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Abstract

Background: Non-invasive stimulation of the vagus nerve has been proposed as a new neuromodulation therapy to

treat primary headache disorders, as the vagus nerve is hypothesized to modulate the headache pain pathways in the

brain. Vagus nerve stimulation can be performed by placing an electrode on the ear to stimulate the tragus nerve, which

contains about 1% of the vagus fibers. Non-invasive vagus nerve stimulation (nVNS) conventionally refers to stimulation

of the cervical branch of the vagus nerve, which is made up entirely of vagal nerve fibers. While used interchangeably,

most of the research to date has been performed with nVNS or an implanted vagus nerve stimulation device. However,

the exact mechanism of action of nVNS remains hypothetical and no clear overview of the effectiveness of nVNS in

primary headache disorders is available.

Methods: In the present study, the clinical trials that investigated the effectiveness, tolerability and safety of nVNS in

primary headache disorders were systematically reviewed. The second part of this study reviewed the central connec-

tions of the vagus nerve. Papers on the clinical use of nVNS and the anatomical investigations were included based on

predefined criteria, evaluated, and results were reported in a narrative way.

Results: The first part of this review shows that nVNS in primary headache disorders is moderately effective, safe and

well-tolerated. Regarding the anatomical review, it was reported that fibers from the vagus nerve intertwine with fibers

from the trigeminal, facial, glossopharyngeal and hypoglossal nerves, mostly in the trigeminal spinal tract. Second, the four

nuclei of the vagus nerve (nuclei of the solitary tract, nucleus ambiguus, spinal nucleus of the trigeminal nerve and dorsal

motor nucleus (DMX)) show extensive interconnections. Third, the efferents from the vagal nuclei that receive sensory

and visceral input (i.e. nuclei of the solitary tract and spinal nucleus of the trigeminal nerve) mainly course towards the

main parts of the neural pain matrix directly or indirectly via other vagal nuclei.

Conclusion: The moderate effectiveness of nVNS in treating primary headache disorders can possibly be linked to the

connections between the trigeminal and vagal systems as described in animals.
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Introduction

Headache is a common symptom and, collectively,
headache disorders have a prevalence of 49% (1).
Approximately 95% of the general population have
experienced headache during some stage in their life
(2). In addition to having a significant impact on
patients’ daily life due to pain and disability, the socio-
economic burden of headaches are considerable, with a
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cumulative burden of $14 billion per year (3). Although
the pathophysiological mechanisms involved remain
partially elusive, chronic headache is believed to have
a neurogenic basis (4–11). For example, a recent fMRI
study showed that areas within the hypothalamus and
brainstem, including the trigeminal system, were
involved in mediating migraine (12). Although various
treatments are available for alleviating pain in head-
ache, the results are often unsatisfactory (13–15).
Therefore, experimental interventions that treat head-
ache disorders more effectively are being investigated
and show promising results. One of the options includes
(non-invasive) vagus nerve stimulation (nVNS), which
was found to inhibit nociceptive behavior in animals
(16–21). In humans, multiple clinical trials have been
conducted, showing the clinical relevance of nVNS in
treating chronic headache disorders (22–25). However,
the underlying mechanism supporting these effects is
difficult to elucidate (26–29).

The vagus nerve plays a central role in autonomic,
cardiovascular, respiratory, gastrointestinal, immune
and endocrine systems (30). Four types of fibers
within the vagus nerve have been described: a) The gen-
eral somatic afferents (GSA); b) the general visceral
afferents (GVA); c) the special visceral afferents
(SVA); and d) the special visceral efferents (SVE).
These afferents and efferents all terminate in the four
vagus nuclei within the medulla: a) The nucleus of the
solitary tract (NST); b) the nucleus ambiguus (NA); c)
the trigeminal spinal nucleus (TSN); and d) the dorsal
motor nucleus of the vagus nerve (DMX) (see Table 1)
(29). Although the peripheral distribution of the vagus
nerve has been well described before by others (for a
review see Yuan and Silberstein (2016) and Berthoud
and Neuhuber (2000) (29,30)), the subsequent central

connections of the vagus nuclei remain opaquely
described (31,32). Nevertheless, the central connections
are thought to be of pivotal importance to increasing
our understanding of nVNS in headache disorders (27–
29). Therefore, this study aims to provide an overview
of clinical research on nVNS as a treatment of primary
headache disorders and to review the anatomical
research on connections between the vagus nerve and
other brain areas. Together, these overviews will con-
tribute to our understanding of mechanisms involved in
alleviating pain in primary headache disorders by use
of nVNS.

