and p22 to calculate the
1-step ahead regime. To estimate the coefficient vector θ ≡ (

μ1, μ2, σ
2
1 , σ 2

2 , p11, p22
)

we maximize the log-likelihood Eq. (9) using numerical methods. Finally, note that
variance is constant within each regime when using this approach.

The other approach we consider consists of Markov-Switching GARCH Models
(MS-GARCH), where variance is time-varying in each regime. Here, there is persis-
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tence in shocks as well as in regime changes persistence. The general MS-GARCH
expression is [53, 54]:

yt | (St = k, It−1) ∼ D
(
0, hk,t , ξk

)
(10)

hk,t ≡ h
(
yt−1, hk,t−1, θk

)
(11)

where D
(
0, hk,t , ξk

)
is a density (PDF) with a zero mean, time-varying variance hk,t

and additional shape coefficients (see Table 2) contained in the vector ξk . Similar to
MSwM, the latent variable St is also a first-order ergodic homogeneous Markov chain
defined on the discrete space k = 1, 2, with p11 and p22 belonging to the transition
probability matrix P. The information set available as of period t −1 is represented by
the vector It−1 ≡ (yt−i , i > 0), and hk,t is the variance of yt conditional on the realiza-
tion of St and It−1 as described by a GARCH family model. This conditional variance
hk,t is defined by Eq. (11), with a regime-dependent vector of coefficients θk that was
previously described in Eq. (1) and in Table 1 (different GARCH specifications).

max ln L (ψ |I ) ≡ max
T∑

t−1

ln f (yt |ψ, It−1) (12)

Lastly, let ψ ≡ (θ1, θ2, ξ1, ξ2, P) be the vector of model coefficients for two
regimes. These are estimated by maximizing the log-likelihood Eq. (12) using numer-
ical methods, where f (yt |ψ, It−1) is the conditional density of yt given the vector of
coefficients ψ and past observations contained in It−1.

3 Data andMethods

Wecollected ourmain data fromYahoo! Finance. The sample period runs fromAugust
1st 2019 to February 18th 2022. The reason why the sample begins in 2019 is to allow
for a pre-COVID-19 “normal” period, which we use to estimate the volatility models
and obtain “baseline” results prior to the impact of COVID-19. With the up-to-date
series, we can estimate new models that account for the impact of COVID-19.

This data sample consists of 669daily observations of the stockmarket level for each
of the 16 stock indices over three continents. In total, there are 10,704 observations.
For this task, we used the pdfetch R library [55]. As shown in Table 3, these stock
indices account for nearly 70% of global stock market capitalization (by value). Using
a spline interpolation procedure from the imputeTS R library, we filled the missing
values in these time series [56]. Finally, we computed the daily price log-returns for
all stock indices and report their descriptive statistics in Table 4.

Combinations of the equations presented in Tables 1 and 2 lead to a total of 80mod-
els. We estimated the coefficients of these models using the rugarch R library [58].
Moreover, the pure Markov-Switching models described by Eqs. (3)–(9) generate a
total of 16 models, whose coefficients were estimated using theMSwM R library [59].
Lastly, the coefficients of themodels described by Eqs. (10)–(12) were estimated using
theMSGARCH R library [60]. For this last library, we selected the ARCH, GARCH,
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Table 3 Selected stock markets and their corresponding stock indices from Yahoo! Finance . Source: Liu
et al. [57]

Continent Region Symbol Index Name Index Symbol

Europe England UK FTSE 100 FTSE

Eurozone Euro EURO STOXX 50 STOXX50E

Norway NOR Oslo Exchange All Share Index OSEAX

Germany DEU DAX Performance Index GDAXI

Spain ESP IBEX 35 IBEX

Swiss CHE Swiss Stock Market Index SSMI

Asia Australia AUS All Ordinaries AORD

China CHN Shanghai Composite Index SSEC

Hong Kong HK Hang Seng Index HSI

India IND NIFTY 50 NSEI

Korea KOR KOSPI Composite Index KS11

Japan JPN Nikkei 225 N225

America Brazil BRA BVSP BOVESPA Index BVSP

Canada CAN S&P/TSX Composite Index GSPTSE

United States US S&P 500 GSPC

Mexico MEX IPC Mexico MXX

TGARCH, EGARCH, GJR-GARCH models and the Normal, Student-t, and GED
PDFs (as well as their asymmetric versions). With the starting point being the estima-
tion of a two-regime model, the outcome was the generation of 900 models resulting
from different combinations. The algorithm written for this analysis is available in
the supplementary materials, for researchers aiming to reproduce the results presented
below.

