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Epigenetic control of gene expression during cardiac development and disease has
been a topic of intense research in recent years. Advances in experimental methods
to study DNA accessibility, transcription factor occupancy, and chromatin conformation
capture technologies have helped identify regions of chromatin structure that play a role
in regulating access of transcription factors to the promoter elements of genes, thereby
modulating expression. These chromatin structures facilitate enhancer contacts across
large genomic distances and function to insulate genes from cis-regulatory elements
that lie outside the boundaries for the gene of interest. Changes in transcription factor
occupancy due to changes in chromatin accessibility have been implicated in congenital
heart disease. However, the factors controlling this process and their role in changing
gene expression during development or disease remain unclear. In this review, we
focus on recent advances in the understanding of epigenetic factors controlling cardiac
morphogenesis and their role in diseases.
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INTRODUCTION

The heart is the first functional organ to develop during embryogenesis (Christoffels and
Jensen, 2020). The earliest cardiac progenitors are specified from the emerging mesoderm during
gastrulation and form the cardiac crescent. Cardiac progenitor cells (CPCs) within the cardiac
crescent come together and are distinguished into two populations of progenitor cells: the primary
and secondary heart fields (Kelly et al., 2014). CPCs expressing transcription factors (TFs) Nkx2-5,
Gata4, and Tbx5 coalesce at midline and form a linear tube that circulates blood in the developing
embryo (Bruneau, 2013). As cells within the primary heart field proliferate to form the left ventricle,
progenitor cells from the second heart field, expressing the markers Isl1 and Tbx1, move into the
developing heart at the arterial and venous poles and eventually give rise to the right ventricle,
outflow tract, and the majority of the interventricular septum (Black, 2007). Differential addition
of CPCs from the two poles causes the heart to undergo rightward looping, which juxtaposes the
atria and ventricles in their final orientation, and through septation, the heart forms its final four-
chambered structure (Sylva et al., 2014). The adult mammalian heart is composed of a multitude
of cell types: atrial and ventricular cardiomyocytes (CMs) make up most of the heart volume;
endocardial cells line the chambers, the lumen of arteries, and specialized valve cells; smooth muscle
cells form the aorta and coronary arteries; the epicardium sheaths the heart; and specialized cells
form the cardiac conduction system that drives chamber contraction (Pinto et al., 2016).
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Cardiac development requires finely tuned gene expression
within these various cell types (Olson, 2006). Gene expression
is modulated by TFs that bind to DNA regulatory elements to
activate or repress transcription. TFs need to have access to
consensus DNA binding sequences to recruit the transcriptional
machinery, which then initiates transcription. DNA within the
nucleus is highly organized into chromatin, a complex of
DNA and proteins. Chromatin organization is dynamic and
undergoes changes in its structure from loose and open to tightly
condensed and closed. Conformational changes to chromatin
modulate gene expression by controlling the TFs’ accessibility
to the DNA binding sites (Voss and Hager, 2014). Epigenetic
modifications do not alter the DNA sequence itself but can
change the chromatin structure to modulate its accessibility
(Allfrey et al., 1964). The need to expand our understanding
of the role that epigenetic regulation plays in gene expression
has led scientists to study the structure of the three-dimensional
(3D) genome and the hierarchy of chromatin organization (Yu
and Ren, 2017). The study of the epigenome has led to the
characterization of DNA base methylation, posttranslational
histone modifications, the interactions of long non-coding RNA
molecules, and changes in chromatin folding. These epigenetic
events allow (or block) trans-acting factors to interact with
specific cis-elements located within transcriptional enhancers,
thus fine-tuning gene expression during development. Studies
examining epigenetic changes have given new insight into gene
expression changes that take place during disease conditions such
as dilated cardiomyopathy. Recent work has also shed more light
on diseases referred to as cohesinopathies, which are caused by
disruptions to cohesin, a protein complex that helps form the
3D chromatin structure. In this review, we give an overview
of the various mechanisms of epigenetic regulation and recent
developments examining regulatory mechanisms in the context
of cardiac development and disease.

