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ABSTRACT

The Gene Set Enrichment Analysis (GSEA) identifies
sets of genes that are differentially regulated in one
direction. Many homeostatic systems will include
one limb that is upregulated in response to a
downregulation of another limb and vice versa.
Such patterns are poorly captured by the standard
formulation of GSEA. We describe a technique to
identify groups of genes (which sometimes can be
pathways) that include both up- and down-regulated
components. This approach lends insights into the
feedback mechanisms that may operate, especially
when integrated with protein interaction databases.

INTRODUCTION

The Gene Set Enrichment Analysis (GSEA) (1) is a powerful
technique for elucidating various groups of genes that may be
important from gene expression data (2,3). However, one
drawback of the current implementation of GSEA is that it
only identifies gene sets regulated in one direction. This is
problematic for several kinds of physiological processes.
For example, in most homeostatic processes, when one com-
ponent of the process is upregulated, there is a controlling
downregulation in response and conversely downregulation
of one component leads to an upregulation of another com-
ponent all in order to maintain constancy of a particular set
point. Figure 1 illustrates this point.

We introduce a simple and novel yet very powerful meth-
odology that ‘looks’ at combined up- and down-regulated
expression. This technique allows the computational high-
lighting of groups of genes or systems that may not be as
easily identified through the GSEA algorithm. This methodol-
ogy, called the Absolute Enrichment (AE) was applied to a
dataset obtained from GEO Datasets (http://www.ncbi.nlm.
nih.gov/geo/), (4,5). This dataset was obtained from patients
who underwent hysterectomy or abdominal myomectomy for
symptomatic uterine fibroids (6).

The GSEA algorithm is easily generalized to any proce-
dure that results in a ranking of genes in an expression experi-
ment. Although Mootha (1) implemented a ‘signal-to-noise
ratio’ for his first implementation, other statistics more rele-
vant to particular studies can be used in implementing the
GSEA. For example, in comparisons of two groups that are
a matched time series, the paired t-test can be the more appro-
priate test, and the paired t-statistic is used to rank the genes
in such systems. The use of the paired t-statistic (or any other
statistic) is driven by the nature of the experiments and is
merely the ordering metric and does not address the challenge
of identifying bidirectionally perturbed groups of genes.
The method of AE, as described below, does not however
depend on any particular metric (for the same reasons that
GSEA is metric independent).

Gene set enrichment is most often used when one-gene-at-
a-time analysis reveals no significant differential expression
but when a set of genes might. In this paper, we describe
the Absolute Enrichment (analysis) or AE which takes both
up and down regulations into account (using the absolute
signal-to-noise ratio or absolute SNR as the ranking metric)
as well as the standard GSEA for comparison.

MATERIALS AND METHODS

We will first describe Mootha’s (1) original approach to the
implementation of the GSEA. Next, we will describe our
AE approach using the absolute SNR as the ranking metric.

The analyses presented in this paper were conducted on
datasets that were generated from RNA hybridizations to
HG-U133A Affymetrix human genechips. Thus, we created
gene sets for this genechip.

Standard GSEA using the signal-to-noise ratio SNR
as the ranking metric

Given an expression dataset that has an ‘affected’ group and
a ‘control’ group, one starts by taking (for each gene or
probeset) the average of all the controls and the average for
all the affecteds. The difference between the average value
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of the affected and the average value of the control group is
taken and then divided by the sum of the standard deviations
of each group to give us the signal-to-noise ratio statistic.
The largest positive number then is the most upregulated.
GSEA as described by Mootha (1) only looks at perturbation
in one direction (e.g. upregulation) and the genes are ordered
by signal-to-noise ratio (giving us an ordering based on upre-
gulation). Each row contains the data pertaining to a single
probeset or gene and thus each row is reordered based on
the ranking metric (SNR in Mootha’s algorithm).