4 Results and Discussion

4.1 Descriptive Statistics

Table 4presents descriptive statistics for price log-returns in eachof the 16 stockmarket
indices. The indices are ranked in descending order according to their 1% empirical
VaR. Overall, these results indicate that (1) means are usually positive and very close
to zero; (2) standard deviations (SD) are larger than means; and return distributions
are (3) left-skewed and (4) leptokurtic. Next, we apply Jarque-Bera normality and
Phillips-Perron unit root tests. For each test, the null hypothesis is rejected for all
stock market indices (p-value < 0.01). Therefore, price log-returns for all indices are
stationary with innovations than are not distributed as Normal.

It is worth pointing out here that if we look at risk measures across stock indices,
the BVSP (São Paulo, Brazil) is the stock index with the highest values (e.g., greatest
risk) whether expressed as standard deviation, maximum drop (i.e., minimum value),
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Fig. 1 Time series of log-returns and best GARCH model for each of the stock indexes for the period
including COVID-19. Note: The © symbol indicates the beginning of the COVID-19 pandemic (March
11, 2020). The (α), (β), (γ ), (δ), and (o) symbols indicate the dates when the first documented samples of
COVID-19 Variants of Concern were reported

or empirical VaR (1% and 5%). On the other hand, the SSEC (Shanghai, China) is
the least risky index, measured in terms of standard deviation , maximum drop, or 1%
empirical VaR.

4.2 Results for Volatility Models from the GARCH Family

In this section, we work with the assumption that the potential impact of COVID-19
on stock market volatility is through long-memory persistence only. Having verified
that the series of daily log-returns are stationary, it is appropriate to fit each of the 80
possible model combinations from Tables 1 and 2 to the 16 stock market indices. As a
result, there is a total of 1,280 estimated models. Then, to determine which model best
explains the evolution of volatility in a given stock market index, we use the following
filtering protocol:

1. All coefficients must be statistically significant at a 5% level, and the half-life of
shocks to variance (i.e., persistence) [50] must be less than 100 days;

2. The null (H0) should not be rejected for all VaR and ES tests [unconditional and
conditional coverage, duration of time between violations and the mean of the
shortfall violations] using in-sample data [61–64];

3. The model with the lowest Bayesian Information Criterion value is selected [65],
to avoid overfitting the data.

Figure 1 shows the daily log-return time series for each of the 16 stock indices and
also reports the best GARCH model for each market. The purple dashed line is the
5% conditional VaR. Periods of high volatility (in red) are the outliers obtained via
Box-plot statistics. Dates when the first documented samples of COVID-19 Variants
of Concern [VoC] [23] were reported are identified using the symbols [alpha (α), beta
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(β), gamma (γ ), delta (δ), omicron (o)]. The start of the pandemic (i.e., March 11,
2020) is identified by the symbol ©.

Table 5 reports our results for the estimated long-memory models. The columns
show which model combination is optimal for a given stock index (GARCH model
and PDF), the degree of persistence in volatility shocks (with a value of 1 indicating
that shocks are permanent), half-life (measured in days), BIC, low and high annualized
volatility, and the number of days of low and high volatility. Details on the computation
of persistence and half-life for each GARCH model are given by Ghalanos [58].

Overall, themainmessage from the results shown in Fig. 1 and Table 5 is as follows:

• While no singlemodel is optimal for all markets, some are clearlymore useful than
others. The TGARCH-jsu model best captures the volatility in five stock indices,
implying that volatility in several markets is fairly similar. The NAGARCHmodel
fits the data best for six stock indices, but five different types of PDFs are used. The
jsu distribution best captures innovations (errors) in nine markets: Across markets,
it is the distribution that is most often optimal to describe innovations.