Material and methods

Methodology for retrieval and assessment of
nVNS trials

A systematic literature review concerning VNS in primary
headache disorders was conducted by searching for litera-
ture until July 2018 on PubMed, Medline, EMBASE and
Google Scholar. Search entry terms included: [Vagus
Nerve Stimulation]; [Facial Neuralgia]; [Facial Pain];
[Trigeminal Nerve]; [Headache Disorders]; [Headache];
[Trigeminal Autonomic Cephalgia]; [Vagus Nerve];
[Migraine Disorders]; [Cluster Headache]; [Implantable
Neurostimulators]; and/or [Electrodes, implanted].
Inclusion criteria for the review on nVNS in primary
headache disorders were: a) Studies investigating the
effect of nVNS of the cervical main branch of the
vagus nerve to treat one or various primary headache
disorders; b) study design being either a randomized-
controlled trial or an observational study and c) studies
that included only human subjects. Exclusion criteria
were: a) Articles other than original research papers

Table 1. Distribution of the types of afferents over the four vagus nuclei (adapted from Yuan and Silberstein 2016 (28)).

Vagus nucleus

Type of

afferent/efferent Function

TSN GSA Sensory information from posterior external auditory meatus, tympanic mem-

brane, dura in posterior fossa, hypopharynx, larynx and upper esophagus

NST, rostral part SVA Taste sensation from the epiglottis and pharynx

NST, caudal part GVA Visceral sensory information from hypopharynx, larynx, cardiopulmonary

organs, organs of the digestive tract and aortic arch (baroreceptors and

chemoreceptors)

DMX GVE Parasympathetic innervations of abdominal and thoracic organs

NA, branchiomotor part SVE Visceral motor control of various skeletal muscles of the pharynx, larynx and

proximal esophagus

NA, external formation GVE a) Cardiac ganglia for cardiac inhibition

b) Pulmonary ganglia for airway size and secretion regulation

DMX: dorsal motor nucleus of the vagus nerve; GSA: general sensory afferent; GVA: general visceral afferents; GVE: general visceral efferents; NA:

nucleus ambiguus; NST: nucleus of the solitary tract; SVA: special visceral afferents; SVE: special visceral efferents; TSN: trigeminal spinal nucleus.
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that did not fulfill the inclusion criteria (i.e. reviews,
case reports, post-hoc analyses); b) articles written in
other languages than English, Dutch, German or
French; and c) articles that tested nVNS in animals.
A total of 254 articles were identified by the searches.
After removal of duplicates, 209 papers remained.
Each paper was reviewed using the inclusion and exclu-
sion criteria by at least two investigators (BD, MvD
and/or NV) independently. When in doubt, another
investigator (DH) was consulted. After exclusion, a
total of 12 articles remained that met the inclusion
criteria. From these papers, baseline characteristics,
studied disorder, study design, primary and secondary
outcomes and concluding remarks were extracted. The
methodology, results and conclusions of each paper
were assessed by two researchers independently
(BD, MvD, NV, and/or DH). The studied population

in the VNS review was described by means of the
provided tables; primary and secondary outcomes
were described in a narrative fashion. Two members
of the team (DH and BD) independently reviewed
each selected article for risk of bias using the
Cochrane criteria checklist (33,34). When no agreement
could be achieved between the two reviewers on the
quality of the trial, a third reviewer (KV) was used in
accordance with Cochrane methodology (33,34).
Assessing the risk of bias was performed by the criteria
presented in Table 2, following standardized instruc-
tions, which have been published before (34–37).
Types of biases assessed by these criteria included:
Selection bias (criteria 1, 2, 9), performance bias (cri-
teria 3, 4, 10, 11), attrition bias (criteria 6, 7), detection
(or measurement) bias (criteria 5, 12) and reporting
bias (criterion 8).

