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Abstract
Vulnerable Kaiser's mountain newt, Neurergus kaiseri, is endemic to highland streams, 
springs, and pools of the southwestern Zagros mountain, Iran. The present study 
aimed to use an integration of phylogeographical and species distribution modeling 
(SDM) approaches to provide new insights into the evolutionary history of the spe-
cies throughout Quaternary climate oscillations. The phylogeographical analysis was 
followed by analyzing two mitochondrial DNA (mt-DNA) markers including 127 con-
trol region (D-loop) and 72 NADH dehydrogenase 2 (ND2) sequences from 15 popu-
lations in the entire species range that were obtained from GenBank. Potential recent 
and past distribution (the Last Glacial Maximum, LGM, 21 Kya and the Mid-Holocene, 
6 Kya) reconstructed by ensemble SDM using nine algorithms with CCSM4, MIROC-
ESM, and MPI-ESM-P models. N. kaiseri displayed two distinct lineages in the north-
ern and southern regions that diverged in the Early-Pleistocene. The demographics 
analysis showed signs of a slight increase in effective population size for both north-
ern and southern populations in the Mid-Pleistocene. Biogeography analysis showed 
that both vicariance and dispersal events played an important role in the formation of 
recent species distribution of N. kaiseri. Based on SDM projection onto paleoclimatic 
data, N. kaiseri displayed a scenario of past range expansion that followed by postgla-
cial contraction. The models showed that the distribution range of the species may 
have shifted to a lower altitude during LGM while with amelioration of climatic during 
Mid-Holocene to recent conditions caused the species to shift to the higher altitude. 
The findings of the current study support the hypothesis that the Zagros mountains​ 
may be acting as climatic refugia and play an important role in the protection of iso-
lated populations during climate oscillations.
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1  | INTRODUC TION

In the Pleistocene (2.58 million to 11,700  years ago) especially at 
the Last Glacial Maximum (LGM; 23–19 Kya), glaciers covered about 
30% of the Earth's surface (Head, 2019), creating a significant im-
pact on the recent spatial distribution patterns and abundance of 
various animal and plant species as well as the genetic structure 
and demographic history of their populations (Arcones et al., 2021; 
Borràs & Cursach,  2021; Cornejo-Romero et  al.,  2017; Ikeda 
et  al.,  2017; Pasquale et  al.,  2020). During this time, the distribu-
tion of temperate species often restricted into lower altitudes (or 
latitude) in the glacial refugia where climatic conditions were less 
extreme (Provan & Bennett, 2008). However, with the amelioration 
of climatic conditions in the Holocene (11,700 years ago to present 
time), the geographic range of species recolonized and expanded to 
higher altitudes (Bennett & Provan, 2008; Hampe & Petit, 2005). On 
other hand, the gene flow of individuals in the glacial refugia has 
approximately blocked leading to the allopatric divergence of pop-
ulations (April et al., 2013; Canestrelli et al., 2012; Du et al., 2020). 
Nevertheless, the gene exchange during postglacial expansion could 
have obliterated the signs of historic isolation during glacial periods 
(Wang et al., 2015).

The Zagros mountains with an area of about 533,543 km2 formed 
by the collision of the Eurasian and Arabian plates during Miocene to 
Early-Pliocene that has expanded in the western and southwestern 
Iranian plateau, ending at the Strait of Hormuz in Iran, northeast-
ern Iraq, and southeastern Turkey (Agard et  al.,  2005). The sharp 
environmental gradient of the Zagros mountains at the conjunction 
of the Mesopotamian plain provides a remarkable region with high 
spatial and climatic variation, protecting various species with high 
taxonomic and genetic diversity (e.g., Afroosheh et al., 2019; Ghaedi 
et al., 2020; Kafash et al., 2020; Kazemi & Hosseinzadeh, 2020). The 
paleoecological and palynological evidence indicated during LGM, 
the Zagros mountains were characterized by a cooler and more arid 
climate compared to the Holocene (Djamali et al., 2012; Kehl, 2009). 
By some estimates, it has been shown that temperatures in the 
Zagros mountains were about 5°C lower than in the present time 
(Bobek, 1963). During this time, the lower altitudes of Zagros moun-
tains were covered by the spread of steppe habitats and the higher 
altitudes by glaciers, whose remains are still visible in the highest 
mountains including the Zardeh Kuh (Preu, 1984), and possibly Kuh-e 
Dinar in the central Zagros and Kuh-i-Jupar, Kuh-i-Lalezar and Kuh-
i-Hezar Massifs in the southern Zagros (Kuhle, 2008). Also, there is 
some evidence of phylogeographic and paleoclimatic modeling that 
has highlighted Zagros mountains acting as climatic refugia for some 
species during glacial–interglacial cycles (Afroosheh et  al.,  2019; 
Ahmadzadeh et  al.,  2013; Fathinia et  al.,  2020; Malekoutian 
et al., 2020; Rajaei Sh et al., 2013).