• The models that are optimal for our sample of indices are often different than
those reported in the prior literature (see Sect. 1), where the most common ones
are GARCH, EGARCH, and GJR-GARCHmodels using the Normal distribution.
Since asset log-returns tend to be skewed and leptokurtic, using the Normal distri-
bution in the maximum likelihood function could lead to an incorrectly specified
model, given that it fails to capture these two important stylized facts;

• We estimate the mean persistence to be .965 [SD = .028], with a mean half-life of
27 days [SD = 13.3 days]. That is, once the shock occurs, it takes on average almost
a month for half of the effect to dissipate. The SSMI and IBEX stock indices in
Europe have the highest values, while the lowest values are found for the HSI,
KS11, and SSEC indices in Asia;

• Low annualized volatility is 16.5% [SD=2.5%] on average across indices, while
high annualized volatility is 56.2% [SD=16.6%] on average. The GSPTSE Cana-
dian stock index has the lowest value of “low annualized volatility”, while the
BVSP Brazilian stock index has the highest “high annualized volatility”;

• Since the beginning of the pandemic, the 16 stock indices have recorded more
low-volatility days [mean = 623.9; SD = 6.5] than high-volatility days [mean =
44.1; SD = 6.5]. Days with high volatility are clustered between the beginning of
the pandemic (©) and the emergence of the beta (β) variant [in May 2020]. This
result goes beyond what is presented in earlier studies (Sect. 1), as it shows that
the emergence of other VoC did not have much effect on the volatility of the 16
stock indices.

Figure 2 shows, for each stock index, the News Impact Curve obtained from the
estimated GARCH models discussed above. The NIC illustrates the effects of past
positive and negative shocks εt−1 on the estimate of variance σ 2

t . The shape of the
NIC is determined by which GARCH model is found to fit the data best, and by the
model parameters that are estimated.

The NIC is symmetrical in only two cases, theMXX and SSEC indices. This means
negative and positive past shocks have the same impact on present-day conditional
variance. For the other 14 indices, the effects are asymmetrical. In the case ofTGARCH
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Fig. 2 News Impact Curve obtained from GARCHmodels for 16 indices in our sample during the COVID-
19 period

and EGARCH models (e.g, AORD, OSEAX), the NIC is rotated clockwise due to the
positive η1 coefficient, which implies that negative shocks have a greater impact on
conditional variance than do positive shocks. NAGARCH models (e.g., BVSP, HSI)
always have a positive η2 coefficient, which shifts theNIC to the right. That is, negative
shocks have a greater effect on variance than do positive shocks. For AVGARCH
models (e.g., GSPC, GSPTSE), the effect on the rotation of the curve can vary. There
is a clockwise rotation for the GSPTSE (i.e., bigger effects from negative shocks) but
a counterclockwise rotation for GSPC (bigger effects from positive shocks).

Finally, Table 6 presents estimated coefficients for the best-fitting GARCH mod-
els [Eq. 1] for each stock index, while respecting the restrictions of each model as
described in Table 1 and the probability distribution functions in Table 2.

4.3 Results for the Pure Markov-SwitchingModels

In this section, we assume that the impact of COVID-19 on volatility is only through
structural breaks and not long memory. In this framework, volatility is constant in
each regime (MSwM model), as shown in Eqs. (3)–(9). To determine the best fit, we
estimate 16 pureMarkov-Switchingmodels for each stock index. The selection criteria
are simply that the null the H0 cannot be rejected for all VaR and ES tests applied to
the in-sample data.

Figure 3 shows that the estimated models meet the selection criteria in only 11
out of 16 stock indices. Thus, using a pure Markov-Switching model cannot explain
volatility in five stock markets. The purple dashed line is the 5% conditional VaR.
This is a piecewise function since volatility is constant in each of the two regimes.
Unlike Fig. 1, here the results suggest that periods of high volatility occurred not only
with the beginning of the pandemic, but also with the emergence of subsequent VoC.
This is mainly the case for the stock indices STOXX50E, GDAXI, GSPC, FTSE, and
OSEAX. However, the intensity is lower than for the first wave of contagion.
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Table 6 Estimated GARCH model coefficients for each stock index in our sample . Source: Source: com-
puted by the authors from Yahoo! Finance data