Table 2. Quality assessment of the individual trials.

Internal validity

Score QualityAuthors (Ref) 1 2 3 4 5 6 7 8 9 10 11 12

Goadsby et al. (2014) (38) � � � � � þ þ þ � þ þ þ 6 Moderate

Kinfe et al. (2015) (39) � � � � � þ þ þ þ þ þ þ 7 Moderate

Barbanti et al. (2015) (40) � � � � � þ þ þ þ þ þ þ 7 Moderate

Grazzi et al. (2015) (42) � � � � � þ þ þ þ þ þ þ 7 Moderate

Silberstein et al. (2016) (43) þ þ þ þ þ � þ þ þ þ þ þ 11 High

Grazzi et al. (2017) (22) � � � � � � þ þ þ þ � þ 5 Low

Tassorelli et al. (2018)* (41) þ þ þ þ þ þ þ þ þ þ þ þ 12 High

Nesbitt et al. (2015) (44) � � � � � þ þ þ � þ þ þ 6 Moderate

Gaul et al. (2016) (45) þ þ � � � þ þ þ þ þ þ þ 9 Moderate

Silberstein et al. (2016) (46) þ þ þ þ þ þ þ þ þ þ þ þ 12 High

Goadsby et al. (2017) (23) þ þ þ þ þ þ þ þ þ þ þ þ 12 High

Trimboli et al. (2017) (21) � � � � � � þ þ þ þ � þ 5 Low

Tso et al. (2017) (47) � � � � � � þ þ þ � þ þ 5 Low

1. Was the method of randomization adequate?

2. Was the treatment allocation concealed?

3. Was the patient blinded to the intervention?

4. Was the care provider blinded to the intervention?

5. Was the outcome assessor blinded to the intervention?

6. Was the dropout rate described and acceptable?

7. Were all randomized participants analyzed in the group to which they were allocated?

8. Are reports of the study free of suggestion of selective outcome reporting?

9. Were the groups similar at baseline regarding the most important prognostic indicators?

10. Were co-interventions avoided or similar?

11. Was the compliance acceptable in all groups?

12. Was the timing of the outcome assessment similar in all groups?

þ, criterion achieved; �, criterion not achieved; �, assessors initially disagreed.

High:> 75% of the criteria have been fulfilled (� 10/12). Where they have not been fulfilled, the conclusions of the study or review are thought very

unlikely to have been altered.

Moderate: 50–75% of the criteria have been fulfilled (6–9/12). Those criteria that have not been fulfilled or not adequately described are thought

unlikely to have altered the conclusions.

Low: Less than 50% of the checklist criteria were fulfilled (< 6/12). The conclusions of the study are thought likely or very likely to alter had those

criteria been fulfilled.
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Methodology for retrieval and assessment of
anatomical papers

Regarding the anatomical review, various anatomical
atlases and textbooks (31,32,38–42) were used to
create a preliminary overview of vagus nerve anatomy
and central connectivity. Thereafter, cross-referencing
was carried out in order to enrich the anatomical
results. PubMed, Medline, EMBASE and Google
Scholar were searched using: [Vagus Nerve]; [Dorsal
Motor Nucleus]; [Ambiguus Nucleus]; [Trigeminal
Spinal Nucleus]; [Nucleus of the Solitary Tract];
[Anatomy]; [Neural Pathways]; [Afferent Pathways];
and [Efferent Pathways]. Medical subject headings
were used to enrich the results. All searches were con-
ducted until July 2018. Inclusion criteria were: a)
Anatomy of the central portion of the vagus nerve
was discussed; b) studies implemented techniques like
tracing studies, dissections or neuroimaging; and c)
investigation was carried out in either humans or ani-
mals. Exclusion criteria were: a) Articles were other
than original research papers (i.e. reviews); b) articles
were written in other languages than English, Dutch,
German or French; c) articles investigated the periph-
eral portion of the vagus nerve; and d) articles investi-
gated the anatomy by use of computational modeling.
Each paper was reviewed using the inclusion and exclu-
sion criteria by two investigators (BD, MvD and/or
NV) independently. When in doubt, a third investigator
(DH) was consulted. A total of 507 articles were
retrieved, 358 of which remained after the removal of
duplicates. Finally, 94 anatomical papers could be
included based on the inclusion and exclusion criteria.
Each paper was assessed by two researchers independ-
ently (BD, MvD, NV and/or DH). Findings were
grouped per vagus nucleus, afferent pathway or efferent
pathway and presented narratively and summarized in
schematic figures.

