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Abstract
Machine learning (ML) algorithms have found increasing utility in the medical imaging field and numerous applications in the
analysis of digital biomarkers within positron emission tomography (PET) imaging have emerged. Interest in the use of artificial
intelligence in PET imaging for the study of neurodegenerative diseases and oncology stems from the potential for such techniques
to streamline decision support for physicians providing early and accurate diagnosis and allowing personalized treatment regi-
mens. In this review, the use of ML to improve PET image acquisition and reconstruction is presented, along with an overview of
its applications in the analysis of PET images for the study of Alzheimer’s disease and oncology.
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Introduction

Machine learning (ML) algorithms have emerged as critical

infrastructure in the analysis of digital biomarkers within posi-

tron emission tomography (PET) imaging. The application of

ML to nuclear imaging is multidisciplinary in nature, drawing

upon expertise from the computer sciences, statistics, and the

physics and chemistry of nuclear imaging, in order to address

unmet challenges in the treatment of neurodegenerative dis-

eases and oncology. The number of publications that have

discussed the use of ML algorithms in PET has grown expo-

nentially in the past decade (Figure 1). The use of ML is espe-

cially prevalent in the field of radiomics, where advanced

algorithms analyze medical images and extract subtle features

that are diagnostic of disease.1–3 Large datasets of digital med-

ical information are particularly suitable toward these analysis

methods, although limited patient datasets have also been

applied to ML algorithms, typically in proof-of-principle type

studies. The use of artificial intelligence in the study of neuro-

degenerative diseases and oncology has the potential to signif-

icantly reduce the time required for radiologists to interpret

PET scans and provide decision support to physicians diagnos-

ing patients and selecting personalized treatment regimens.

Despite their well-recognized utility, several challenges of

ML algorithms must be considered prior to their successful

implementation in PET image analyses.4–7

This review presents an overview of the recent applications

of ML in the areas of Alzheimer’s disease (AD) and oncology,

as well as its utility in improving the acquisition and recon-

struction of PET images. Given that several review articles are

available regarding the use of ML in the diagnosis and prog-

nosis of AD,8 as well as in oncology,9 this article primarily

focuses on surveying selected recent work.10 Electronic search

results from the PubMed database used a combination of the

search terms “Deep Learning OR Machine Learning OR Arti-

ficial Intelligence AND PET”. No start time was used, articles

were however selected for review up until which point it super-

imposed with previous reviews. Search results were extended

up until April 1, 2019. Additional relevant articles were

selected manually using the cited references from the articles

that appeared in the search results. Inclusion criteria included

research articles or abstracts that incorporated ML into any
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aspect of PET imaging acquisition and analysis. Exclusion

criteria included articles not in English and those not fully

available. A total of 43 articles were included for this review.

Furthermore, readers interested in a tutorial on the fundamental

principles of ML are directed toward a recent article by Uribe

et al.,11 as it is covered only briefly in this review.

Principles of ML

Machine learning algorithms may be categorized as either

supervised or unsupervised, both of which have been

described in detail elsewhere.9,11 Briefly, supervised learning

involves a data set being provided to an algorithm, or neural

network, which then aims to find a mathematical function that

can map the input data into output labels, ultimately mapping

the connection between a given set of input variables and the

desired output parameters (Figure 2A). Thus, the algorithm

must be provided with an appropriate and representative

design space to generate adequate classification and predic-

tive capabilities.12 The ML algorithms employed in PET ima-

ging studies typically perform supervised learning using

artificial neural networks (ANNs)—wherein convolutional

neural networks (CNNs) have become an increasingly popular

subset—as well as random forests.11 In unsupervised learn-

ing, an algorithm is applied to a data set for which the output

is unknown. A common goal for unsupervised algorithms is to

find commonalities within a data set, for instance, differen-

tiating between a disease and non-disease state for which no

prior knowledge has been provided (Figure 2B). A common

unsupervised algorithm involves data clustering, including

K-means clustering and hierarchical clustering, as previously

described.11

Standardized radiomic datasets are required for the success-

ful implementation of ML algorithms. In recent years, publicly

available standardized databases of PET brain scans of patients

with AD have been compiled with databases such as the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI), the Harvard

Aging Brain Study (HABS), Australian Imaging, Biomarker &

Lifestyle Flagship Study of Aging (AIBL), the Dominantly

Inherited Alzheimer’s Network (DIAN), Biomarkers for Iden-

tifying Neurodegenerative Disorders Early and Reliably (Bio-

FINDER), Development of Screening Guidelines and Criteria

for Predementia Alzheimer’s Disease (DESCRIPA), and Ima-

ging Dementia—Evidence for Amyloid Scanning (IDEAS).