Index ω α β η1 η2 Skew Shape

AORD .000321 .114 .886 .743 – −1.056 1.797

BVSP .000009 .131 .785 – .658 −1.237 2.605

FTSE .000204 .077 .925 1.000 – −.516 1.604

GDAXI .000344 .129 .887 1.000 – −.471 1.406

GSPC .000435 .306 .718 −.300 1.104 −1.168 1.958

GSPTSE .000283 .198 .794 .118 .586 .697 8.096

HSI .000019 .075 .711 – 1.102 – 1.329

IBEX .000006 .118 .771 – .899 .827 5.490

KS11 .000012 .220 .667 – .453 .862 −
MXX .000005 .109 .851 – − – −
N225 .000006 .088 .794 – .988 – 6.976

NSEI .000437 .094 .899 .953 – −.968 1.878

OSEAX −.190702 .109 .978 1.554 – −.862 1.931

SSEC .000006 .089 .847 – − – 1.325

SSMI .000003 .077 .666 – 1.788 −.825 1.882

STOXX50E .000338 .128 .886 1.000 – −.685 1.540

The skew and shape are the PDF coefficients, as appropriate

Fig. 3 Time series of log-returns and best pure Markov-Switching model for each of the stock indexes for
the period including COVID-19. Note: In five stock indices, no MSwM meets the selection criteria. The
© symbol indicates the beginning of the COVID-19 pandemic (March 11, 2020). The (α), (β), (γ ), (δ), and
(o) symbols indicate the dates when the first documented samples of COVID-19 Variants of Concern were
reported
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Note that no country had yet started vaccinating their populations at that time
(September to November 2020). The United States were the first country to initiate
such a campaign, on December 14, 2020 [66].

Table 7 presents the results of the MSwMmodels. The table highlights the low and
high annualized volatility, as well as the respective number of days in each regime.
Also reported are the estimated values of remaining in the low (p11) and high (p22)
volatility regimes once they start, and the BIC.

Comparing the results of Tables 5 and 7, we can see that:

• The BIC values for the estimated MSwMmodels are much smaller than are those
for the long-memory models, suggesting that they better explain the evolution
of conditional volatility. This result would suggest that COVID-19 had a greater
impact on the volatility regimes than on long-memory persistence;

• The average for low annual volatility is 12.9% [SD=3.0%], while for high annual
volatility it is 43.3% [SD=19.9%]. Compared with long-memory models, esti-
mated volatility in MSwMmodels is lower on average but standard deviations are
higher. The STOXX50E European stock index has the lowest value of “low annual
volatility”, while the BVSP Brazilian stock index has the highest value of “high
annual volatility”;

• There are considerably more low volatility days [mean = 545.9; SD = 68.4] than
high volatility days [mean = 122.1; SD= 68.4] inMSwMmodels, even considering
the lower average value compared to long memory models.1.

However, it is important to note that the MSwM models do not work for all stock
indices. Indeed, we fail to find a suitable MSwM model for five out of 16 markets.
Thus, a combination of Markov-switching and long memory seems to be appropriate
in order to obtain the best possible model.

4.4 MS-GARCHModels Results

In this section, we consider the possibility that COVID-19 has had an impact on
volatility through structural breaks and/or longmemory persistence.We do not restrict
the possible impact to just one or the other, but rather we let the data lead to the best
fittingmodel. This leads to a total of 900 possible combinations as explained in Sect. 3.
We estimate the 900 models for each of the 16 stock indices, which generates a total
of 14,400 estimated model outcomes.

To determine the best model to explain volatility in each stock index, we apply the
following filtering protocol:

1. All coefficients must be statistically significant at a 5% level;
2. The number of low-volatility days must be greater than or equal to the number of

high-volatility days, to be consistent with the evidence shown in Sects. 4.2 and 4.3;
3. The null (H0) for all VaR and ES tests should not be rejected using in-sample data;
4. The annual volatilities for both regimes must not be 0, and the annual volatility of

the first regime (“low”) must be less than that of the second regime (“high”);