Results

nVNS in primary headache disorders

Twelve clinical trials were included, representing a total
of 866 patients who underwent the treatments as defined
per protocol. Sex of the patients was reported in
836 cases (373 males; 44.6%). Primary headache dis-
orders that were treated with nVNS constituted migraine
(n¼ 469), cluster headache (n¼ 376), and other
trigeminal autonomic cephalgias, including hemicrania
continua (n¼ 13), paroxysmal hemicrania (n¼ 6) and
short-lasting unilateral neuralgiform headache attacks
with cranial autonomic symptoms (SUNA) (n¼ 2). In
episodic migraine, it was found that nVNS elicited a
significant pain reduction (22,43–47). One paper

described a significant reduction of the number of
headache days per month (44), although the number of
headache days or tolerability of the attacks were not
influenced by nVNS according to another paper (48).
nVNS also has been described as capable of reducing
the intake of rescue medication in cases of migraine
attack (23). In cluster headaches, nVNS improved the
mean overall condition of the patients (22,49), signifi-
cantly reduced weekly attack frequency (50) and induced
significantly higher pain-free rates with active nVNS
compared with sham nVNS (24,50,51). In hemicrania
continua, the majority of patients reported reduced
severity of continuous pain (22,52). A more modest,
but similar trend was observed in patients suffering
from paroxysmal hemicrania (52). Neither of the patients
suffering from SUNA benefited from nVNS therapy (22).
The quality assessment of the individual trials is provided
in Table 2. An extensive overview of the included papers
is given in Supplemental Tables 1 and 2.

Anatomical characteristics of the vagal central
connections

Central connections of the NST. The NST has been
reported to receive afferents from the vagus nerve, the
facial nerve, the trigeminal nerve and the glossopharyn-
geal nerve (53–55). Labeled fibers of the vagus nerve
could be traced bilaterally to the NST and ipsilaterally
to the external cuneate nucleus. However, the majority
of the fibers that headed to the external cuneate nucleus
continued and entered the solitary tract (56,57).
Projections from the NST terminated in the vagal preg-
anglionic motor neurons of the DMX and the NA
(58,59). A prominent projection traversed towards the
dorsomedial reticular formation and several medullary
nuclei (i.e. the dorsal medullary raphe nuclei (60), the
gigantocellular reticular nucleus and the paragiganto-
cellular nucleus (60,61)). From the NST, fibers were
observed to terminate in the dorsal or ventral part of
the dorsal raphe nuclei, the locus coeruleus (A6 nora-
drenergic cell groups) (61), the A1 and A5 noradrener-
gic cell groups (61–63), the dorsal medial medulla
(C3 adrenergic cell groups) (57), the lateral paragigan-
tocellular reticular nucleus (C1 adrenergic cell groups)
(61) and the medial and lateral parabrachial nuclei
(58,59,64,65). Together with the parabrachial nuclei,
the A1 and A5 catecholamine cell groups were reported
to receive input from the NST and together they are
believed to play a role as relay nuclei for sensory and
gustatory information, which is processed in different
areas of the forebrain. From the caudal part of the
NST, projections arise that travel to the vagal pregan-
glionic neurons in the DMX (66–68) and the NA
(58,59,63,69), the main sites of vagal motor neurons.
Each area that receives a direct projection from the
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NST, with the exception of the motor nuclei of the
cranial nerves V, VII, X and XII, projects back to the
DMX. In addition, projections have been described to
the motor nuclei of the trigeminal, the facial and the
hypoglossal nerves. These motor nuclei have an import-
ant role in the motor functions of the ingestive behavior
(63,65). Furthermore, the trigeminal sensory nucleus
complex (including the principal sensory nucleus and
the TSN) has connections with the NST (57).
Ipsilateral vestibular afferents were labeled and could
be traced via two different routes: a) Fibers that tra-
veled within the medial vestibular nucleus before
entering the NST (this route is known as the lateral
pathway), and b) fibers that traveled within the nucleus
prepositus hypoglossi to its caudal part, whereupon
they entered the NST (this route is known as the medial
pathway). Besides, labeled fibers from the caudal part
of the medial vestibular nucleus and the inferior ves-
tibular nucleus could be traced bilaterally to the NST
(70–72). Another tract originating from the NST occu-
pies a region known as the intermediate reticular zone
as it courses towards the intermediolateral nucleus (64).
Finally, there is a group of projections that ascend from
the NST to thalamic, hypothalamus and other limbic
regions (e.g. the midline thalamic nuclei (73,74), the bed
nucleus of the stria terminalis (59), the central nucleus
of the amygdala (59), lateral hypothalamic area (75),
paraventricular hypothalamic nucleus (59,63,76), the
arcuate nucleus (73) and the medial preoptic area
(75,77)). The aforementioned connections are depicted
in Figure 1.