Next the Kolmogorov Smirnov statistic is calculated
according to the following equations:

XN ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G

N � G

r

if the gene is not part of the gene set, and

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � G

G

r

if the gene is part of the gene set, where G is the number
of genes in the gene set and N is the total number of genes
in the dataset.

Next a running sum is obtained on the (reordered) dataset.
The maximum of the running sum is the value of the enrich-
ment score.

Essentially the enrichment score is a measure of the
‘enrichment’ of the gene set at the top of the list of (the reor-
dered) genes. The highest enriched gene set then is the most
significantly differentially expressed gene set in the system
under study.

This gene set is then tested for significance. If the columns
(pertaining to sample conditions belonging to either control
or affected) are randomly shuffled over the course of 1000
permutations, the number of times each gene set comes to the
top divided by 1000 gives us an estimate of the P-value (1).
If the P-value is higher than a predefined value (e.g. >0.05)
then that gene set is not significantly differentially expressed
in the analysis.

Figure 1. Pathways are in essence made up of proteins and other ‘elements’ that affect downstream elements (which may or may not show feedback on upstream
elements). Most pathways have some feedback mechanism from downstream to upstream elements. When the input doesn’t come from the (conceptualized) start
of the pathway (there is really no start point—the pathway is what it is), upstream elements from the input may be downregulated through negative feedback as
depicted here.
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The ranking metric in the GSEA and other metrics
(e.g. the t-statistic)

The ranking metric used in the GSEA is not fixed to a certain
type. Mootha et al. (1) averaged each data class or condition
and took the difference (and then divided by the sum of the
standard deviations of each data class) to obtain the SNR.
Mootha’s (1) data are replicates at the same time point.
There are no pairwise comparisons to be made. In the case
of a time series where we have a paired control and affected
sample at each time point, the paired t-statistic may be more
appropriate. The AE just like the GSEA is independent of
ranking metric—either the SNR or the paired t-statistic
or essentially any metric that discriminates between the
‘affected’ and ‘control’ classes can be used.

To be able to generate enough permutations to run the
P-test (for significance) without generating repeats, we require
a relatively large number of affected and control samples.
Eight samples (or more) in each class are usually enough to
meet this criteria.

AE

Rather than ordering the genes by SNR, a value that goes
from negative to positive, we simply take the absolute value
thereby lumping together up- and down-regulated compo-
nents of the homeostatic system. The datasets analyzed in
this paper used this absolute value statistic in implementing
the AE.

RESULTS

Applications of the AE

Datasets available at GEO datasets (4,5) at the NCBI website
were analyzed using our AE analysis. One particularly illumi-
nating dataset (using the HG-U133A genechip) measured
gene expression in uterine fibroids (6). On running the
AE analysis on this dataset, we found that the gene set
c7_U133_probes from Mootha’s original gene set grouping
was topmost ranked (see Figure 2 for the expression pattern
of this gene set). This gene set, however, was not the top
ranked gene set in either the up-regulated analysis or the
down-regulated analysis. The top ranked gene set in the
standard GSEA analysis was the OXPHOS gene set.

As in Mootha’s work (1), the SNR metric was used to rank
the genes (however, absolute values were taken). The c7 gene
set is number three in the down-regulated analysis, number
five in the up-regulated (or standard GSEA) analysis, and
then is top ranked in the AE analysis. The SNRs for the
genes in this gene set are given in Figure 2.

The c7 gene set was then entered into EASE (a utility for
calculating overrepresentation of Gene Ontology (GO) anno-
tations in lists of genes) (7,8), (http://david.niaid.nih.gov/
david/ease.htm) to see which GO categories are enriched.
The top ranked ‘biological process’ GO category is ‘cell
adhesion’, the top ranked ‘molecular function’ GO category
is ‘extracellular matrix structural constituent’ and the top
ranked ‘cellular component’ GO category is ‘extracellular
matrix’. Table 1 lists the top ranked GO categories pertaining
to each of these GO categories separately (the aggregate rank
obtained through EASE is given in the third column).