1 This difference in mean values is a consequence of the use of the first order homogeneous ergodic
Markov chain, which can better capture the regime-switching moments throughout the historical series
than the identification of outliers via Box-plot statistics, as with the long memory models
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Fig. 4 Time series of log-returns and best Markov-Switching-GARCH combination model for each of
the stock indexes for the period including COVID-19. Note: Two GARCH specifications are reported for
each stock index, one for each volatility regime. The © symbol indicates the beginning of the COVID-
19 pandemic (March 11, 2020). The (α), (β), (γ ), (δ), and (o) symbols indicate the dates when the first
documented samples of COVID-19 Variants of Concern were reported

5. The probabilities of staying in the original regime, p11 and p22, must be higher
than 85%;

6. The half-life of volatility persistence should be less than 100 days, and the volatility
half-life of the first regime must be less than that of the second regime;

7. The model with the highest mean (p11, p22) should be selected because the higher
this value, themore persistent the regime.Otherwise, regime-switchingmight occur
too often, which would not be plausible for MS-GARCHmodels, as even a single-
regime GARCH model could perform better to explain periods of high and low
volatility in stock indices [67];

Figure 4 shows the best-fitting models that meet the filtering protocol for each of
the 16 stock indices. The purple dashed line is the 5% conditional VaR. The sub-figure
headers show that the eGARCH model often performs best (n = 16), as does the
sstd distribution for innovations (n = 10). As with Fig. 3, there are periods of high
volatility with the emergence of the alpha, delta, and gamma VoC for some of the
the stock indices (AORD, FTSE, GDAXI, KS11, NSEI, and SSMI). However, the
intensity of the volatility spike is less than the spike caused by the first wave of the
contagion.

Figure 4 also shows that there is no high volatility regime that is recorded after the
emergence of the omicron variant, except for the GSPTSE and NSEI indices (and once
more, with lower intensity). For all stock indices except one (GSPTSE), the best-fitting
GARCH model for low volatility is different than the best model for high volatility.

Figure 5 shows the News Impact Curves obtained for each stock index. In each
sub-figure there are two curves, one for the low-volatility regime and one for the high-
volatility regime. The NIC displays the effects of past positive and negative shocks
εt−1 on the conditional variance estimate σ 2

t . Based on the same estimation results,
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Fig. 5 News Impact Curve obtained from MS-GARCH models for 16 indices in our sample during the
COVID-19 period

Table 8 reports details for the models that best fit the data for each stock index. [68]
provides details on how to calculate the results in the table.

The shape and curvature of the NIC are determined by the the persistence/half-life
of each model and the coefficients described in Eq. (1). In particular, we should look at
coefficients that capture the effects of sign (η1) and magnitude (α) on volatility since
their interpretation varies according to the selected function.

If we consider persistence/half-life as shown in Table 8, the values for low volatility
regimes are lower than those for high volatility regimes for all stock indices. This is
as expected given the restrictions of the filtering protocol. Moreover, negative shocks
cause more significant impacts on volatility than do positive shocks, except for models
that stipulate symmetrical shock effects (sARCH and sGARCH).

Interestingly, the intensity of shocks is not alwaysmore significant in high volatility
regimes. In the case ofAORDstock index, for instance, the bestmodel for both regimes
is the eGARCH.Here, negative shocks aremore important in the low volatility regime.
However, the half-life of these shocks is almost six times smaller than shocks in the
high volatility regime. Results are similar for the FTSE, GSPC, and SSMI indices.

Some care is required to properly interpret the different models. For eGARCH
models, if we multiply |α| by −η1, we obtain the θ coefficient of the original model
due to [41], which captures the effect of the signal on volatility. Thus, for the SSMI
stock index, the low volatility regime [-.321] causes a more significant impact than
the high volatility regime [-.273] when the return is negative. Results are similar for
the AORD and FTSE indices.

As for the GSPC index, although η1 is smaller in the low volatility regime, its |α|
is more significant than in the high volatility regime. This result indicates that a shock
has a greater impact on volatility in the low-volatility regime for log-returns below
-5%. However, it has a half-life that is about three times shorter than for shocks under
high-volatility.
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In the case of the N225 index, we can use the expression α (1 + η1)
2 to obtain

the g1 + g2 coefficient found in the original model due to [42] when εt < 0. The
leverage effect in low volatility [.317] is stronger than in high volatility [-.230], where
the EGARCH model fits the data better, but the half-life is about 28 times shorter.