Many of these databases have been made publicly available

from multicenter clinical trials in patients ranging from cogni-

tively normal to AD, using predominantly [18F]fluorodeoxy-

glucose ([18F]FDG) to image glucose metabolism, as well as

amyloid plaque imaging agents, namely [11C]Pittsburgh com-

pound B ([11C]PiB) and the FDA-approved radiotracers Amy-

vid ([18F]florbetapir or [18F]FBP), Neuraceq ([18F]florbetaben

or [18F]FBB), and Vizamyl ([18F]flutemetamol or

[18F]FLUT).13 As with the AD datasets, the most common

radiotracer in oncology is [18F]FDG; however, there are far

fewer large PET scan databases in oncology. Two of note are

the Web-Based Imaging Diagnosis by Expert Network

(WIDEN) and The Cancer Imaging Archive (TCIA), both of

which continue to grow with ongoing contributions which

should ultimately lead to an increase in studies involving ML

in oncology.14–16

Improving PET Acquisition
and Reconstruction With ML

Photon Attenuation Correction

Photon attenuation, defined as the loss of photon flux intensity

through a medium, remains a significant challenge when

obtaining high-resolution PET images. Attenuation is typically

due to unavoidable factors such as interaction of the photon

within the body tissue prior to detection. This oftentimes results

in the loss of image resolution, formation of artifacts, and dis-

tortion of images, and is particularly a problem for larger indi-

viduals. Attempts to correct for attenuation are done so on an

individualized basis via the generation of attenuation maps,

which occur during the image processing stage of the data after

it has been collected. Attenuation maps are most accurately

generated using scaling from the images of an accompanying

computed tomography (CT) scan as this can account for the

attenuation caused by bone. This is not possible from magnetic

resonance (MR) scans due to the lack of signal contrast

between bone and air.17 Accurate attenuation maps are thus

challenging to obtain for PET/MR scans or PET imaged alone,

as a direct measure of photon attenuation is not recorded. An

inaccurate MR-based attenuation correction (MR-AC) may

also result in large underestimations of radiotracer quantity in

patients with cancer, depending on the proximity of the tumors

to bone.18,19 As the use of CT may also not be appropriate for

all individuals, for instance, with pediatric patients, recent stud-

ies have utilized ML algorithms to address the issue of attenua-

tion correction (AC), with the aim of obtaining accurate

attenuation maps from solely PET/MR data or PET alone as

the input modalities.20–22

Figure 1. Number of publications in PubMed per year (from January
1995 to April 2019) using the keywords “deep learning” or “machine
learning” and “PET”.
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Liu et al. recently developed an ML algorithm (named dee-

pAC) to automate the PET image AC process without input

from a separate anatomical image such as CT.21 The model was

first trained using [18F]FDG PET/CT datasets. This subse-

quently allowed for the generation and optimization of con-

tinuously valued “pseudo-CT” images solely from the

uncorrected [18F]FDG images that were used to generate the

attenuation map. The resulting attenuation-corrected [18F]FDG

image generated by deepAC was found to be quantitatively

accurate with average errors of less than 1%. Similarly, Lade-

foged et al.22 implemented an ML method for PET/MR-AC

(named DeepUTE) designed for children with suspected brain

tumors. Using an AC method derived from CT (CT-AC) ser-

ving as reference standard, the authors evaluated the DeepUTE

method relative to the results of an MR-derived AC method

termed RESOLUTE, which had been previously reported by

the same investigators.23 The authors found that while the AC

generated from both the RESOLUTE and DeepUTE methods

reproduced the CT-AC reference to a clinically acceptable pre-

cision, DeepUTE more robustly reproduced the standard on

both qualitative inspection and quantitative evaluation.