MECHANISMS OF EPIGENETIC
REGULATION OF GENE EXPRESSION

DNA Methylation
DNA methylation is an early epigenomic change, occurring
during DNA replication to mark the daughter strand (Riggs,
1975; Bird, 1978). Methylation of DNA, specifically at the fifth
carbon of the cytosine base, occurs on CpG dinucleotides and,
in the context of epigenetic regulation, most commonly leads
to transcriptional repression (Greenberg and Bourc’his, 2019).
Analysis of DNA methylation status during mouse cardiac
development (comparing E11.5 to E14.5) shows >50% change
in methylation status within a subset of genes involved in heart
development and cardiac tissue growth (Chamberlain et al.,
2014). When Dnmt3b (DNA methyltransferase 3b), an enzyme
that catalyzes transfer of methyl groups to CpG motifs, is
deleted within the endocardium using Nfatc1Cre (Wu et al.,
2011), qRT-PCR analysis at E11.5 and E14.5 reveals significantly
increased levels of Has3 (hyaluronan synthase 3). Has3 is an
extracellular matrix remodeling enzyme and, in the context of
heart development, is required for endothelial-to-mesenchymal

transition and valve formation, therefore suggesting a link
between the HAS3 methylation status and regulation during
cardiac development (Chamberlain et al., 2014). Knockdown of
another member of the same family of DNA methyltransferases,
Dnmt3a, using siRNA in mouse embryonic CMs resulted in
an observed decrease in beating frequency, defective contractile
movement, and disrupted sarcomere assembly (Fang et al., 2016).
RNA-seq and methylome analyses identified increased expression
and associated decreased CpG methylation at promoters of the
following CM structural genes: Myh7, Myh7b, Tnni3, and Tnnt2
(Fang et al., 2016). The importance of CpG methylation in
regulating the switch between fetal and adult CM gene expression
program is further illustrated by the conditional deletion of
Dnmt3a/b in CMs using the Mlc2a promoter to drive Cre
recombinase expression (Gilsbach et al., 2014). MethylC-seq
analysis in these mutant CMs reveal reduced postnatal de novo
methylation of fetal Troponin1 (Tnni1), which partially relieves
repression of Tnni1 (Gilsbach et al., 2014). CpG methylation
and gene expression analysis of purified embryonic human CMs
from fetal (16–24 weeks of pregnancy), infant (1–12 months),
and adult (46–60 years) patient samples show dynamic changes
in CpG profile and genomic regions that exhibit low levels of
CpG-marked enhancers or silencers that lie in cis with genes
involved in CM maturation, reflecting the change in their mitotic
ability through development (Gilsbach et al., 2018). Work by
Li et al. (2016) examining another family of CpG modifiers,
Tet1/2/3, which facilitates demethylation by oxidizing CpG
residues, in mouse embryonic stem cells (mESCs) shows that loss
of Tet3 alone or Tet1, Tet2, and Tet3 triple knockout leads to
improper adoption of cardiac mesodermal fate at the expense of
neural cell fate as determined by qRT-PCR analysis of neuronal
markers Sox1 and Foxg1 and CM markers Nkx2-5, Myh6, Myh7,
and Tnnt2.

In human disease conditions, variability in methylome
status is observed (Movassagh et al., 2011; Haas et al., 2013).
Using the Illumina 450K methylation assay on tissues from
dilated cardiomyopathy patients reveals significant changes
in the methylation status of cardiac disease-associated
genes such as NPPA and NPPB, with methylation status
validation by MassARRAY (Meder et al., 2017). Analysis of
non-failing donor human hearts and cardiac patients for DNA
methylation signature using array-based Illumina Infinium
HumanMethylation450 BeadChips reveals 168 differentially
methylated CpG loci in atrial and ventricular heart tissues,
with 24 of these loci in predicted human heart-specific
enhancers (Hoff et al., 2019). In human patients with ischemic
cardiomyopathy due to coronary heart disease, methylome
analysis using Illumina Infinium HumanMethylation450
BeadChips shows significant increase in CpG methylation
and transcriptional repression of the citric acid (TCA) cycle
and respiratory electron transport gene network (Pepin et al.,
2019). Authors identify KLF15, a Krüppel-like factor, as a
target for EZH2 that facilitates a metabolic reprogramming
as shown by increased CpG methylation, EZH2 binding at
the KLF15 promoter, and KLF15-mediated suppression of
key oxidative metabolic genes (Pepin et al., 2019). Thus, CpG
methylation is established as a key epigenetic signature in CMs
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that distinguishes their gene expression and function including
an important role for CpG methylation in the metabolic switch
that occurs in human heart CMs during failure.