Central connections of the NA. Afferents were reported to
terminate in the NA originate from the periaqueductal
grey (PAG), the cuneiform nuclei, the red nucleus and
the frontal cortex (78,79). Efferent projections to the
area postrema, the contralateral NA and the lateral
reticular formation were found (78–81). Furthermore,
connections to the medial parts of the medulla oblon-
gata and the parabrachial nuclei were described as well
(78,79). The aforementioned connections are depicted
in Figure 2.

Central connections of the TSN. The trigeminal connec-
tions have been described in depth in a recent review
by Henssen et al. (2016) (82). Afferents of the trigem-
inal, vagus, facial and glossopharyngeal nerves contrib-
ute to the trigeminal spinal tract and the TSN (53–55).
The TSN can be subdivided into three subnuclei: The
oral part, the interpolar part and the caudal part. The
efferents from the oral part of the TSN project mainly
to the contralateral thalamic subnuclei, the ventral pos-
teromedial nucleus (VPM) in particular, via the ventral
trigeminothalamic tract. However, the oral part of the
TSN was also observed to have projections to lamina

III and IV of the medullary dorsal horn (83). These
connections were found to contribute to a minor
ascending tract that terminates partially in the PAG.
This tract is named the intranuclear pathway and it
receives most of its input from the interpolar and
caudal parts of the TSN (83–85). The interpolar part
of the TSN also projects via the ventral trigeminotha-
lamic tract to the contralateral VPM85. Lastly, the
interpolar part of the TSN56, together with the caudal
part of the TSN and the principal sensory nucleus, is
known to have connections with the NST (54,57). The
caudal part is the most investigated subnucleus of the
TSN. The caudal part of the TSN was found to project
to the contralateral VPM mainly, although a bilateral
projection to the mediodorsal nucleus of the thalamus
was also reported. Furthermore, connections between
the principal sensory nucleus of the trigeminal nerve
and the caudal part of the TSN were observed (86).
The caudal part of the TSN was furthermore connected
to the VPM and dorsomedial region of the thalamus in
a bilateral fashion and to the contralateral posterior
nucleus of the thalamus (87,88). As stated, the TSN
contributes to the intranuclear pathway and therefore
has extensive connections with the PAG and the NST
(54,57,85). The aforementioned connections are
depicted in Figure 3.