Obtaining an accurate AC for PET images of other regions

of the body (whole-body AC) has limited accuracy and is con-

sidered more challenging than those for PET images of the

brain. Whereas brain images utilize templates/atlases to pro-

vide a generic reference standard with which to compare, such

templates are not available nor practical for whole-body PET

scans. Torrado-Carvajal et al. proposed a Dixon-VIBE (Volu-

metric Interpolated Breath-Hold Examination) ML algorithm

(named DIVIDE) to help produce pseudo-CT maps of the pel-

vis based only on standard Dixon-VIBE MR images.24 The

ability to map between a CT and MR image slice allows for

a more accurate AC to be generated from MR data, thus offer-

ing an alternative method to produce an accurate AC for

Figure 2. Schematic representations of ML algorithms tasked to differentiate individuals diagnosed with AD from HCs. A, An illustration of
supervised learning. The ML algorithm would be provided with a cross-sectional data set of PET brain images that contain examples of all
subgroups, and be told in advance of the classification, so as to learn the distinguishing features. The appropriately mapped algorithm would
ideally be able to provide a classification of AD or HC, provided the image is within the design space in which it learned. B, An illustration of
unsupervised learning. The ML algorithm would be provided with a cross-sectional data set of PET brain images, but not be told in advance of the
classification. The ML algorithm would then find commonalities so as to cluster the data into homogeneous subgroups. AD indicates Alzheimer’s
disease; HCs, healthy controls; ML, machine learning; PET, positron emission tomography.
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combined PET/MR scanners. Hwang et al. similarly developed

a new ML CNN-based approach using whole-body [18F]FDG

PET/CT scan data of patients with cancer (n¼ 100) for training

and testing.25 The method utilized the maximum likelihood

reconstruction of activity and attenuation algorithm as inputs

to produce a CT-derived attenuation map and compared the

resulting AC to those obtained using Dixon-MR images, using

the CT-AC as reference standard. The method produced less

noisy attenuation maps and achieved better bone identification

for whole-body PET/MR studies relative to the Dixon-based 4-

segment method currently used. Bradshaw et al. also evaluated

the feasibility of a 3-D CNN (deepMRAC) to produce MR-AC

from combined PET/MR images of the pelvis for patients with

cervical cancer.26 DeepMRAC was trained using reference CT

image data in order to simulate a pseudo-CT that discretized

different tissue zones (fat/water, bone, and air) and served to

produce a CT-based AC from PET/MR data. The results

showed that the distribution of errors for the standardized

uptake value (SUV) of cervical cancer lesions was significantly

narrower using the ML-based MR-AC compared to the stan-

dard Dixon-based MR-AC method.26

PET Image Reconstruction

Several techniques currently exist to reconstruct PET images

from tomographic PET sinogram data. Conventional

approaches include analytical filtered back projection and

iterative maximum likelihood methods like maximum likeli-

hood expectation maximization (MLEM) and ordered subset

expectation maximization (OSEM). Häggström et al. devel-

oped a convolutional encoder–decoder network, named Deep-

PET, which served to produce quantitative PET images using

sinogram data as input.27 DeepPET was found to produce

higher quality images relative to the filtered back projection

and OSEM methods based on such metrics as relative root

mean squared error (lower by 53% and 11%, respectively),

structural similarity index (higher by 11% and 1%, respec-

tively), and peak signal to noise ratio (higher by 3.8 and 1.1

dB, respectively). DeepPET also produced images 3 and 108

times faster than filtered back projection and OSEM methods,

respectively, hence demonstrating a reduction in the computa-

tional cost for image reconstruction.

Artificial neural networks have also been used at the PET

image reconstruction stage to improve the resolution of the

PET images generated from the raw datasets. Conventional

reconstruction methods such as the iterative expectation max-

imization algorithm lead to increased noise. Alternatively,

maximum a posteriori (MAP) estimates reduce divergence at

higher iterations, but total variation MAP (TV-MAP) image

reconstruction may lead to blurring. Yang et al. proposed a

patch-based image enhancement scheme, using an ANN model

called multilayer perception (MLP) with backpropagation to

enhance the MAP reconstructed PET images.28 The MLP

model was trained using image patches that were reconstructed

using the MAP algorithm. The MLP method produced images

with reduced noise compared to MAP reconstruction

algorithm, resulting in a reduction in size of the unachievable

region. Similarly, Tang et al. employed dictionary learning

(DL)-based sparse signal representation for MAP reconstructed

PET images.29 The employed DL-MAP algorithm trained on

the corresponding PET/MR structural images, and the results

were compared to those from conventional MAP, TV-MAP,

and patch-based algorithms. The DL-MAP algorithm produced

images with improved bias and contrast, with comparable noise

to those produced using other MAP algorithms. Liu et al.