The genus Neurergus involves four currently recognized spe-
cies (N. derjugini, N. kaiseri, N. crocatus, and N. strauchii), which are 
specific for their small ranges restricted to mountainous areas in 
western Iran, northeastern Iraq, and southern Turkey (Hendrix 
et al., 2014). The Kaiser's mountain newt (Neurergus kaiseri, Schmidt 

1952) is endemic to highland first-order streams, springs, and pools 
constructed on karst springs (altitudinal range: 385–1,500  m) in 
southwestern Zagros mountain, Iran (Sharifi et  al.,  2013; Vaissi 
& Sharifi,  2019). Based on IUCN criteria N.  kaiseri is considered a 
vulnerable species (IUCN; Red List criteria: B1ab (iii,v)). Moreover, 
N. kaiseri has been annexed to Appendix I of the Convention to 
the International Trade to Endangered Species (CITES), (Sharifi 
et al., 2009). The major threats to this species include degradation 
of habitats and fragmentation and diversion of water from highland 
streams to orchards and agricultural lands (Sharifi et al., 2009). Also, 
the disturbing impact of climate change, which has caused many 
springs and small streams to completely dry up, threatens the sur-
vival of amphibian populations (Sharifi et al., 2009). Prior studies on 
the population genetic structure and niche modeling of this species 
revealed two highly differentiated clades in the north and south of 
the Dez river (Farasat et al., 2016; Goudarzi et al., 2019). The future 
projection of distributions for this species indicates reduced spatial 
connectivity and continued habitat loss (Ashrafzadeh et al., 2019).

The present study traces the evolutionary history of Kaiser's 
mountain newt in southwestern Zagros mountain and test hypoth-
eses concerning the response of species from this area to climatic 
oscillation during the Quaternary by the integration of the statistical 
phylogeographic analyses and species distribution modeling (SDM). 
Determining how past climate change has influenced the distribu-
tion and diversification of species can help us understand how an-
thropogenic climate change will impact their persistence (Forester 
et al., 2013). Therefore, this study may improve future conservation 
planning that could be specific to particular lineages of geograph-
ically restricted sections of a species range (D’Amen et  al.,  2013). 
For this purpose, data on two mitochondrial DNA (mt-DNA) mark-
ers including NADH dehydrogenase 2 (ND2) and control region 
(D-loop) were extracted from the GenBank (a) to investigate the 
biogeographical history and historical demographic of N.  kaiseri in 
the entire species range and (b) to determine past range dynamics by 
reconstructing potential distributions for the climatic conditions of 
the LGM (21 Kya) and the Mid-Holocene (6 Kya).

2  | MATERIAL S AND METHODS

2.1 | Phylogeny and divergence time estimates

Data of two mitochondrial (mt-DNA) genes including 127 control re-
gion (D-loop: Farasat et al., 2016) and 72 NADH dehydrogenase 2 
(ND2: Vaissi & Sharifi, 2021) sequences from 15 populations in the 
entire species range were obtained from GenBank (NCBI) and used 
for phylogenetic analysis (Figure  1). Details of the sequence data, 
outgroups, and their accession numbers are provided in Table S1.

Although, various phylogenetic studies have shown the exis-
tence of two northern and southern lineages in the N. kaiseri (Farasat 
et al., 2016; Goudarzi et al., 2019; Khoshnamvand et al., 2019; Vaissi 
& Sharifi, 2021). However, in this study based on ND2 and D-loop 
sequences, Bayesian inference (BI) in MrBayes v 3.2.2 (Ronquist, 



7624  |     VAISSI

Huelsenbeck, & Teslenko, 2011) was used for the construction of the 
phylogenetic tree. It should be noted phylogenetic tree constructed 
by haplotypes that were computed using the DnaSP v 5.10.01 (Rozas 
et al., 2010).