Central connections of the DMX. Rogers et al. (1980)
reviewed afferent projections to the DMX in the late
20th century and described three major sources of affer-
ent input to the DMX: The NST, the magnocellular
paraventricular nucleus and several medullary nuclei
(89). Projections of the NST to the DMX have been
described by others as well (90,91). The paraventricular
nucleus, the magnocellular neurons in particular, has
been reported as a sprouting zone of a substantial
amount of fibers that terminate in the DMX in rats
(92). Concerning the medullary nuclei, the nucleus reti-
cularis and the nucleus gigantocellularis have been
shown to project to the DMX (89). Additionally, thyr-
otropin-releasing hormone-immunoreactive neurons
residing in the nucleus raphe pallidus, nucleus raphe
obscurus and the parapyramidal region of the ventral
medulla have been suggested to project to the DMX
and NST in rats (93). Furthermore, a fourth, minor,
afferent pathway has been described by Berk and
Finkelstein. They found that, in the pigeon, a minority
of afferents of the nucleus periventricularis magnocel-
lularis of the hypothalamus project to the ventral par-
vocellular subnucleus of the DMX (94). Zardetto-Smith
et al. also found evidence in 1988 for a dynorphinergic
innervation of the DMX by the perifornical nucleus,
another hypothalamic area believed to be involved in
the general arousal associated with emotive behaviours,
as dynorphin has been implicated in mediating a wide
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Figure 1. Schematic overview of the central projections of the NST. Latin numbers indicate cranial nerves or their corresponding

nuclei; color of the tract is consistent with the color of the nucleus/area it sprouts from.

AN: arcuate nucleus; A1: noradrenergic cell group in the adjacent to the lateral reticular nucleus and the medullary reticular forma-

tion; A5: noradrenergic cell group in the adjacent to the superior olivary complex in the pontine tegmentum; A6: noradrenergic cell

group that together forms the locus coeruleus; BNST: bed nucleus of stria terminalis; CN: cuneate nucleus; CNA: central nucleus of

amygdala; C3: adrenergic cell group in the dorsal midline of the rostral medulla; DMX: dorsal motor of X; GCRN: gigantocellular

reticular nucleus; LHA: lateral hypothalamic area; MPA: medial preoptic area; MRN: medullary raphe nuclei; MTN: Midline thalamic

nuclei; m.V: motor nucleus of V; m.VII: motor nucleus of VII; NA: nucleus ambiguus; NST: nucleus of the solitary tract; PBN:

parabrachial nucleus; PGCRN: para-gigantocellular reticular nucleus; PVH: paraventricular hypothalamic nucleus; TSN: trigeminal

spinal nucleus; VN: vestibular nuclei; VPSN: ventral principal sensory nucleus of V.

Henssen et al. 1185
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Figure 2. Schematic overview of the central projections of the NA. Latin numbers indicate cranial nerves or their corresponding

nuclei; color of the tract is consistent with the color of the nucleus/area it sprouts from.

AP: area postrema; CFN: cuneiform nucleus; LHA: lateral hypothalamic area; LRF: lateral reticular formation; NA: nucleus ambiguus;

NST: nucleus of the solitary tract; PAG: periaqueductal grey; PBN: parabrachial nucleus; PN: pontine nuclei; PRN: paramedian reticular

nucleus; PVH: paraventricular hypothalamic nucleus; RN: red nucleus.
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variety of behavioral and autonomic-related processes
including pain modulation (95). A fifth pathway was
described by Ter Horst et al. in 1991, as they found
projections of the locus coeruleus to the DMX in
medial and rostral levels (96). In addition, a sixth pro-
jection system has been described. The ventral descend-
ing pathway, sprouting from the infralimbic cortex in
the rat, projects to several autonomic cell groups in the
brainstem, including the DMX (97). Furthermore, in
1996 Ruggiero et al. found that vestibular afferents
reside in the NST and DMX (72). Earlier, in 1994,
Balaban et al. studied central connectivity of the ves-
tibular nuclei and found that some axons ended near

somata of DMX neurons (70). Finally, studies con-
ducted by Chiba et al. in 2001 and Kuipers et al. in
2006 found that the anterior cingulate cortex projects
to the DMX in a bilateral fashion (98,99). Studies that
investigated the morphological characteristics of the
efferents from the DMX show that, together with the
red nucleus, the DMX projects to the contralateral
hemicord via the dorsal part of the lateral funiculus
(100). In 1982, Zheng et al. investigated the DMX effer-
ents to the cerebellum in 70 cats, who had been injected
with horseradish peroxidase in all cerebellar cortical
lobules and cerebellar nuclei. Injections in the anterior
cerebellar lobe resulted in labeled neurons situated in

Thalamic nuclei
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Thalamic nuclei

Cerebellum
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VPSN
O
S
N
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Figure 3. Schematic overview of the central projections of the TSN. Latin numbers indicate cranial nerves or their corresponding

nuclei; color of the tract is consistent with the color of the nucleus/area it sprouts from.