recently developed an image reconstruction algorithm using

ML neural networks, consisting of 3 modified U-Nets (3U-

Net), to improve the signal to noise ratio of PET images

obtained from multimodal PET/MR image data, without the

need for a high-dose PET image. The 3U-Net model using

PET/MR data as input produced a reconstructed PET image

with improved signal to noise ratio relative to those using PET

input data alone or PET/MR in a 1U-Net model.30

Spatial Normalization

Spatial normalization (SN) of brain images, namely, the for-

matting of brain images (initially in pre-normalized or native

space) into a standard anatomical space such as Talairach or

MNI coordinates, aids greatly in the standardization of PET

brain images. The activity within specific pre-defined regions

of a PET image upon conversion to a standard anatomical space

may be quantified more reliably relative to an image analyzed

in native space. Accurate SN of brain PET images is most

reliably carried out using the data from accompanying MR

scans; hence, obtaining an accurate SN of amyloid PET images

without MR remains a challenge. Kang et al. trained 2 CNNs:

convolutional autoencoder and generative adversarial network,

using a patient dataset (n ¼ 681) of simultaneously acquired

[11C]PiB PET/MR scans of individuals with AD, mild cogni-

tive impairment (MCI), and healthy controls (HCs).31 The

training regimen produced a spatially normalized PET image,

given the transformation parameters obtained by the SN gen-

erated from the accompanying MR data. As a result, given an

inputted PET image in native space, the neural network was

able to generate an individually adaptive amyloid PET tem-

plate to achieve accurate SN without the use of MR data. The

ML method was found to reduce the SN error relative to when

an average amyloid PET template is used.

Ultralow Dosage for PET Scans

Although radiotracer dosage requirements during a standard

PET or PET/CT image acquisition would not be expected to

impart a pharmacological effect on the patient, there has been

growing concern regarding the accompanying radioactivity

exposure.32 As such, it may at times be desirable to carry out

PET imaging using a reduced dosage of radiotracer, particu-

larly in instances where a full dose may not be appropriate,

such as with younger populations. The ability to carry out a

low-dosage PET scan would also greatly expand the scope of

synthetic strategies currently used for radiotracer development.
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This is particularly true for 11C-labeled tracers, where the rel-

atively short half-life (t1/2 ¼ 20.3 minutes) prohibits the use of

many conventional organic synthesis techniques that could oth-

erwise be utilized for radiotracer preparation. Low-dose PET

images are inherently noisy, however, which makes it difficult

to draw qualitative and/or quantitative conclusions from the

data. To this end, efforts have been made to develop ML meth-

ods that would allow reduced radiotracer quantities for PET/

MR imaging without sacrificing the diagnostic quality of the

image. The application of ML algorithms to address this chal-

lenge simulates a low dose by a fraction (ca. 1 - 25%) of

acquired PET data from a full-dose image. The ML method

then predicts the images of a full-dose using only the low-

dosage data as the input.

Chen et al. analyzed one one-hundredth of acquired PET

data scans—roughly the radiation exposure equivalent of a

transcontinental flight—using the amyloid tracer Neuraceq

from simultaneously acquired PET/MR imaging modalities,

hence simulating a low-dosage acquisition while still using the

full MR data set.33 ML methods were then utilized to predict

the full-dose PET image, using the experimental PET/MR as

reference standard. The simulated full-dose PET image was

found to satisfactorily reproduce the experimentally acquired

full-dose image. Similarly, Yang et al. developed a shallow

ANN, which served as a learning-based denoising scheme,

using image patches from PET scans from 5 individuals as the

sample data, and the synaptic vesicle glycoprotein 2A radio-

tracer, [11C]UCB-J.34 The authors used an MAP reconstruction

algorithm as a learning-based denoising scheme to process 3-D

image patches from reduced-count PET images, thereby pro-

ducing simulated full-count reconstruction image patches from

the reduced-count data.