Chromatin Remodelers
The 2 m of naked DNA found inside a 5-µm mammalian
nucleus would be highly suspectable to breaks and damage if
it was not packaged into an organized structure that allows
for reliable replication, transcription, and repair (Felsenfeld and
Groudine, 2003). Chromatin is a complex of negatively charged
DNA, which weakly interacts with positively charged residues
found in histone proteins that allow for the tight and safe
packaging of genetic information within the nucleus (McGhee
and Felsenfeld, 1980). The functional unit of chromatin is the
nucleosome, which is formed by a core of histone proteins
H2A, H2B, H3, and H4, around which DNAs (147 base pairs)
are wrapped (Kornberg, 1974). These core histone proteins
are subject to various posttranslational modifications, including
acetylation, methylation, phosphorylation, and ubiquitination at
specific residues within the amino-terminal histone tails or within
the globular/core domains of histones (Clapier and Cairns, 2009).
Various combinations of these posttranslational modifications
make up the epigenetic code or histone code that marks regions of
open or closed chromatin (Karlic et al., 2010). Transcriptionally
active (open) regions of chromatin contain high levels of
histone 3 (H3) monoacetylated (ac) at Lys-9 and Lys-14
(H3K9ac and H3K14ac). Trimethylated (me3) Lys-4 (H3K4me3)
is present within promoter regions. Other modifications, such as
dimethylated (me2) Lys-79 (H3K79me2) and trimethylated Lys-
36 (H3K36me3), mark transcriptionally active coding regions.
Repressive epigenetic signals are regions of deacetylation and
histone H3 trimethylation of Lys-9 (H3K9me3) and Lys-27
(H3K27me3) (Barski et al., 2007; Ernst et al., 2011). Enhancer
sequences (evolutionarily conserved non-coding regions of DNA
that TFs bind to) are required to drive gene expression. These
enhancer regions exhibit unique epigenetic signals as well as
increased H3K27me3 and lack of H3K27ac, which poises them
for gene activation. The H3K27ac modification is indicative of
active enhancers (Rada-Iglesias et al., 2011). These epigenetic
marks have been employed to help identify novel enhancers
involved in cardiac development (Nord et al., 2013).

Histone marks alone are not always a predictor for enhancer
activity; a comparison of chromatin immunoprecipitation using
next-generation sequencing (ChIP-seq) profiles of cardiac-
specific TFs (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5,
and TEAD1) showed that only 16% of regions with TF
occupancy overlapped with H3K27ac chromatin marks within
fetal cardiac tissues (Akerberg et al., 2019). Analysis of
chromatin accessibility using ATAC-seq (Assay for Transposase-
Accessible Chromatin using sequencing) revealed that multiple
TF binding regions strongly corelated with the ATAC-seq
signal; 100% of regions binding all seven TFs have a strong
ATAC-seq signal (Akerberg et al., 2019). These genome-wide
screening experiments examining chromatin accessibility and
the associated histone code in CMs show the importance of
epigenetic remodeling, driving TF access to reprogram the
CM transcriptome during the transition from fetal to adult

stages. Experiments seeking to correlate the differences in the
distribution histone modifications and gene expression were
performed by first subjecting adult mice to transverse aortic
constriction inducing cardiac hypertrophy and then subsequently
heart failure, followed by screening of the diseased hearts
for changes in seven different histone modifications and gene
expression (Papait et al., 2013). Of 1,109 differentially regulated
genes, 596 exhibit at least one altered histone modification at
their promoter and 325 genes observed an upregulation or
downregulation of gene expression coincident with the histone
change (Papait et al., 2013).

A well-studied epigenetic modifier during heart development,
EP300, is a histone acetyltransferase (HAT) that acetylates H3
on lysine 27 (H3K27ac) and binds within the promoter regions
of a number of critical heart genes such as Gata4, Nkx2-5, and
Mef2c to activate the transcription of these cardiac TFs (Takaya
et al., 2008; Sun et al., 2010; Trivedi et al., 2010). Indeed, a point
mutation in EP300 leads to atrial septal defects and ventricular
septal defects (Shikama et al., 2003). Conditional inactivation
of a subunit (Ezh2) of PRC2, which establishes the chromatin
mark H3K27me3, using Nkx2-5Cre (Ezh2fl/fl Nkx2-5Cre) causes
perinatal lethality with only 2% of pups surviving to postnatal
day 20 (He et al., 2012). In this study, no significant apoptosis
is detected via terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL); however, CM proliferation as measured
by phosphorylated histone H3 immunohistochemistry is twofold
reduced in mutant CMs at E16.5. Transcriptomic analysis via
qRT-PCR and RNA-seq indicates that Pax6, Isl1, and Six1, genes
that are expressed in early cardiac progenitors and downregulated
in differentiated CMs, are significantly overexpressed in E12.5
mutant ventricles, suggesting that effective cardiac progenitor
differentiation to CMs requires repressive H3K27me3 activity
(He et al., 2012).