CSN: caudal subnucleus of the trigeminal spinal nucleus; DPSN: dorsal part of the principal sensory nucleus; ISN: interpolar subnucleus

of the trigeminal spinal nucleus; NST: nucleus of the solitary tract; OSN: oral subnucleus of the trigeminal spinal nucleus; PAG:

periaqueductal grey; VPSN: ventral part of the principal sensory nucleus.

Henssen et al. 1187



the caudal half of the DMX. The cerebellar posterior
lobe received input from the rostral half of the DMX,
while the medial DMX projects to the vermal regions of
the cerebellum in both the anterior and posterior lobe.
In a few cases, labeling of the fastigial and anterior
interposed nucleus was found (101). Gastric moto-
neurons of the DMX possess numerous dendrites that
penetrate discrete regions of the adjacent NST. The
same study showed that a small number of DMX neu-
rons penetrated the ependyma of the fourth ventricle
(80). Moreover, the DMX has been shown to interact
with the area postrema via both afferents (80,102,103)
and efferents (80,104). The central nucleus of the amyg-
dala in the rat sends a considerable projection to, and
receives projections from, the parabrachial nucleus and
the dorsal vagal complex (DVC; constituents of the
DVC are the NST and the DMX) (105). In other ani-
mals, this amygdalofugal pathway has also been
described (106,107). Also, the posterior hypothalamic
area and mostly the lateral hypothalamic area in rats
have been shown to project to the DVC (95,108–110).
Manaker and Fogarty conducted a study in 1995 that
described raphespinal and reticulospinal neurons pro-
jecting to the DVC, while focusing primarily on NST
afferents (111). Finally, the rostroventrolateral medulla,
a brain structure known to be involved in cardiovascu-
lar regulation, has restricted terminal fields in the DVC
(96). The aforementioned connections are depicted
in Figure 4.

Discussion

The present review synthesized evidence suggesting that
nVNS can be beneficial in treating primary headache
disorders, migraine and episodic cluster headaches in
particular. Two level one studies on episodic and
chronic migraine showed effectiveness of nVNS as an
acute and prophylactic treatment option (46,48). In epi-
sodic cluster headache, on the other hand, only the
effectiveness of the acute treatment of nVNS was
reported in two level one studies (24,51). In addition,
results suggest that nVNS is a well-tolerated and safe
therapy. Nevertheless, the exact neural underpinnings
of nVNS remain largely elusive, though it has been sug-
gested that modulation of the central connections of the
vagus nerve are of importance in alleviating pain in
primary headache disorders. Therefore, the second
part of this study reviewed the central connections of
the vagus nerve. However, no original research papers
on this topic were found that included humans. In ani-
mals, extensive interconnections between the different
vagal nuclei have been described. Also, the TSN and
NST, the vagal nuclei that receive sensory and visceral
afferents, are the main sprouting areas for fibers that
course towards main parts of the neural pain matrix

directly or indirectly via other vagal nuclei. Moreover,
it has been described that vagal nerve fibers intertwine
with fibers from the trigeminal, facial, glossopharyngeal
and hypoglossal nerves within the trigeminal spinal
tract, forming a trigeminovagal complex.