Xiang et al. used a CNN model that was adapted to use both

low-dose PET (ca. 25% of a full dose) and MR image data as

input modalities.35 In order to simulate a full-dose PET image,

the algorithm was developed to map the connection between

the inputs and the full-dose PET data. The simulated image was

further refined by integrating multiple CNN modules following

an auto-context strategy, thereby generating a full-dose PET

image that was of competitive quality with previously reported

simulation algorithms but requiring only ca. 2 seconds of pro-

cessing time, as opposed to other simulation schemes that

required 16 minutes. Similarly, Kaplan et al. created a residual

CNN model to estimate a full-dose equivalent PET body image

using one-tenth of the input data.36 Particular care was taken in

the ML model to preserve edge and structural features in the

image by accounting for them during training. The body image

was divided into different regions (for instance, brain, heart,

liver, and pelvis) and training the model for each region was

done so separately, while a low-pass filter was used to denoise

the low-dose PET image scans while preserving important

structural details. The algorithm produced significantly

improved image qualities relative to the input low-dose PET

image slice data, generating images that were comparable in

quality to the full-dose image slices.

The potential use of ultralow-dose [18F]FDG in the auto-

mated detection of lung cancer with an ML algorithm has also

been studied.37 An ANN, trained to discriminate patients with

lung cancer from HC, was first assessed data from 3936 PET

slices exported from images with and without lung tumors.

Three separate reconstructions of the data were performed

using the standard clinical effective dose (3.74 mSv) relative

to simulated low dosages: a 10-fold (0.37 mSv) and 30-fold

(0.11 mSv) reduction of the standard effective dose. The inves-

tigators report high sensitivity, 91.5%, and high specificity,

94.2%, with the ultralow dose (0.11 mSv), suggesting that

applying ML to PET data enables the use of ultralow doses.37

Machine Learning PET Analysis:
Applications in AD

Early Diagnosis of AD

PET has become an essential diagnostic tool in AD to improve

diagnosis, monitor disease progression, and select patients for

clinical trials.38,39 Big data and artificial intelligence methodol-

ogy has been applied to analyze PET images to help differenti-

ate and predict individuals with MCI who will eventually

progress to AD from those who will not.8 [18F]FDG has been

shown to illustrate the decline in regional cerebral glucose

metabolism related to AD prior to the onset of structural

changes, allowing for an earlier diagnosis relative to clinical

evaluation.40 Ding et al. developed an ML model to predict the

future clinical diagnosis of AD, MCI, or neither, from [18F]FDG

imaging data made available via the ADNI database (n ¼
1002).41 The authors created a CNN of Inception V3 architec-

ture, which was trained on 90% of the data set, while the

remaining data set was tested to evaluate the predictive power

of the model. The authors were able to demonstrate that the ML

algorithm was able to achieve 100% sensitivity at predicting the

final clinical diagnosis in the independent test set, an average of

75.8 months (6.3 years) prior to final diagnosis. Lu et al. devel-

oped a single-modality ML algorithm using [18F]FDG images

of patients (n ¼ 1051; data obtained from the ADNI database)

with AD, stable MCI (sMCI), progressive MCI (pMCI) or HC,

for training and evaluation.42 The method was able to identify

patients with MCI who would later develop AD to an accuracy

of 82.51%, thus differentiating between those who exhibited

nonprogressive sMCI (median follow-up time of 3 years).

Similarly, Lu et al. developed an ML algorithm for the early

diagnosis of AD using multimodal [18F]FDG PET/MR and

multiscale deep neural networks.43 The new method first seg-

ments the brain image into cortical and subcortical gray matter

compartments prior to subdividing each into image patches of

hierarchical size, hence extracting features at coarse-to-fine

structural scales and preserving structural and metabolism

information. The method obtains 82.4% accuracy in identifying

individuals with MCI who will convert to AD 3 years prior to

conversion, in addition to 94.23% sensitivity in classifying

individuals with a clinical diagnosis of probable AD. Choi and

Jin developed a CNN that, as opposed to feature-based

Duffy et al 5



quantification approaches, did not require a preprocessing of

the images such as SN or manually defined feature extraction

prior to analysis.44 Data obtained from the ADNI database were

used to train and test the CNN model and were comprised of

[18F]FDG and Amyvid scans from 492 patients. A prediction

accuracy of 84.2% for the conversion of MCI to AD was

obtained, outperforming conventional feature-based quantifi-

cation approaches.