Nine other datasets were studied and four of these showed
a different gene set appearing as the top ranked AE gene set
compared with either the up-or down-regulated analyses.
These results are presented in Table 2.

DISCUSSION

The AE may bring important insights to
gene expression datasets

The AE can identify important gene sets that may not be
identified through either the up- or down-regulated analyses.
For example, in the uterine fibroid dataset, the c7 gene set
was top ranked. This gene set was then analyzed through
EASE. This gene set was found to be enriched for all
three GO categories pertaining to the Extracellular matrix
(Table 1 lists the rankings of the three GO categories derived
from this gene set through the use of EASE).

According to (9) ‘Uterine fibroids (correctly called leio-
myomas or myomas) are benign myometrial neoplasms
enriched in extracellular matrix (ECM)’. This paper lends
support to the use of the AE, because it shows us that the
gene set that has obtained top rank in the AE is made up
of components that others have shown to be important in
that system.

To further validate the c7 group of (possibly) coregulated
genes, we studied the up- and down-regulated components

Figure 2. SNR scores from the uterine fibroid paper. The right graph is an absolute value plot (to show more clearly the symmetry in the way the gene set
responded to enrichment).
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of this gene set to see if the positive or negative expression
values in the leiomyomas versus control have previously
been shown to have similar signaling either in leiomyomas
of the uterus or in other similar and analogous pathologies.

To perform the above analysis, all the genes from this gene
set were run through EASE. The highest rated gene set genes
were then sub-extracted (pertaining to ECM). These were
then segregated into positive and negative ones (with

SNR). COL4A5 was highest positive. It is reported in uterine
leiomyomas by Catherino (10), and in esophageal leiomyo-
mas by Aszodi (11). LAMB2 is another gene with altered
expression in ECM diseases (11). It is the second most
downregulated in the ECM set. The laminin, LAMB2, is
downregulated in the progression from Prostatic Intraepithe-
lial Neoplasia (PIN) to Prostate Cancer (PC) (12).

Two genes that were upregulated in the leiomyoma
were COL5A1 and LUM and these have previously been
shown to be two of the ‘the top discriminators’ in osteosarco-
mas (13).

We next looked at the second most important EASE GO
category (within the c7 gene set) and this is ‘cell adhesion’
(the highest ranked ‘cellular process’ category). In this cate-
gory, TGF-b1 is upregulated and vinculin is downregulated.
In cancer, an increase in TGF-b has been shown to lead
to a decrease in vinculin (14), a cytoskeletal molecule.
Although, leiomyomas are certainly not cancerous, they are
tumors and therefore closer to cancer type tissue than normal
tissue.

Cyr61 is a gene that is downregulated in the Cell adhesion
GO category. This gene has been previously reported to have
been downregulated in other microarray experiments pertain-
ing to uterine leiomyomas (15). Another gene, CSPG2 was
upregulated in our system. This gene has been seen to be
upregulated in extraskeletal myxoid chondrosarcoma (16).
The authors of this paper further state that ‘CSPG2 is a
protein that may play a role in intercellular signaling and in
connecting cells with the extracellular matrix. Yoon et al.
showed that CSPG2 is directly transactivated by p530 (16).
We then checked for the expression of p53 in our system
and found that of the 29 probesets with p53 in their title,
19 were upregulated.

We next studied the whole c7 gene set for up and downre-
gulation vis-à-vis other work in the literature. The most
down-regulated gene in our system in the c7 gene set is
ANXA1. This gene has been shown in other microarray
experiments to be downregulated (17). Further the authors
in (17) mention that XLKD1 was downregulated in their
study and we see that in the dataset we looked at XLKD1
was also downregulated.

Vanharanta et al. (18) used cDNA microarrays to study
uterine fibroids. They showed that LTBP1 was downregu-
lated as it is in our system in the c7 gene set.