To conclude, averaging across markets, low-regime volatility is 15.6% [SD = 2.8%]
with 508.6 days [SD = 96.9] low-volatility days. In contrast, high-regime volatility is
37.9% [SD=16.3%] on averagewith 159.4 high-volatility days [96.9]. TheBIC values
of the MS-GARCH models are also much smaller than those for the long-memory
models, which supports the earlier finding that a Markov-Switching component is
important to model stock market volatility, and that COVID-19 had an impact on
volatility through the probabilities and intensities of the two regimes.

4.5 WhichModel Should we Choose?

Since theMarkov-Switching (MS)models have amuch smallerBIC than do themodels
from the long-memory GARCH family, it is fair to conclude that they perform better
to explain the volatility of stock indices. The next step is to choose the best MS model
for each stock index, by comparing the results shown in Tables 7 and 8.

If we adopt the BIC as a decision criterion, the MSwM is the best model for the
MMX and SSEC indices, while the MS-GARCH model is the best for the other 14
indexes. On the other hand, if we use as a criterion the mean (p11, p22), then the
MS-GARCH model is the best for all indices. Also note that while there was at
least one MS-GARCH model specification that respected the filtering protocol for all
stock indices, the MSwM failed to yield an acceptable model for five of the indices.
Therefore, MS-GARCH models seem to be the best at explaining the fundamental
structure of stock index volatility during the COVID-19 period.

4.6 The Relationship Between COVID-19 Cases and Stock IndexVolatility

Figures 6 and 7 show the evolution in confirmed COVID-19 cases for each of the 16
countries in our sample (as shown in Table 3) for 2020 and 2021-2022, respectively.
We collected the data using the tidycovid19 R library [69]. We split the data in two
for purposes of generating the figures, because the scale of transmission was higher
in 2021-2022 due to the high transmissibility of the omicron variant [70].

In the case of the Eurozone (Stoxx50E index), we build the curve representing the
growth in COVID-19 cases by aggregating data from the 19 countries that compose
it.2

In each sub-figure, the curve representing the growth in COVID-19 cases is colored
black or red depending on the stock market index volatility regime (low or high), as
determined by the MS-GARCH models presented in Sect. 4.4. As before, we mark

2 The countries are: Belgium, Germany, Ireland, Spain, France, Italy, Luxembourg, the Netherlands, Aus-
tria, Portugal, Finland, Greece, Slovenia, Cyprus, Malta, Slovakia, Estonia, Latvia, and Lithuania.
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Fig. 6 Confirmed COVID-19 cases and stock index volatility regime in 2020

Fig. 7 Confirmed COVID-19 cases and stock index volatility regime between January 2021 and February
2022

with a symbol the date of the first documented samples of each Variant of Concern
[VoC] [23].3

A visual inspection makes it clear that the relationship between COVID-19 cases
and volatility regimes was quite different in 2020 as opposed to 2021-2022.

In 2020,many stock indiceswere in the high volatility regime formost of the year as
the number of new cases increased (AORD, GDAXI, NSEI, KS11, SSMI, and FTSE).
Yet, most stock indices were in the low volatility regime most the year, despite the
emergence of new VoC and increasing cases of COVID-19 (BVSP, GSPTSE, SSEC,
STOXX50E, HSI, N225, MXX, OSEAX, IBEX, and GSPC). Thus, countries with
distinct social structures, lifestyles, and cultural backgrounds tend to adopt different

3 These VoC are [alpha (α), beta (β), gamma (γ ), delta (δ), omicron (o)], and the beginning of the pandemic
(March 11, 2020) is identified by the symbol ©.
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policies to delay the spread of COVID-19, trying to balance their culture and policy
[71].

Between January 2021 and February 2022, vaccination rates advanced in all coun-
tries in our sample. All stock indices stayed in the low volatility regime most of the
year or the entire year, despite the high transmissibility of the omicron variant that
initiated a new wave of contagion. In only two countries, Canada [GSPTSE] and India
[NSEI], do we see a link between the omicron variant and a high volatility state. In
Australia [AORD] and South Korea [KS11], there are brief periods of a high volatility
regime early in 2021, but these do not coincide with omicron.