Clinical relevance of findings

Several studies investigated the possible mechanisms
of action of nVNS in both animals and humans
(53–55,57,85,112–116). The results of the study of
Nonis et al. showed that nVNS in humans was capable
of activating vagal afferents as measured by electro-
physiological recordings, indicating that efficacy of
nVNS can be monitored in future trials (112). An exten-
sive body of literature provides evidence for the anti-
inflammatory effect of VNS (113), which may also play
a role in the mechanisms by which (n)VNS ameliorates
pain (114). Another mechanism of action includes
modulation of the trigeminal system by nVNS. In a
rat model of migraine-like headaches, nVNS affected
the levels of extracellular glutamate in the caudal part
of the TSN (115). Another study investigated the firing
rate of trigeminocervical neurons in rats treated with
nVNS. They suggested that nVNS may inhibit the firing
rates of trigeminocervical neurons directly or indirectly,
although the exact physiological mechanisms involved
remain elusive (116). Based on animal research, direct
and indirect connections of the trigeminal and vagal
nerves at the level of the brainstem are suggested to
be part of the pathways involved in headache pain
(53–55,57,85). It is therefore hypothesized that inhib-
ition of the firing pattern of the trigeminal neurons
occurs due to the existence of these reciprocal connec-
tions between the TSN and the NST, which may serve
as the main targets for afferent fiber tracts from the
vagus nerve (117,118). This was also in agreement
with the study of Frangos et al., which showed that,
next to other brain regions, the NTS and STN were
respectively activated and deactivated by nVNS (119).

Our review further contributes to elucidating the
working mechanism of nVNS in primary headache dis-
orders by synthesizing the evidence of the presence of a
trigeminovagal complex in the brainstem of a wide
range of animals. However, the existence of an anatom-
ically distinguishable trigeminovagal complex in
humans remains uncertain. Future research should
focus on imaging human neuroanatomy, especially of
the trigeminovagal complex. New, high-resolution ima-
ging techniques could contribute to revealing such
neuroanatomical pathways in humans. For example,
diffusion magnetic resonance imaging (dMRI) and trac-
tography have become well-known methods to study
white matter anatomy (120). To study white matter
architecture in even greater detail, an innovative
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technique called polarized light imaging microscopy
(121) might be a valuable asset to study the hypothe-
sized trigeminovagal complex in humans.

Strengths and limitations

This systematic review of the clinical studies on nVNS
reveals four level one studies in primary headache

disorders which are supplemented by numerous pro-
spective and retrospective reviews. There is heterogen-
eity in applied methodologies, disease states, duration
of headache and outcome measures. These aspects
make it more difficult to perform a single meta-analysis
on the results. One particular problem concerned the
higher than expected sham results with the sham device
in both the cluster headache and migraine studies.
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This suggests the possibility of a placebo effect
(46,122,123). Alternatively, we now know that in sev-
eral of these studies the sham was later determined to
be active stimulation, and thus there was no true inac-
tive device or sham stimulation (124). The methods that
we have used in this review strengthen our conclusion.
Another strength of this study concerns the combin-
ation of a systematic review on nVNS in primary head-
ache disorders with an anatomical review. By
combining both reviews, we aimed to contribute to
the elucidation of the underpinnings involved in this
clinical phenomenon. Therefore, based on the reviewed
evidence, we put forth two hypotheses. First, we
hypothesize the existence of a trigeminovagal complex
in humans. Second, we hypothesize the involvement of
this complex in nVNS to treat primary headache dis-
orders. Furthermore, the combination of anatomical
evidence, and the suggestions that come forth from

the clinical trials, can be regarded as a strength of this
paper. However, the complete absence of original
research on the central connections of the vagus nerve
in humans uncovers a remarkable imperfection in
knowledge of human neuroanatomy.

Conclusion

Based on the results from several clinical trials reviewed
in this paper, moderate effectiveness of nVNS in primary
headache disorders is suggested, although the heterogen-
eity of the included studies precludes the drawing of a
sound recommendation. Furthermore, the hypothesized
trigeminovagal complex in humans, similar to an ana-
tomical feature in the brainstems of various animal spe-
cies, could further elucidate the neural underpinnings of
nVNS in alleviating pain in primary headache disorders,
migraine and cluster headaches in particular.

Article highlights

. nVNS is a moderately effective, safe and well-tolerated therapy for migraine and cluster headache.

. In animals, connections between the trigeminal and vagus systems were found at the level of the brainstem.
These connections could contribute to the neural underpinnings of nVNS in primary headache disorders.

. The existence of a trigeminovagal complex remains elusive in humans.
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