In addition to the use of supervised ML algorithms in long-

itudinal studies, recent examples have emerged of unsuper-

vised algorithms aimed to predict disease trajectory in

patients clinically diagnosed with MCI. Gamberger et al.

employed a multilayer clustering algorithm that identified 2

homogeneous subgroups of patients as rapid decliners

(n ¼ 240) and slow decliners (n ¼ 184), from a well-

characterized data set ([18F]FDG PET/MR and Amyvid PET/

MR scans, including follow-up scans after 5 years) of 562

patients with late MCI obtained from the ADNI database.45 A

combination of the Alzheimer’s Disease Assessment Scale–

Cognitive subscales 11 and 13 (ADAS-cog-11 and ADAS-

cog-13) was then identified as classifiers that best correlated

with and predicted the rapid decline in the patients with MCI.

Classification of AD

Automated classification of AD has shown promise with ML

algorithms that have been trained to use the data from PET

brain images to accurately differentiate between individuals

who have been clinically diagnosed with AD and MCI from

those of HCs.8 Such models typically identify the patterns and

extract the discriminate features related to AD and MCI that

distinguish it from other groups. Data from PET images have

also been combined with those of accompanying voxel-wise

gray matter density maps obtained from MR, which is also

informative of the onset of AD.43 The use of these models may

prove useful for untrained individuals in aiding with diagnosis,

potentially reducing the cost and time lines for clinical trials of

novel treatments.

Conventional classification algorithms first segment the

PET brain image into various regions of interest (ROIs), which

may ignore some minor abnormal changes in the brain relevant

to AD diagnosis. Liu et al. proposed a 3-D PET image classi-

fication method based on a combination of 2-D CNNs and

recurrent neural networks (RNNs), which learns the structural

features used for classification of AD diagnosis upon partition-

ing the 3-D image into a set of 2-D image slices.46 The 2-D

CNN model was trained on the features within each 2-D image

slice, while the RNN was trained to pull out the features

between slices. When evaluated on a set of [18F]FDG images

(n ¼ 339), the model exhibited a classification performance of

95.3% for AD versus HCs, while 83.9% performance was

obtained when differentiating between individuals exhibiting

MCI versus HC. Alternatively, Liu et al. also proposed a CNN

classification algorithm that is a construct of multiple 3-D-

CNNs used on different local 3-D image patches from multiple

modalities such as PET and MR.47 The CNN translates each

image patch into discriminative features, after which a high-

level 2-D CNN collects the high-level features that were

learned. The model can automatically learn discriminatory

multilevel and multimodal features, is somewhat robust to

scale and rotation variations, and does not require segmentation

of the image in preprocessing the brain images. Evaluation of

the method finds that it achieves a 93.26% accuracy rate for the

classification of AD versus HC and 82.95% for differentiating

between HC and pMCI diagnosed patients. Furthermore, Zhou

et al. developed a novel deep neural network to identify AD

that incorporated a 3-stage effective feature learning and fusion

framework while using both genetic input data such as single

nucleotide polymorphism, a predictor of AD risk, in addition to

imaging modalities like PET and MR.48 The ML method incor-

porates a flexible architecture to be able to learn from hetero-

geneous datasets with differences in sample size and

distributions. The method, when evaluated for AD diagnosis

using PET/MR images from the ADNI database (n ¼ 805),

exhibited better classification performance relative to the base-

line method as well as other previously reported methods.

Conventional methods for the automated quantification of b-

amyloid in PET brain images have used composite standardized

uptake value ratios (SUVr), the data of which are more variable

in longitudinal studies. Gunn and coworkers recently concluded

that b-amyloid accumulation in AD progression is the result of

heterogeneous regional carrying capacities and can be mathe-

matically modeled using a logistic growth equation.49 From the

logistic growth equation, a new biomarker can be derived, called

amyloid load (AbL) to quantify b-amyloid levels. Algorithms to

determine AbL from b-amyloid scans and assist in the classifi-

cation of AD from PET images of the brain have been branded

as software called AmyloidIQ. From a test sample of 769 Amy-

vid scans obtained from the ADNI database, AmyloidIQ demon-

strated a 46% increase in mean difference in effect sizes for AbL

relative to composite SUVr quantification. An equivalent

increase in effect size was found for longitudinal data, assessing

patients who had a follow-up PET scan after 2 years.50 The

authors envision that providing expert knowledge as commer-

cially available software would allow clinical trials to run more

efficiently by decreasing trial size, timelines, and cost.

Subsequently, the same authors developed an algorithm,

named TauIQ, that was able to partition a Tau PET image into

3 regions: background nonspecific, global (TauL), and local

Tau accumulation, thereby providing quantification data on

both global and local tau deposition.51 Images from 234

patients obtained from the ADNI database were analyzed, each

with [18F]flortaucipir (Tau tracer), Amyvid (b-amyloid tracer),

and MR image data. The Amyvid scans were first analyzed

using AmyloidIQ to derive the patient-specific point of disease

progression prior to use of the TauIQ algorithm.