Overall, the results shown in Figs. 6 and 7 strengthen the evidence from Fig. 4,
namely that the greatest occurrence of high volatility regimes across stock indices
happened between the time of the emergence of the COVID-19 pandemic and the
appearance of the Beta variant. In contrast, the emergence of new variants had a much
smaller impact on stock market volatility.

5 Final Remarks

The purpose of this study was to find, for each of 16 countries, the best model to
describe the impact of COVID-19 on stock index volatility. Our empirical approach
allows for flexibility to assess whether the impact caused long-memory persistence,
structural breaks, or both.

To our knowledge, this is the most comprehensive empirical study to date on the
impact of COVID-19-related shocks to financial market volatility, in terms of scope
(number of country stock indices) and model flexibility (number of specifications
allowing for different volatility processes and innovation distributions). In particular,
our approach allows for combining long memory persistence with Markov-switching
for different volatility regimes. We find that both features are empirically important
in our sample.

First, for each market index we fit price log-return time series data to the best
individual GARCH model (out of many possible candidates). We find the best model
using three steps: statistical significance, tests that ensure that we respect Value at risk
andExpected shortfall exceedance rates, and attaining the lowestBayesian Information
Criterion value.

We find that while no single GARCH specification best captures volatility in all 16
stock indices, ten stock indices are well described by either the Threshold GARCH
(TGARCH) or the NAGARCH model. As for innovations, for nine stock indices the
best assumption is the Johnson reparameterized SU distribution, which is a transfor-
mation of the Normal distribution that allows for greater kurtosis.

For most stock indices, volatility is persistent with a half-life of shocks around
20-40 days (i.e., 1-2 months). A notable exception is the HSI (Hong Kong) with a
half-life of only 5.3 days. In general, volatility is more persistent in European markets
and less persistent in Asian markets.

In addition, we find that high volatility is clustered in the period between the begin-
ning of the COVID-19 pandemic and the emergence of the Beta variant. Indeed, other
variants of concern did not have sizable impacts on volatility. We obtain News Impact
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Curves from the different GARCH models to assess the impact of past shocks on
volatility. For 14 of 16 stock indices, this curve is asymmetrical, implying that nega-
tive shocks increase volatility more than do positive shocks.

TheMarkov-switchingmodels allow for sharp breaks in volatility, thus distinguish-
ing between regimes. Among our findings, the BVSP (Brazil) index has the highest
overall volatility but interestingly, spends themost time in the low-volatility regime and
the fewest days in the high-volatility regime. In contrast, the STOXX50E (Euro zone)
index has the lowest overall volatility, but spends the most days in the high-volatility
regime and the fewest in the low-volatility regime.

Therefore, the results showed that COVID-19 affected long-memory persistence as
well as regime-switching in the volatility of major world stock indices. The impacts on
volatility differed between stock indices, which required specific model-distribution
configurations to better capture the stylized facts described in the literature.

To this end, we combine the two frameworks. We find that the EGARCH specifica-
tion is best suited for most markets (16 indices), as is the skewed student-t distribution
(10 indices). As in the baseline GARCH analysis, the NIC is asymmetrical for most
indexes, with negative shocks having a more significant impact on volatility than
positive shocks.

Moreover, we show that the News Impact Curves are quite different in high and
low volatility regimes. In all indices, the NIC is steeper in one regime than the other.
Interestingly, it is not always steeper in the high volatility regime. For ninemarkets, the
NIC is steeper in the high regime, but in sevenmarkets, it is steeper in the low volatility
regime. Overall, the combined MS-GARCH model performs better than using only a
MSwM or single GARCH model.

We find that the main impact of COVID-19 on stock index volatility occurred in the
first wave of contagion. Although there is some evidence of other effects of COVID-
19 on stock index volatility linked to the emergence of new variants, they were less
intense or even hardly detectable.

In methodological terms, our study also contributes by presenting new filtering pro-
tocols, written in freely available software. They allow for broader, more sophisticated,
and efficient model selection to apply to different assets such as stock indices.
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