Another class of proteins regulate chromatin by non-covalent
enzymatic activity. The SWI/SNF complexes consist of a core
ATPase that utilizes energy from ATP hydrolysis to modify
chromatin by changing nucleosome DNA contacts, moving
nucleosomes along the DNA, and removing or exchanging the
DNA from nucleosomes (Ho and Crabtree, 2010; Hargreaves
and Crabtree, 2011). Early cardiac development requires finely
tuned epigenetic regulation by these complexes as demonstrated
by ectopic cardiogenesis when BAF60C (SMARCD3), a cardiac-
specific ATP-dependent chromatin remodeling protein, and
GATA4 and TBX5 are expressed in the non-cardiogenic mouse
embryo mesoderm (Lickert et al., 2004; Takeuchi and Bruneau,
2009). RNA-seq analysis of hearts of mice, where Baf60c is
conditionally knocked out from CMs using Myh6-Cre, showed
mis-regulation of structural CM proteins, not TFs involved in
cardiac development, possibly mediated by the direct interaction
between myocardin (MYOCD) and BAF60C (Sun et al., 2018).
Expression of the core ATPase subunit of the SWI/SNF complex,
Brg1, is required in CMs for their maturation, as determined
by isoform switching of αMHC and βMHC in the mouse
myocardium (Hang et al., 2010), as well as in the endocardium
to drive trabeculation (Stankunas et al., 2008). Knockout of
Arid2/BAF200 leads to embryonic lethality by E12.5–E14.5 due
to improper myocardial development leading to thinning of
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ventricular walls and improper coronary formation (He et al.,
2014). This family of chromatin remodelers is also implicated in
disease, covered in further detail in section “Cardiac Diseases and
the Epigenome”.

Topologically Associating Domain (TAD)
Work published concurrently in 2012 used chromatin
conformation capture in mammalian cells to identify large
loops at the megabase scale: TADs (Dixon et al., 2012; Nora et al.,
2012; Figure 1). TADs are not defined by a specific chromatin
state alone but by the increased frequency of DNA interactions
within a genomic region. Chromatin conformation capture
experiments indirectly measure these contact frequencies at
the whole-genome level using next-generation sequencing
(Kempfer and Pombo, 2020). Live and single-molecule imaging
at TADs shows that these structures are dynamic (Hansen et al.,
2017). The generally accepted model for TAD formation is loop
extrusion, where cohesin protein complexes are loaded and
extrude chromatin into progressively larger loops until they
either dissociate from chromatin, bump into each other, or run
into insulator molecules such as the zinc finger CCCTC binding
factor (CTCF) (Alipour and Marko, 2012; Sanborn et al., 2015;
Fudenberg et al., 2016). These loops allow genomic sites that lie
far apart in the linear genome to come into close spatial proximity
to each other (Figure 1). Transcriptionally active and inactive
TADs are organized in compartments A and B, respectively,
which have different folding and compartmentalization
configurations (Lieberman-Aiden et al., 2009; Wang et al.,
2016). TAD compartment organization overlaps with histone
modification: compartment A is enriched in markers for active
chromatin (H3K27ac, H3K4me1/me3, H3K9me1, and the
repressive H3K27me3 mark), while compartment B is enriched
in the heterochromatin mark H3K9me3 (Rao et al., 2014).
The mechanisms of TAD looping, their role in regulating gene
expression, and their biological relevance remain unclear.

Disruption of TADs during development is implicated in
ectopic gene expression and disease (Ibn-Salem et al., 2014;
Lupianez et al., 2015, 2016; Muro et al., 2019). Comparison
of genome architecture in primate, mouse, cattle, opossum,
chicken, clawed frog, and zebrafish showed conservation of non-
coding regions that coincide with TAD boundaries (Harmston
et al., 2017; Krefting et al., 2018). However, the extent of TAD
conservation across species and its functional significance are still
unclear (Eres and Gilad, 2020). Although there is some variation
in reports, mainly due to differences in resolution arising from
experimental limitations and the types of computing tools used
to generate models, the average size of a TAD is approximately
1 Mb (Dali and Blanchette, 2017; Zufferey et al., 2018).