Machine Learning PET Analysis: Applications
in Oncology

In oncology, PET imaging datasets that are employed in ML

are typically performed at a single facility, so investigators may
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not follow standardized guidelines for comparison to datasets

from other PET imaging facilities. Multicentered clinical trials

require standardized acquisition and reporting of scans, thereby

creating an opportunity to apply ML to the large datasets being

generated. A tool for image exchange and review was devel-

oped called WIDEN for the purpose of performing a multi-

center clinical trial for monitoring and tailoring treatment of

Hodgkin’s lymphoma with real-time review of images of PET/

CT scans.52 Interestingly, despite being based on scans col-

lected to study patients with lymphoma, the scans can be used

in ML associated with other clinical situations. For example, an

algorithm was developed and applied to 650 PET scans that

were available through WIDEN for the purpose of automati-

cally identifying and extracting the average SUV of the liver to

allow for automatic assessment of image quality or quickly

identifying acquisition problems. The proposed model,

LIDEA, was able to identify the liver and quantify the SUV

with 97.3% sensitivity, with a 98.9% correct detection rate

when co-registered with CT scans.14 Oncologic PET scans

have also been made available through TCIA, which has accu-

mulated datasets from various imaging modalities.15 PET

tomography imaging datasets are being contributed to TCIA,

which should ultimately lead to an increase in studies involving

ML in oncology.16

Accurate tumor delineation and segmentation is critical in

diagnosis and staging of cancer. ML algorithms for automatic

delineation and segmentation of tumor volumes could remove

operator variability and provide fast decision support for phy-

sicians in radiotherapy planning for patients with cancer and

can be used for patient stratification and predicting patient

outcomes. Tumor delineation defines the gross tumor volume

(GTV) and metabolic tumor volume (MTV), which are con-

sidered global measurements and do not convey spatial infor-

mation of the ROI; these are known as first-order radiomic

features. Tumor segmentation defines different regions within

the tumor microenvironment that arise from differences in

characteristics such as vascularization, cell proliferation, and

necrosis.53 This involves second-order radiomic features, or

textural features, which provide information on the spatial

relationships between intensities �2 voxels caused by hetero-

geneous radiotracer distribution.54 Heterogeneity of the tumor

microenvironment can be captured by textural features from

various imaging modalities to illustrate tumor characteristics

that may contribute to poor prognosis or treatment response.55

The utility of radiomic feature analysis from [18F]FDG ima-

ging in providing physicians with decision support in plan-

ning treatment regimens for patients with cancer has been

shown in a number of studies.56–60 Manual tumor delineation

and segmentation are performed by highly trained experts, yet

are time-consuming and open to subjectivity. A point of con-

cern arises in that there is great variability in the analysis of

textural features that arises from different acquisition modes

and reconstruction parameters.61 Indeed, one study showed

that variation in SUV determination methodology signifi-

cantly altered the results of textural analysis in [18F]FDG

imaging; this stresses the importance of standard protocols

for the acquisition and reconstruction of PET images.62

Berthon et al. used an automatic decision tree-based learn-

ing algorithm for advanced image segmentation (ATLAAS) to

develop a predictive segmentation model that includes 9 dif-

ferent auto-segmentation methods and automatically selects

and applies the most accurate of these methods based on the

tumor traits extracted from the PET scans.63 An ATLAAS has

also been successfully used for tumor delineation by automat-

ically determining GTV in patients with head and neck can-

cer.64 Another study demonstrated automatic tumor delineation

with an ML method applied to a deep CNN could automatically

define GTV in patients with head and neck cancer.65 Blanc-

Durand et al. developed an automatic detection and segmenta-

tion method using PET scans from patients with glioma with a

full 3-D automated approach using a U-Net CNN architec-

ture.66 The radiotracer used in this study was [18F]fluoroethyl-

tyrosine ([18F]FET), an amino acid radiotracer that may be

appropriate in the diagnosis of brain tumors since it exhibits

lower normal brain uptake, which leads to lower back-

ground.67 The investigators reported 100% sensitivity and

specificity for tumor detection, having no false positives,

while the segmentation resulted in relatively high perfor-

mance which may be improved with a larger data set applied

to algorithm training. The authors further studied [18F]FET in

patients with glioma applying unsupervised learning by K-

means clustering for the automatic clustering of tumor voxels

to examine radiomic features associated with disease progres-

