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Abstract

When attempting to predict future events, people commonly rely on historical data. One psychological char-

acteristic of judgmental forecasting of time series, established by research, is that when people make forecasts

from series, they tend to underestimate future values for upward trends and overestimate them for downward

ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent

time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also

be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experi-

ment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predic-

tions of the next event (forecast) and (b) estimation of the average value of all the events in the presented

series (average estimation). Participants’ responses in dynamic mode were anchored on more recent events than

in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved

prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we

develop and present an agent-based model—the adaptive anchoring model (ADAM)—to account for the differ-

ence between processing sequences of dynamically and statically presented stimuli (visually presented data).

ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these

responses) in both forecasting and judgment tasks. ADAM’s model predictions for the forecasting and judgment

tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM
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outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while nei-

ther of these models accounts for people’s responses on the average estimation task.

Keywords: Judgment; Prediction; Experience; Description; Trend; Behavioral forecasting

1. Introduction

Recent research on decision making from experience suggests that the manner in

which people acquire information affects how they respond to it. Theorists claimed that

how people make risky decisions depends on whether they learned about the decision

outcome values and their likelihoods either by repeatedly sampling the options and expe-

riencing their outcomes, or via summary descriptions of the outcome values and likeli-

hoods (Hertwig, Barron, Weber, & Erev, 2004; Hertwig & Erev, 2009; Hertwig &

Pleskac, 2010; Kusev, van Schaik, Alzahrani, Lonigro, & Purser, 2016; Kusev, van

Schaik, Ayton, Dent, & Chater, 2009). Their findings in support of this claim are signifi-

cant because, although in life many choices are made without the benefit of descriptions

of the likelihoods of the possible outcomes, nearly all the experimental research studying

risky decision making has evaluated how people respond to described decisions1

(De Martino, Kumaran, Seymour, & Dolan, 2006; Tom, Fox, Trepel, & Poldrack, 2007).

Events in a time series can be experienced sequentially (dynamic mode), or they can

also be viewed simultaneously (static mode), not experienced individually in real time.

Outside the laboratory, decisions are usually based on experience; often people learn

about the likelihoods of decision outcomes through repeatedly making choices and experi-

encing the outcomes. Some of the differences between experience-based and description-

based decision making also apply to some forms of judgment. For example, sometimes

people attempting to forecast from a time series of events will examine a complete series

of historical data (e.g., recent sales performance) and attempt to predict the next event.

Commonly, however, forecasters live through the sequence of events and, rather than

inspecting a complete and static sequence, will experience a time series of events dynam-

ically as they occur over time. In the latter case, as in learning about decisions from

experience, the events in the time series are experienced sequentially in the context pro-

vided by subsequent events. In the former case, the events in the time series are not expe-

rienced individually over time, but they are reviewed retrospectively and can immediately

be viewed holistically such that any overall pattern will be immediately apparent, as with

learning about decisions from descriptions. Nevertheless, in both situations forecasters

refer to exactly the same data points to predict the next event.

As decisions from experience differ from decisions from description, this plainly raises

the issue as to how judgment from experience might differ from judgment from description;

specifically, does the mode of encountering time series influence judgment as it does deci-

sion making? One psychological characteristic of judgmental forecasting of time series

established by research is that when people make forecasts from series, they tend to under-

estimate future values for upward trends and overestimate them for downward ones, so-
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called trend-damping (Andreassen & Kraus, 1990; Bolger & Harvey, 1993; Eggleton,

1982; Keren, 1983; Lawrence & Makridakis, 1989; Reimers & Harvey, 2011; Sanders,

1992; Wagenaar & Sagaria, 1975; Wagenaar & Timmers, 1978). Research has also offered

a number of theoretical explanations as to why trend-damping may occur (Lawrence, Good-

win, O’Connor, & €Onkal, 2006; Lawrence & O’Connor, 1992) and demonstrated that

trend-damping can be modeled (a) by anchoring on, and (insufficient) adjustment from, the

average of recent time series values (Tversky & Kahneman, 1974) or (b) by contextual

adaptation to features of the environment—with steeper trends causing trend-damping and

shallower trends leading to anti-damping in behavioral forecasts (Harvey & Reimers,

2013). Here, we investigate whether both judgments of the average and judgmental fore-

casting of time series are affected by variation in the way in which people experience infor-

mation, when either retrospectively reviewing a time series or experiencing it one event at

a time. Given that trend-damping reflects some psychological strategy, we aimed to deter-

mine if and how it varies across different ways of encountering a time series. Previous

research has demonstrated that judgments are sensitive to contextual properties of experi-

enced events (Kusev, Tsaneva-Atanasova, van Schaik, & Chater, 2012; Kusev et al., 2011);

experiencing a sequence of events serially (dynamically) one at a time necessarily draws

attention to each individual event. Consequently, this may increase the tendency to anchor

on the most salient events for experienced sequences more than for described sequences.