CTCF protein is enriched at the TAD boundaries with
pairs of CTCF DNA binding sites preferentially found in a
convergent orientation, allowing the CTCF protein to act as a
domain boundary molecule (Rao et al., 2014; Grubert et al.,
2020; Figure 1). To study the function of CTCF in mediating
TAD formation, researchers may employ an in vitro inducible
knockout system, using the auxin-inducible degron (AID) tag
with an eGFP cassette at the 3′ end of the CTCF coding sequence
(Morawska and Ulrich, 2013). Cells are also transfected with

Tir1 F-box from Oryza sativa, which can bind to the AID
tag in the presence of auxin, triggering targeted proteasome-
dependent degradation of CTCF. Thus, adding auxin to cell
culture media depletes CTCF protein to levels undetectable by
western blot, and removal of auxin from growth media results
in recovery of CTCF protein. The Bruneau lab targeted CTCF
in mESCs by using this system, reporting that higher-order
chromosome folding, i.e., compartments A and B, remain intact,
as determined by Hi-C contact frequency mapping, with a limited
effect on transcriptional state across the genome (Nora et al.,
2017). Genes most affected by CTCF depletion tend to have
enhancers/promoter regions in close proximity to CTCF sites.
Reversal of CTCF depletion, by removal of auxin from growth
media, leads to the re-formation of TADs (Nora et al., 2017),
although the caveat to this result is that low levels of background
CTCF protein can also facilitate TAD formation. More recently,
the Bruneau lab has also uncovered the molecular basis for
convergent CTCF motif orientation at TAD boundaries; the
N-terminal portion of CTCF is responsible for its stabilization
at one side of non-palindromic CTCF DNA binding sites during
Cohesin-driven loop extrusion (Nora et al., 2020). In vivo
knockout experiments have provided further information on the
role of CTCF in TAD formation and maintenance.

In the mouse embryonic heart, conditional deletion of CTCF
using Nkx2-5Cre leads to embryonic lethality by embryonic
day (E)12.5 and myocardial thinning (Gomez-Velazquez et al.,
2017). Conditional knockout embryos are phenotypically
normal until E9.5, but by E10.5, the interventricular septum
appears disorganized and progressively worsens in E11.5
embryos. The four chambers and atrioventricular canal form
normally. No difference in apoptosis (TUNEL) or proliferation
(phosphorylated histone H3) is observed. Transcriptomic
analysis using RNA-seq of Ctcffl/fl;Nkx2-5Cre embryos at E10.5
showed limited change in gene expression with genes being
involved with mitochondrial function as the largest functional
group showing differences (Gomez-Velazquez et al., 2017).
Authors then go on to show changes in gene expression (in situ
hybridization) and chromatin structure (4C-seq) at the Iroquois
(Irx) gene cluster and adjoining genes, including a mitochondrial
subunit gene Ndufs6. Mitochondria in Ctcffl/fl;Nkx2-5Cre E11.5
CMs appear swollen and disorganized (Gomez-Velazquez et al.,
2017). Work from the Vondriska lab employs a α-Myosin Heavy
chain tamoxifen-inducible Cre recombinase (MerCreMer) mouse
to generate CTCF conditional knockout (CTCF-CKO) in adult
CMs (Rosa-Garrido et al., 2017). Depletion of CTCF levels after
tamoxifen treatment led to a decrease in survivability, with
impaired ejection fraction, left ventricular chamber dilation,
and muscle hypertrophy at the organ and cell levels, with 100%
mortality observed in conditional knockout mice 7 weeks after
tamoxifen administration. Surprisingly, Hi-C analysis of hearts
from these CTCF-CKO mice shows little change (<2%) in TAD
boundaries and A/B compartmentalization as compared to
controls. However, Fit Hi-C, a method to analyze genome-wide
chromosomal contacts that are statistically significant, revealed
that interactions and accessibility at a large number of enhancer
regions are changed in CTCF-CKO mice: 4,037 increase/decrease
in contact compared to 1,013 unchanged. The genes in the
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FIGURE 1 | Schematic representation of chromatin loops. (A) Chromatin in the nucleus is distinguished into two compartments on the basis of histone modifications
and transcriptional activity: compartment A is “open/active,” compartment B is “closed/repressed.” (B) Topologically associating domains (TADs) are dynamic
chromatin structures that are extruded by cohesin, a protein complex consisting of SMC1, SMC3, RAD21, and STAG1/2. Loop extrusion is stabilized by the
boundary molecule CTCF. (C) “Open” chromatin is permissive to loop formation to enable cis-enhancer binding to RNA Pol II and interaction with the gene promoter
to facilitate tissue and temporally specific transcription.

surrounding chromosomal regions are enriched for cardiac
pathology pathways (Rosa-Garrido et al., 2017).