BEAST v 2.5 was used to estimate divergence times between 
different lineages of N.  kaiseri based on combined mitochondrial 
ND2 and D-loop genes (Bouckaert et  al.,  2019). Bayesian Markov 
Chain Monte Carlo (MCMC) was used in conjunction with the un-
correlated lognormal relaxed clock and the calibrated Yule (Heled & 
Drummond, 2012). Calibration was carried out based on the evolu-
tionary rate of the ND2 gene by Weisrock et al. (2001), that is 0.64% 
per million years (Mya) per lineage and D-loop gene by Steinfartz 
et al. (2000) that is 0.80% per Mya per lineage. The best fit model 
identified by Akaike information criterion was the GTR model for 
ND2 gene and HKY model for D-loop gene using the jModelT-
est v 0.1.1 (Posada,  2008). This analysis runs based on 10 million 

generations with 1,000 generations for every sampling. Tracer v 1.6 
(Rambaut et al., 2007) was used to check convergence and param-
eter estimates with ESS values >200. Generated trees to find the 
maximum credibility tree were obtained by TreeAnnotator v1.8.4 
(Drummond & Rambaut, 2007). Finally, the tree generated and visu-
alized using FigTree v 1.4.0 (Rambaut, 2012).

2.2 | Demographic analysis

Demographic history was analyzed for the total, northern and south-
ern population using both the ND2 and D-loop genes. Arlequin v 3.5 
(Excoffier & Lischer, 2010) was used to the demographic history of 
the species including Neutrality test analysis, that is, the Tajima's D, 
the Fu's Fs, the sum of squared deviation (SSD), Harpending's ragged-
ness index (RAG), and mismatch distribution (MMD). Investigation of 

F I G U R E  1   Study area. Blue circles represent the northern population, and red circles represent the southern population of the Kaiser's 
mountain newt, Neurergus kaiseri in the southwestern Zagros mountain, Iran
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the variations in effective population size (Ne) against time was con-
structed by Bayesian skyline plot (BSP). BEAST v 2.5 under the strict 
clock at the rate of 0.64% (for ND2) and 0.80% (for D-loop) per Mya 
per lineage (Steinfartz et al., 2002; Weisrock et al., 2001) was used 
for BSP analysis. The analysis was run for 10 million generations with 
log parameters sampled every 1,000 generations. Tracer v 1.6 was 
used to estimate effective population size through time.

2.3 | Biogeography analysis

Based on the previous studies (Farasat et  al.,  2016; Goudarzi 
et  al.,  2019; Khoshnamvand et  al.,  2019) and phylogenetic tree 
(Figure S1), the geographical range of N. kaiseri was divided into the 
northern and the southern distribution range. Two models of his-
torical biogeography analysis were used to reconstruct the possible 
ancestral ranges including statistical dispersal-vicariance analysis 
(S-DIVA) and Bayesian binary MCMC (BBM) that implemented by 
Range Ancestral State in Phylogeny (RASP; Yu et al. (2015)). The tree 
obtained from the BEAST analysis from combining genes was used 
as the input file. The number of trees for RASP analysis was 10,001.

2.4 | Occurrence and environmental data

The study area included two provinces containing the N.  kaiseri 
(Lorestan and Khuzestan provinces) and seven neighboring prov-
inces (Kohgiluyeh and Boyer-Ahmad, Chaharmahal and Bakhtiari, 
Isfahan, Markazi, Hamedan, Kermanshah, and Ilam) in southwestern 
Iran (Figure  1). The occurrence points of Kaiser's mountain newt, 
N. kaiseri, were obtained from Vaissi and Sharifi (2019) totaling 38 
unique records. The minimum distance between the occurrence 
points (Dodut spring and Moolik spring) was 280 m, and the maxi-
mum distance (Abliseneh and Dare Palangi) was 209 Km. The av-
erage migration distance in closely related species (N.  derjugini) is 
about 49.19 ± 71.75 m (Afroosheh & Sharifi, 2014). But to be sure, 
all multiple records of sites within a minimum distance of 500 m are 
excluded to reduce the impacts of repetitive occurrences made at 
specific sites (Moolik spring and Choobeh). This selection process 
reduced occurrence records to 36 data points that were used for the 
distribution modeling approach.