sion and patient survival.68

Studies have shown the potential for the application of ML

to study textural features, using CNNs and 3-D CNNs to clas-

sify nodal metastases in various cancers.69–72 The ability for

ML to predict patient outcomes has been demonstrated with

Hodgkin’s lymphoma, where radiomic features extracted

from the mediastinal region were highly predictive of refrac-

tory disease, while features extracted from other regions of the

body were not.73 Two different studies using ML with a CNN

applied to textural features of [18F]FDG scans were able to

predict the response of patients with esophageal cancer to

chemotherapy with high sensitivity and specificity.74,75 Kir-

ienko et al. developed an algorithm composed of 2 networks,

one as the feature “extractor” and another as a “classifier,” and

provided evidence that their method could correctly classify

patients with lung cancer based on TNM classification (tumor

extent, lymph node involvement, and presence of metas-

tases).72,76 In addition to supervised ML algorithms, unsuper-

vised learning has been applied to textural features. One study

examined [18F]FDG textural features that would reflect dif-

ferent histological architectures in patients with different cer-

vical cancer subtypes.77 The authors applied a hierarchical

clustering algorithm to their data set examining features

including first-order SUV and MTV, as well as second-order

radiomic features, and concluded that their approach has

implications for personalized medicine and prognostic

models.77
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Summary and Outlook

The applications of ML algorithms in the medical field have

developed substantially in recent years, coinciding with the

increase in the computing power of modern-day processors.

This narrative review provided an overview of the potential

applications of ML algorithms in the various aspects of PET

imaging, highlighting several areas that have seen, and will

continue to see, benefits from their use. For instance, ML algo-

rithms have found applications in providing accurate SN of

PET images, which aids in the classification process of AD.

ML algorithms have also aided in the processing stages of PET

imaging, primarily with respect to image reconstruction and

AC, thereby obtaining a higher resolution and a more accurate

PET image that further aids the physician in making informed

medical decisions based on the PET data. Furthermore, ML

algorithms have been utilized to help produce satisfactory PET

images while reducing the quantity of ionizing radiation that

the patient experiences, either by predicting PET images with

the spatial resolution of a standard dose of radiotracer while

using the data from a lowered dose or by producing accurate

AC for PET or PET/MR without the need for an accompanying

CT scan. Predictive and classification software, for instance, in

the early diagnosis of AD or in cancer stratification and prognosis,

will provide fast decision support for physicians diagnosing

patients and selecting the most effective treatment for individuals.

There are currently 4 oncologic clinical trials that are applying

ML to PET images for characterization or predicting response to

treatment (ClinicalTrials.gov identifiers NCT00330109,

NCT03594760, NCT03574454, NCT03517306), suggesting

this to be a growing area of research. As with most new tech-

nologies, the successful implementation of ML algorithms also

comes with limitations: namely, the utility of the ML algorithm

is restricted by the scope and breadth of the data set with which it

was provided for training. Hence, although the availability of

publicly available datasets such as ADNI has promoted the

development of many of the ML algorithms discussed in this

article, it is important that such algorithms be cross-validated

with other datasets to ensure general applicability prior to their

introduction to a wider population.7 With the potential to sup-

port the patient diagnosis process—thereby improving persona-

lized treatment regimens—as well as its beneficial impact on

PET imaging protocols, the current applications of ML algo-

rithms in PET, as surveyed by this article, provide a platform

for an exciting frontier with the potential to hugely impact the

outcomes of patients with cancer and/or neurodegenerative

diseases.

It is envisioned that ML algorithms will complement the

innovations that will drive the future of molecular imaging,

including miniaturization and mobile technologies such as

wearable helmet PET scanners78 and mini-cyclotrons (ABT

Molecular Imaging Inc; USA). Many of these inventions would

be further promoted by the practical utility of ultralow tracer

dosages, enabled by the use of ML algorithms. Such technol-

ogies will likely make PET more accessible to a larger subset of

the general population, thereby producing even larger datasets

and necessitating the need for ML algorithms to perform anal-

ysis. Such examples are just some of the potential applications

of ML algorithms as the future of healthcare moves toward

precision health.79
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