Taken together, these experiments suggest that the preexisting
chromatin landscape, which has existed before the loss of TADs, is
sufficient to retain the DNA-TF accessibility even when the TADs
are lost. TADs and their associated CTCF sites alone might not
be essential for correct developmental gene expression; however,
they can cause misexpression when redirected with different
loci being more or less sensitive to these changes, leading to
embryonic lethality in the mouse models tested.

An important facilitator of TAD formation is the four-
subunit protein complex, cohesin, well studied for its role
in chromatid formation and chromosome segregation during
mitosis (Lica et al., 1986; Cooke et al., 1987). The cohesin
complex forms a ring-like structure and consists of core
proteins: structural maintenance of chromosomes (SMC)1,
SMC3, RAD21, and stromal antigen (STAG)1/2. Auxin-induced
degradation of the cohesin subunit RAD21 in human cancer
cell lines leads to a loss of all TADs, but transcriptional activity
remains largely unchanged (Rao et al., 2017). Another subunit
of the cohesin core complex, STAG2, is required for heart
morphogenesis; Stag2-null embryos die by E10.5 and exhibit
observable heart abnormalities by E9.5 (De Koninck et al., 2020).
Histological analysis of Stag2 knockout embryos at E9.5 shows
significantly smaller right ventricles and shorter outflow tracts,
with decreased anti-phosphohistone H3 staining associated
with reduced CM proliferation when compared to controls
(De Koninck et al., 2020). Based on observed right ventricle
and outflow tract defects, authors examined SHF progenitor
populations in Stag2-knockout embryos, and RNA-seq analysis
indicated downregulation of important SHF regulators, Fgf8,
Hand2, and Wnt5a (De Koninck et al., 2020). Further work is
required to understand the molecular function of the cohesin
complex of proteins, their contribution to TAD formation, and
their role in cardiac disease.

Non-coding RNAs
Long non-coding RNAs (lncRNAs) are greater than 200
nucleotides (nt) in length and function by binding DNA,

other RNAs, or RNA binding proteins or can contain their
own transcriptional start site to make micropeptides (<100
amino acids) (Ulitsky and Bartel, 2013). There are also reports
of lncRNAs interacting with established chromatin modifiers
(Mishra and Kanduri, 2019). The first instance of this is HOTAIR
(HOX transcript antisense intergenic RNA), which is transcribed
from the human HOXC locus to trans regulate transcriptional
silencing of the HOXD locus in a tissue-dependent manner
by direct interaction with the histone methyltransferase PRC2
(Rinn et al., 2007). Further experiments reveal that 20% of
human lncRNAs are associated with PRC2 (Khalil et al., 2009),
including the well-characterized lncRNAs Xist, RepA, Kcnq1ot1,
Braveheart, and Malat-1, suggesting that lncRNAs serve to
modulate a scanning of the genome for genes that require
silencing (Davidovich and Cech, 2015), which could be facilitated
by PRC2 binding nascent RNA (Beltran et al., 2016). The
biological relevance of lncRNA-mediated chromatin modulation
has also been demonstrated by mis-expression of lncRNAs in
human cancer (Begolli et al., 2019).

Perhaps more interesting are a number of studies that indicate
that lncRNAs directly interact with the zinc finger TF CTCF
and that these RNA–CTCF interactions are required for some
TADs to form (Saldana-Meyer et al., 2014; Kung et al., 2015;
Hansen et al., 2019). Work from the Reinberg lab generated a
CTCF mutant protein that retains the DNA binding capability
but has decreased RNA binding by deleting 14 amino acids from
zinc finger 1 and nine amino acids from zinc finger 10 (Saldana-
Meyer et al., 2019). Using mESCs with an AID system (Nora
et al., 2017) to knock out CTCF and express the RNA binding-
deficient CTCF mutant protein, single-cell RNA-seq experiments
along with Hi-C analysis identified only modest changes in
both gene expression and 3D chromatin structure within CTCF
RNA binding-deficient cell lines, with 60% of TF sites exhibiting
decreased CTCF binding within gene promoters and no changes
in A/B compartmentalization (Saldana-Meyer et al., 2019). The
Tjian lab addressed the same question by deleting the internal
RNA binding region (RBRi) of CTCF protein in endogenous
mESC lines (Hansen et al., 2019). RNA-seq analysis indicates that
RBRi deleted cell lines show modest gene expression changes
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(∼500 genes mis-regulated with an average fold change of 2.7)
and no change in A/B compartmentalization similar to what was
seen by Saldana-Meyer et al. Chromatin conformation capture
experiments find that almost half of all CTCF loops are lost in
RBRi deletion mutants, suggesting that there are two kinds of
CTCF-mediated loops: RBRi dependent and RBRi independent.
Even with modest gene expression changes in RBRi deletion
mutants, some TAD formation requires RNA binding with
CTCF (Hansen et al., 2019). Although these direct RNA–CTCF
interactions are still controversial in the field, it is possible that
these interactions might explain how lncRNAs help modulate
gene expression.