Last Glacial Maximum (21  Kya), the Mid-Holocene (6  Kya), 
and recent climatic data including 19 bioclimatic variables were 
downloaded from the WorldClim database which were 2.5 arc-
min resolution (https://www.world​clim.org). Climatic data for the 
LGM and Mid-Holocene were derived from three atmospheric 
circulation models (ACM): CCSM4 (Community Climate System 
Model Version 4: see Gent et  al.  (2011)), MIROC-ESM (Model for 
Interdisciplinary Research on Climate-Earth system models: see 
Kawamiya et al. (2020)) and MPI-ESM-P (Max Planck Institute-Earth 
System Model: see Giorgetta et al. (2013)). To exclude the highly cor-
related WorldClim bioclimatic variables, we computed the Pearson 
correlations among all bioclimatic variables and neglected those 

over r >  .75. Finally, six bioclimatic variables were used to run the 
models include annual mean temperature (BIO1); mean diurnal range 
(mean of monthly (max temp - min temp), (BIO2); temperature annual 
range (BIO5-BIO6), (BIO7); annual precipitation, (BIO12); precipita-
tion of driest quarter, (BIO17); and precipitation of warmest quarter 
(BIO18).

2.5 | Species distribution modeling

Biomod2 package in R v 4.0.30 was used to ensemble SDM (Thuiller 
et  al.,  2016). Statistical methods all have disadvantages and ad-
vantages, so various statistical methods are often employed to-
gether to improve habitat suitability estimation (Elith et  al.,  2006; 
Friedman,  1991; Hastie et  al.,  1994; Leathwick et  al.,  2006; Zuur 
et al., 2010). Biomod2 not only offers such a platform for ensemble 
forecasting but also overcomes existing limitations of other software 
that are not able to fit and compare single-algorithm models (Thuiller 
et al., 2009). For this propose, nine algorithms were run: three mod-
ern machine-learning methods, generalized boosted models (GBM: 
Ridgeway, 1999), random forest (RF: Breiman, 2001), and artificial 
neural networks (ANN: Ripley,  1996); three regression methods, 
generalized linear models (GLM: McCullagh & Nelder,  1989), gen-
eralized additive models (GAM: Hastie & Tibshirani, 1990), and mul-
tivariate adaptive regression splines (MARS: Friedman,  1991); one 
enveloping method, surface range envelops (SRE: Busby,  1991); 
and two classification methods, flexible discriminant analysis (FDA: 
Hastie et  al.,  1994) and classification tree analysis (CTA: Breiman 
et al., 1984).

These models are based on the presence–absence algorithms, 
and since the absence records were not available, the pseudo-
absence records with a number similar to the records of presence 
were randomly generated for each model (Guisan et al., 2017). For 
each model, 70% of the data were randomly assigned for model cal-
ibration and 30% for the performance of the algorithms. To prevent 
bias from the splitting of the total records, each model algorithm was 
run 10 times (Ancillotto et al., 2020; Ashrafzadeh et al., 2019; Gilani 
et al., 2020; Guan et al., 2020; Zhang et al., 2021). True skill statistic 
(TSS: score >0.8), the area under the receiver operating characteris-
tic curve (AUC: score >0.8), and Cohen's Kappa (KAPPA: score >0.8) 
used the predictive performance of each model (Guisan et al., 2017). 
ArcMap v 10.4.1 was used for all the spatial analyses.

3  | RESULTS

3.1 | Phylogeny and divergence time estimates

Based on the combined ND2 and D-loop sequences, BI trees 
showed that N. kaiseri haplotypes divided into two distinct clades in 
the northern and southern distribution range (Figure S1). Based on 
divergence time estimation, N. derjugini and N. kaiseri have diverged 
approximately 5.03 Mya (Figure 2). This separation for N. kaiseri and 

https://www.worldclim.org
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N. crocatus occurred approximately 4.06 Mya (Figure 2). Divergence 
times for southern from northern population fell within Early-
Pleistocene origin (95% HPD, approximately 1.79 Mya); (Figure 2).