The above analysis lends further support for the validity
of the AE.

Table 1. Top 24 GO categories (separately ranked by the GO categories:

Biological process, molecular function and cellular component) for the top

ranked gene set in the AE analysis from the uterine fibroid dataset analyzed

through EASE

Rank Top groups
from GO category
biological process

Overall rank within all
three GO categories

1 Cell adhesion 2
2 Cell communication 7
3 Morphogenesis 9
4 Development 12
5 Organogenesis 13
6 Cell growth 16
7 Regulation of cell growth 17
8 Cellular process 18
9 Skeletal development 19

10 Regulation of cellular process 21
11 Regulation of biological process 22

Rank Top groups from GO category
molecular function

Overall rank within
all 3 GO categories

1 Extracellular matrix structural
constituent

3

2 Cell adhesion molecule activity 6
3 Structural molecule activity 8
4 Extracellular matrix structural

constituent conferring
tensile strength

11

5 Calcium ion binding 15
6 Glycosaminoglycan binding 20
7 Insulin-like growth factor binding 23

Rank Top groups from GO category
cellular component

Overall rank within
all 3 GO categories

1 Extracellular matrix 1
2 Extracellular 4
3 Collagen 5
4 Basement membrane 10
5 Fibrillar collagen 14
6 Extracellular space 24

Table 2. AE, up and down-regulated analyses conducted on 10 datasets

Dataset analysis AE top gene set Up-regulated top gene set Down-regulated top gene set Upa Downb

Uterine fibroid c7_U133_probes OXPHOS c9_U133_probes 5 3
COPD Human_mitoDB MAP00480_Glutathione_metab Human_mitoDB 116 1
Endothelin fibroblasts c7_U133_probes c7_U133_probes MAP00100_Sterol_biosyn 1 17
Male female hypothal c7_U133_probes c34_U133_probes c9_U133_probes 194 2
Lung cancer motexafin OXPHOS Mitochondr c11_U133_probes 3 6
Sarcoma and hypoxia c24_U133_probes c7_U133_probes c24_U133_probes 169 1
Squamous lung cancer Human_mitoDB Human_mitoDB c9_U133_probes 1 187
Tumor cell topoisom. Human_mitoDB OXPHOS c4_U133_probes 2 34
Breast cancer OXPHOS c2_U133_probes c9_U133_probes 8 3
Bladder SMC stretch c7_U133_probes OXPHOS c7_U133_probes 11 1

aRefers to the ranking of the top AE gene set on the up-regulated list.
bRefers to the ranking of the top AE gene set on the down-regulated list.
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Caveat in conclusions drawn through the use of
EASE about GO categories

GO only annotates �60% of all genes for Homo sapiens (19).
This creates a bias in any analysis that uses GO. This bias
may be present in the validation step that we conducted
through the use of EASE since EASE makes use of GO
derived categories.

Down-regulated gene sets are just as important to study
as up-regulated and absolute enrichment gene sets

It should be noted that the traditional GSEA talks only of
up-regulated gene sets. While upregulated groups of (possibly
coregulated) genes are important to study, it may be equally
important to look at down-regulated gene sets. When gene
sets are connectable to GO biological process categories
(those that come closest to defining pathways), those gene
sets that are down-regulated, then talk of (possible) pathways
that may be turned off in the system under study.

It would be important to know which groups of genes are
turned off just as it is important to know those that are turned
on. For example, the turning off of tumor suppressor genes
has profound effects on the cell phenotype as it leads to
the development of cancer, and this fact is probably just as
important as the turning on of oncogenes in the cell.

We can think of an example outside biology that can also
illustrate the importance of looking at downregulation. When
the brakes of an automobile are working (and therefore on),
the automobile can be safely driven. When the brakes are
not working (and therefore off and not able to function),
the automobile is highly dangerous to drive and is prone to
accidents. Taking this analogy further to see how homeostatic
mechanisms can be captured, we see that if the automobile is
running at very high speeds it could be that this is a normal
condition (fast driving). However, when we combine this with
absent brakes, we obtain the homeostatic picture where the
automobile is running fast because another component that
controls or suppresses its function is now defective and
‘downregulated’.