In the context of cardiac development, a specific role of
lncRNAs has been uncovered (Martens et al., 2017; Hobuss
et al., 2019). The Myh-associated RNA transcripts, or Myheart
(Mhrt), are alternatively spliced lncRNA transcripts that lie
within the myosin gene locus (Han et al., 2014). This well-
characterized lncRNA is downregulated in hearts pressure-
overloaded by transaortic constriction (TAC). Overexpression of
Mhrt led to cardioprotective effects with minimal/absent fibrosis,
improvement in fractional shortening, normalized left ventricle
size, and reduced change in Nppa expression. Luciferase assays
and ChIP experiments show that the Mhrt promoter is directly
regulated by the chromatin remodeling factor Brg1, the ATPase
subunit of SWI2/SNF2-like chromatin-remodeling complexes.
RNA immunoprecipitation experiments demonstrate that Mhrt
directly binds to BRG1 to reduce its occupancy at target genes
(Han et al., 2014).

Recent work from the Bruneau lab employed RNA-seq reads
of mESCs differentiated into CMs to screen for lncRNAs on
the basis of their epigenetic regulation, clear splice structure,
homology to human and/or mammalian genomes, cardiac
progenitor specificity, and expression in the developing embryo
(George et al., 2019). Six novel lncRNAs were identified:
Rubie, Handlr, Atcayos, HrtLincR4, HrtLincR5, and HrtLincRX.
Knockout mouse lines were generated using CRISPR/Cas9
genome editing and assayed for loss of expression or cardiac
phenotypes. Authors report that none of the tested lncRNAs
are required for viable mouse development, suggesting a lack
of function or that, within the context of cardiac development,
further understanding of lncRNA biology would require
manipulation of additional molecular compensatory mechanisms
(George et al., 2019).

Short (<22-nt) single-stranded non-coding RNA molecules
known as microRNAs (miRNAs) have also been implicated in
epigenomic regulation (Yao et al., 2019). The role that miRNAs
play in cardiovascular diseases has been extensively covered by
recent reviews (Colpaert and Calore, 2021).

CARDIAC DISEASES AND THE
EPIGENOME

Epigenetic changes have been identified as a causative agent for
disease in multiple organ systems and cell types (Zoghbi and
Beaudet, 2016). Germline mutations in genes encoding part of
the cohesin complex and its regulatory factors are collectively

referred to as cohesinopathies (Piche et al., 2019). The most
common of these is the Cornelia de Lange syndrome (CdLS,
OMIM 122470) where patients present with growth retardation,
intellectual disability, and facial dysmorphism (Sarogni et al.,
2020). Of the CdLS patients, 14–70% also present with congenital
heart defects (Chatfield et al., 2012). Sixty percent of patients
carry heterozygous mutations in NIPBL, a protein that loads
cohesin onto chromatin (Liu et al., 2009). Inducible pluripotent
stem cells (iPSCs) derived from CdLS patients were differentiated
to CMs, and RNA-seq analysis identified altered gene expression
in several critical cardiac development genes: GATA4/6, MYH6/7,
MYH7, ACTN2, HAND2, TBX1/5, and TDGF1, within the NIPBL
haploinsufficient samples as compared to control patient samples
(Mills et al., 2018).

The DiGeorge syndrome, a 1.5- to 3.0-Mb heterozygous
deletion of chromosome 22q11 (OMIM 188400), causes
congenital heart defects and is linked to TBX1 haploinsufficiency
(Lindsay et al., 1999). Tbx1 is expressed in the SHF, and patients
with this disease show outflow tract defects and persistent truncus
arteriosus (lack of septation between the aorta and pulmonary
trunk) (Du et al., 2019). TBX1 regulates chromatin by interacting
with various epigenetic modifiers: the BAF60A/SMARCD1
subunits, the Setd7 histone H3K4 monomethyltransferase,
and the histone demethylase LSD1 (Chen et al., 2012; Fulcoli
et al., 2016). The importance of epigenetic regulation in this
disease is demonstrated by treating pregnant mice with a histone
demethylase inhibitor, thus increasing levels of methylated
H3K4, which partially rescues the cardiovascular anomalies in
Tbx1+/KO embryos (Fulcoli et al., 2016).