3.2 | Demographic analysis

Tajima's D and Fu's Fs values, the SSD, and RAG (Harpending's rag-
gedness index) within N. kaiseri and its clades are shown in Table 1. 
The bimodal pattern, not significant SSD, and RAG in the entire 

species range may be suggesting constant population size (Table 1, 
Figure S2). However, bimodal peaks may also reveal the presence of 
two distinct lineages in the northern and southern distribution range. 
Based on the ND2 sequences, the MMD diagrams for the northern 
and southern populations of N.  kaiseri showed a bimodal distribu-
tion, while based on D-loop sequences, a unimodal pattern was ob-
served for the northern and southern populations of N. kaiseri which 
may indicate signs of a recent demographic expansion (Figure S2). 
Bayesian skyline plots based on ND2 (tau  =  26.32) and D-loop 
(tau = 8.93) sequences indicated a constant in effective population 

F I G U R E  2   A calibration evolutionary time tree based on combining two mt-DNA (ND2 and D-loop) genes for Salamandridae including 
the genus Neurergus. Blue bars show 95% highest posterior density intervals of the estimated node ages; values indicated on branches are 
mean node ages (Mya)

TA B L E  1   Tajima's D and Fu's Fs values, the sum of squared deviation (SSD), and RAG (Harpending's raggedness index) within Neurergus 
kaiseri and its clades

Tajima's D (p) Fu's Fs (p) SSD (p)
Harpending's 
Raggedness index (p)

Total ND2 2.45 (.99) 17.13 (.99) 0.10 (.13) 0.08 (.17)

D-loop 2.32 (.98) 5.64 (.93) 0.14 (.07) 0.19 (.13)

Northern population ND2 0.43 (.39) 1.47 (.78) 0.06 (.20) 0.18 (.17)

D-loop −0.59 (.32) −0.97 (.25) 0.002 (.33) 0.17 (.38)

Southern population ND2 0.98 (.81) 2.52 (.89) 0.43 (.000) 0.19 (.99)

D-loop −0.67 (.25) −0.75 (.23) 0.005 (.39) 0.27 (.59)
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in total populations (Figure 3). However, a slight increase in effective 
population size was observed for the southern (ND2 = 30 and D-
loop = 23 Kya) and northern (ND2 = 22 and D-loop = 38 Kya) popu-
lations especially in D-loop sequences (Figure 3).

3.3 | Biogeography analysis

The statistical dispersal-vicariance analysis (S-DIVA) and Bayesian 
binary MCMC (BBM) for the reconstruction of the possible ances-
tral ranges of N. kaiseri are indicated in Figure 4. Based on S-DIVA 
analysis, the ancestors of the N. kaiseri (node 20) were presented in 
the entire species range, which was divided into northern and south-
ern populations by the vicariance event (Figure 4). However, based 

on the BBM analysis, the ancestors of southern populations were 
presented in the south of the distribution range and the ancestors of 
northern populations were presented in the north of the distribution 
range (Figure 4). According to BBM reconstruction, both dispersal 
and vicariance events have been implicated in the recent formation 
of species distribution (Figure 4).

3.4 | Species distribution modeling

In most of the models, the high predictive capacity of true skill 
statistic (TSS), ROC curve (AUC), and Cohen's Kappa (KAPPA) in-
dicate the high sensitivity (false positive rate) and specificity (true 
positive rate); (Table  2). Uncorrelated predictors and mean (±SD) 

F I G U R E  3   Bayesian skyline plot based on two mt-DNA (ND2 and D-loop) genes. The central line shows the median values of the 
population size (thousand years), and the blue area represents the 95% highest posterior density
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of their contributions (%) in nine N.  kaiseri distribution models 
from high to low are the precipitation of warmest quarter (BIO18: 
40.62% ± 11.07), annual precipitation (BIO12: 13.71% ± 2.38), tem-
perature annual range (BIO7: 13.65 ± 6.94), mean diurnal range (BIO2: 
12.32% ± 2.14), annual mean temperature (BIO1: 11.92 ± 5.88), and 
precipitation of driest quarter (BIO17: 7.78 ± 0.53).