Gene sets are not necessarily pathways and GO
gene categories should not be mixed

At the GO website, it is stated that ‘A biological process is
a recognized series of events or molecular functions. A biolo-
gical process is not equivalent to a pathway, although some
GO terms do describe pathways.’ Thus, although some GO
biological process categories may be deemed as pathways,
most GO categories are much simpler. Thus, we should not
necessarily draw pathway conclusions from the use of GO
categories (although some may pertain to pathways).

Absolute enrichment is not asymmetric because of
the concurrent use of down regulations along with
up regulation

It may seem that up- and down-regulated data are asym-
metric. It may seem that there is no theoretical limit to up
regulation, while there may seem to be a limit to down
regulation since we cannot go below zero in gene expression.
However, this is not necessarily the case. Up and down
regulations are defined relative to another condition. If we
take up regulation to be the affected minus the control

while taking down regulation to be control minus affected,
we see that there does not need to be a limit to the level of
expression in the control. Thus, the definition of up and
down regulated is arbitrary depending on whether we subtract
control from the affected or vice versa.

We further checked the uterine fibroid dataset for any
asymmetry in the control versus the affected along numerous
metrics such as largest absolute expression in the control and
affected, largest absolute difference value between affected
and control and vice versa, and largest signal-to-noise ratio
between affected and control and vice versa. Along each of
these metrics, we found consistent symmetry between the
down-regulated expression values and up-regulated expres-
sion values. Thus, the AE statistic does not suffer from any
type of asymmetry because of the use of the down-regulated
limb in our analysis.

The AE statistic is usually not more likely to extract gene
sets from the middle of the ranked list (by enrichment score)
of gene sets in either the up-regulated or the down-regulated
rankings

We also checked to see if the AE statistic is likely to pick
up those gene sets that are not near the top of either the up- or
down-regulated gene set rankings. The results of our analyses
on nine additional datasets (and also the results from the
uterine fibroid dataset) are shown in Table 2. We note that
the AE statistic often captures gene sets that are typically
near the top or bottom of either the up- or down-regulated
gene set lists (204 gene sets were run) but sometimes far
enough away from the ends to be missed.

We note that even if the top ranked AE gene sets are far
from the up- or down-regulated lists, this is not necessarily
a sign of any error since it could just be that in the system
under study most gene sets that were defined turned out to
be heavily either up or down regulated and those that were
both up and down regulated therefore found themselves in
the center.

Further, we also note that the AE is more likely to capture
higher levels of differential expression precisely because
it makes up- and down-regulated components of the gene
expression symmetric thus capturing more extremely differ-
entially expressed genes (depending on the gene sets) vis-
à-vis just up- or down-regulated analyses which may be
more likely to capture genes from the middle of the reordered
lists of genes (reordered by the ranking metric such as the
absolute SNR).

Although we found a four out of nine or 44% chance of
discovering new gene sets in our AE analysis that were not
top ranked in either the up- or down-regulated analyses, we
feel that this number itself may be reflective of how gene
sets themselves have traditionally been defined. Many of
the ‘already-made’ gene sets that we obtained from the
literature and the ones that we constructed ourselves were
created from clustering techniques applied to gene expression
datasets that made use of solely either up- or down-regulated
gene groups. Thus, if the gene sets themselves are created
from such solely up- or solely down-regulated clusters, then
they may tend to only capture those aspects of other datasets
to which they are applied in analyses. We suspect that
if gene sets are created using bidirectional clustering tech-
niques then we expect the AE to capture these gene sets more
often.
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This line of thought also creates a justification for the use
of bidirectional clustering in capturing homeostatic systems
in analyzing gene expression datasets.
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