Children with Down syndrome (trisomy 21; OMIM 190685)
present with a higher-than-normal incidence rate (>50%) of
ventricular septal and atrial septal defects (Antonarakis, 2017).
Transcriptomic analysis of 45 trisomy 21 patient samples
identified significant misexpression of 247 genes not located on
chromosome 21, compared to only 77 genes dysregulated that are
located on chromosome 21 (Vilardell et al., 2011). Using patient
samples from a pair of monozygotic twins, one of which had
trisomy 21, Letourneau et al. (2014) performed transcriptomic
analysis and derived iPSC cell lines. Domains of dysregulated
genes are identified throughout the genome that overlaps with
nuclear lamina associating regions of low gene expression,
suggesting that chromatin modulation might be responsible for
gene mis-regulation in this syndrome (Letourneau et al., 2014).
However, it is still unclear how cardiac defects arise from these
global chromatin landscape changes.

CHD7, a chromatin remodeling factor that is a member
of the chromodomain helicase DNA-binding family of ATP-
dependent chromatin remodeling enzymes, is mutated in the
CHARGE syndrome (coloboma of the eye, heart defects, atresia
of the choanae, severe retardation of growth/development,
genital abnormalities, and ear abnormalities; OMIM 214800)
(Vissers et al., 2004). Nonsense and frameshift indel mutations
in CHD7 occur de novo, resulting in the generation of a loss-
of-function protein (Basson and van Ravenswaaij-Arts, 2015).
Seventy-five percent of patients present with a congenital heart
defect (Lalani et al., 2006). ChIP-qPCR analysis on NkL-Tag, a
mouse cardiac cell line, indicates that CHD7 binds directly to

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 May 2021 | Volume 9 | Article 637996

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-637996 April 30, 2021 Time: 20:16 # 7

George and Firulli Epigenetics and Heart Development

Nkx2-5 enhancers in vitro (Liu et al., 2014). Further ChIP analysis
demonstrates that recruitment to Nkx2-5 enhancers is mediated
via the CHD7 interaction with SMAD1 downstream of BMP2
signaling (Liu et al., 2014).

Other than congenital cardiac disease, postnatal epigenetic
changes are also correlated with gene expression changes leading
to cardiovascular aging, a complex process characterized by
decreased heart function and ventricular and atrial remodeling
(Zhang et al., 2018). These epigenetic changes are thought
to be induced by changes in reactive oxygen species (ROS)
or metabolite levels (Etchegaray and Mostoslavsky, 2016).
Myocardial infarction or pressure overload conditions in
the heart result in fibroblast activation and inflammation,
leading to cardiac fibrosis, which causes changes in epigenetic
regulation (Felisbino and McKinsey, 2018). We have reviewed
these changes in earlier relevant sections, but the etiology
of how these epigenetic changes lead to cardiac dysfunction
requires further study.

CONCLUSION

Extensive work in recent years has uncovered some of the
molecular mechanisms which control chromatin regulation and
disease conditions arising from epigenetic mis-regulation. The
conserved nature of chromatin domains and the regulatory
mechanisms controlling their establishment and maintenance
would suggest that changes to chromatin landscape would
lead to dramatic changes in gene expression. However, for
the most part, this has not been the case, suggesting that
in an epigenetic context, overlapping layers of modifications
regulate transcription. Although our understanding of chromatin
biology has vastly advanced in recent years with chromatin
conformation capture technologies, much remains unclear about
what the functional role is of these domains in regulating
enhancer accessibility or enabling/repressing transcription. In

adult disease conditions, epigenetic changes play a more complex
role with a large variability of phenotypes between patients,
further confounding the analysis of causative factors. Alterations
to epigenetic factors that correlate with disease suggest that
these aberrant proteins undergo changes in subunit function
and lack biological redundancies. Interestingly, cardiomyopathy
phenotypes in human patients appear to be sensitive to these
epigenetic aberrations, suggesting specificity in both tissue and
type of epigenetic factor expressed during heart development.
Refining our understanding of the epigenetic mechanisms at play
in cardiac development is required to parse out these phenotypes.
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