The potential distribution range of the N. kaiseri for the recent 
climatic conditions is shown in Figure  5. Last Glacial Maximum, 
LGM (21 Kya), and Mid-Holocene (6 Kya) distribution range based 
on CCSM4, MIROC-ESM, and MPI-ESM-P models are shown in 
Figure 6. According to all three models, during the LGM, N. kaiseri 
had a wider and more suitable habitat than the Mid-Holocene and 
recent climate conditions in the northern and southern part of the 
distribution range (Figure 6). During the LGM, the distribution range 

of N. kaiseri is more distributed at lower altitudes, while in the Mid-
Holocene to the recent climatic conditions, the range of species is 
more shifted toward higher altitudes (Figure 6).

4  | DISCUSSION

Several studies have focused on the genetic structure and phylog-
eny of the vulnerable Kaiser's mountain newt, N.  kaiseri (Farasat 
et  al.,  2016; Goudarzi et  al.,  2019; Khoshnamvandet al.,  2019). 
However, the present study, using phylogeographical analysis and 
SDM, for the first time, investigated the impact of historical pro-
cesses on shaping the genetic diversity and contemporary distribu-
tion of N. kaiseri, throughout Quaternary climate oscillations.

F I G U R E  4   The biogeographic analysis of Neurergus with S-DIVA and BBM analysis based on combining two mt-DNA (ND2 and D-
loop) genes. (A: red nodes) Neurergus kaiseri: northern distribution, southwestern Iran. (B: blue nodes) N. kaiseri: southern distribution, 
southwestern Iran. (C: phosphor nodes) Neurergus crocatus: northeastern Iraq, southeastern Turkey and northwestern Iran. (D: pink nodes) 
Neurergus derjugini: western Iran and northeastern Iraq. (E: light green nodes) Neurergus strauchii: southeastern Turkey. (G: gray nodes) 
Triturus karelinii: Crimea, Caucasus and south of the Caspian Sea. (F: yellow nodes) Ommatotriton vittatus: Armenia, Iraq, Israel, Jordan, 
Lebanon, Syria, and Turkey

TA B L E  2   True skill statistic (TSS), ROC curve (AUC), and Cohen's Kappa (KAPPA) of nine used algorithms projecting Neurergus kaiseri 
distribution in southwestern Zagros mountain, Iran

Scenarios GLM GBM RF GAM CTA ANN SRE FDA MARS

CCSM4 KAPPA 1 0.97 1 1 0.97 1 0.87 0.50 1

TSS 1 0.97 1 1 0.97 1 0.86 0.50 1

AUC 1 1 1 1 0.99 1 0.93 0.76 1

MIROC-ESM KAPPA 1 0.97 1 1 0.95 1 0.87 0.79 0.92

TSS 1 0.97 1 1 0.95 1 0.86 0.79 0.92

AUC 1 1 1 1 0.97 1 0.93 0.87 1

MPI-ESM-P KAPPA 1 1 1 1 0.95 1 0.84 0.34 0.89

TSS 1 1 1 1 0.95 1 0.83 0.34 0.90

AUC 1 1 1 1 0.97 1 0.92 0.67 0.96
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The Neurergus and its sister taxa, Triturus, evolved from a com-
mon ancestor distributed in Europe and the Mediterranean re-
gion. Later, some members of this ancestral taxon dispersed to the 
south and distributed the Zagros and surrounding areas (Zhang 
et al., 2008). Afterward, the vicariance event resulting from Zagros 
mountains orogeny and dispersal has played an important role in 
radiation, isolation, speciation, and subsequent evolution of the 
Neurergus (Steinfartz et al., 2002). In fact, over time, with the rise 
of the Zagros mountains (9–10 Mya) and the emergence of high and 
narrow mountain valleys, the ancestors of Neurergus were divided 
into several isolated populations (allopatric species), which led to 
the blockage of gene flow and formation of complete reproduc-
tion isolation (Steinfartz et al., 2002). As a result, four species were 
formed, including N. strauchii in southeastern Turkey; N.  crocatus 
in northeastern Iraq, southeastern Turkey and northwestern Iran; 
N. derjugini in western Iran and northeastern Iraq, and N. kaiseri in 
southwestern Iran (Steinfartz et al., 2002). The results of the biogeo-
graphical analysis in this study also highlight that both dispersal and 
vicariance events have participated in the evolution of different spe-
cies of the genus Neurergus, although the role of vicariance seems to 
be more prominent (Figure 4). Based on two mt-DNA markers, N. kai-
seri diverged from N. crocatus approximately 4.06 Mya in the Early-
Pliocene. Neurergus kaiseri diverged from N. derjugini approximately 
5.03 Mya in the Late-Miocene. The divergence of the N.  strauchii 
from the N.  crocatus, N.  derjugini, and N.  kaiseri has estimated ap-
proximately 8.80 Mya in the Late-Miocene.

The presence of two clades across the northern and southern dis-
tribution range of N. kaiseri has been displayed by various mitochon-
drial and nuclear markers (Farasat et al., 2016; Goudarzi et al., 2019; 
Khoshnamvand et al., 2019; Vaissi & Sharifi, 2021). In this study, the 
presence of two lineages was also confirmed using a bimodal curve 
in MMD analysis (Figure S2). The evaluation of Bayesian skyline plots 
displays that insignificant expansion in N. kaiseri population began at 
about 22 (ND2) and 38 (D-loop) Kya in northern and 30 (ND2) and 23 
(D-loop) Kya in the southern population during Quaternary glaciations 
(Figure 3). The divergence time between the two lineages of N. kaiseri 

was estimated at approximately 1.79 Mya in the Early-Pleistocene 
(Figure 2). Both S-DIVA and BBM analysis from biogeographical his-
tory inferred that the vicariance events played an important role in 
the formation of recent species distribution of N.  kaiseri (Figure  4). 
The BBM analysis displayed that dispersal also played a role in this di-
vergence. According to the result, this dispersal has occurred in both 
northern and southern lineages. Based on S-DIVA analysis, the an-
cestors of the N. kaiseri were present in the entire distribution range 
(Figure 4). According to BBM analysis, the ancestors of the southern 
lineages were present in the south of the distribution range and the 
ancestors of the northern lineages were present in the north of the 
distribution range (Figure 4). Either way, this result agrees with a re-
cent study by Goudarzi et al. (2019) that showed that the divergence 
between the two lineages is due to the Dez river, which formed about 
~3–3.5 Mya in the Late-Pliocene (Oberlander,  1965). The present 
study also suggests that gradual speciation from the Late-Pliocene to 
the Early-Pleistocene is more likely.

The biogeographical analysis provided in the present study 
seems to be more supported by SDM. Based on SDM projection 
onto paleoclimatic data in all three models (CCSM4, MIROC-ESM, 
and MPI-ESM-P), N.  kaiseri displayed a scenario of past range ex-
pansion that followed by postglacial contraction (Figures 5 and 6). 
According to the result, both precipitation and temperature have a 
significant impact on the distribution of N. kaiseri. It seems that cli-
matic conditions for N. kaiseri during the LGM were favorable in an 
extensive area than recent climate condition (Figure 6). In the LGM, 
the species may have occupied areas in lower altitudes situated 
westward of the current distribution range (Figure 6). The gradual 
rise of temperature in the south-Zagros mountains after the LGM 
and in the Mid-Holocene likely forced N. kaiseri to shift their distri-
bution upward to higher altitudes (Figure 6); (Yousefi et al., 2015). 
This disagrees with the typical reaction of many amphibian species in 
the western Palearctic, which retracted their ranges to smaller geo-
graphical areas known as glacial refugia (Alexandrino et al., 2000). 
However, the cold-adapted species commonly displayed this pattern 
of range expansion during LGM and contraction the range during 

F I G U R E  5   Potential distribution range 
of the Kaiser's mountain newt, Neurergus 
kaiseri in the southwestern Zagros 
mountain under recent climate condition
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postglacial warming (Afroosheh et  al.,  2019; Kearns et  al.,  2014; 
Teixeira et al., 2018). For example, closely related mountain newts, 
the Yellow-spotted mountain newt, N. derjugini, also displayed the 
same pattern of LGM expansion that followed by a recent contrac-
tion (Afroosheh et  al.,  2019). Finally, this study suggests that the 
southern parts of the Zagros mountains can act as a climate refugia 
and is a valuable area for biodiversity conservation (Ashcroft, 2010; 
Gavin et al., 2014; Hampe et al., 2013).
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