2. Predictions and model development

A commonly expressed view in memory and cognition research is that the representation

of events stored in memory is highly dependent on the mode of psychological processing

used in encoding the events (Bogen & Gazzaniga, 1965; Dunn, 1985; Dunn & Reddix,

1991; Levy, Trevarthen, & Sperry, 1972; Levy-Agresti & Sperry, 1968; Tucker, 1981). One

mode is traditionally considered to be analytic and logical in its processing (e.g., processing

individual events, dynamically, one at a time), while the other mode processes information

in a more holistic or Gestalt manner (e.g., processing the events, statically, at once) (Dunn,

1985; Dunn & Reddix, 1991; Levy et al., 1972; Levy-Agresti & Sperry, 1968; Masuda &

Nisbett, 2001; Nisbett & Miyamoto, 2006; Nisbett, Peng, Choi, & Norenzayan, 2001;

Tucker, 1981; Van Belle, de Graef, Verfaillie, Busigny, & Rossion, 2010). Accordingly, we

propose that forecasters, in their predictions, rely on a small sample of recent events (e.g.,

the most recent event from dynamically experienced sequences) or “average” representa-

tions of the whole time series from statically experienced sequences (e.g., Deese & Kauf-

man, 1957; Harvey & Reimers, 2013; Murdock, 1962; Postman & Phillips, 1965). However,

neither empirical nor theoretical research provides evidence as to whether dynamically

experienced sequences facilitate a general cognitive and behavioral advantage.

It is plausible that forecasting accuracy is enhanced by dynamically experienced

sequences of events (where success accuracy is informed by the most recent event).

Specifically, where events are presented with dynamic sequences (e.g., self-paced value-

by-value presentation of a series with all previous values visible at all times or self-paced
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value-by-value presentation of a series with the last value only visible at any one time),

forecasting accuracy may be induced, drawing the respondents’ attention to each individ-

ual event; hence, anchoring on the most recent/salient event occurs. In contrast, where

events are presented with static sequences (one simultaneous presentation of all values of

a series), forecasting errors may be induced (drawing the respondents’ attention on the

“average” event with insufficient adjustment to the most recent event). This assumption is

novel, intriguing, intuitive, and worth exploring.

However, presentation by way of either dynamic or static trends (time series) does not

only influence forecasting. Accordingly, in this article we further explored the influence

of two sorts of judgment: (a) predictions of the next event (forecast—where the focus is

on the next event in time series), and (b) estimation of the average value of all the events

in the presented series (average estimation—where the focus is on the “average” event in

time series). It is likely that participants’ responses in dynamic mode are anchored on

more recent events than in static mode for all types of judgment (forecasting and average

estimations), but with different consequences on judgment accuracy: dynamic presentation

would improve prediction accuracy, but not estimation.

Accordingly, we assume that behavioral differences in the judgment of information

may emerge as a result of the presentation mode of experienced (dynamic or static)

sequences of perceptual information in the task and type of judgment (forecasting or esti-

mation). In the present article, for the purpose of developing a unified model to account

for the different modes of presentation, the terms dynamic and static will be used opera-

tionally to describe different presentations modes that are experienced, based on statically

presented (described) and dynamically presented (experienced) sequences.

To comprehensively account for the effect of presentation mode for two types of judg-

ment, we developed an agent-based model—the adaptive anchoring model (ADAM),

inspired by the memory-based scaling model (Petrov & Anderson, 2005). Anchoring in

the model is scaled via a stimulus parameter representing the type of experience and

judgment task. We note that this is not a free parameter but attains a rather well-defined

value that accounts for the context of information presentation. The model is adaptive in

the sense that it takes into account the extent of match between judgment task and experi-

ence type. In particular, in constructing the model we aim to account for people’s

responses in forecasting and judgment tasks across combinations of different presentation

modes, trend directions, and trend consistency. First, presentation mode (described and

experienced) will have an effect on participants’ response: With static presentation the

series average will be strongly weighted in the response (“average” event), but with

dynamic presentation the last trend value will be strongly weighted in the response. Sec-

ond, the judgment task would have an effect: In the forecasting task the last trend value

will be strongly weighted in the response, but in the judgment task the series average will

be strongly weighted in the response. Hence, we include in the model a predictor (param-

eter) that accounts for the distribution of weights, depending on the context of the data

presentation and judgment task.

In our model, we use a single idealized item stimulus Si, which depends on the type of

the experience: i = s (static), i = dt (dynamic with trend), or i = dc (dynamic with only the
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current value presented). In the case of static experience, Ss = 0.35 (the normalized mean

of the experimental sequence), whereas in the case of dynamic experience Sdt = Sdc = nor-

malized last element of the experimental sequence with range [0; 1]. The task effect in the

model is represented by an idealized task item (Tk), which depends on the experimental

task, k = j (judging average) or f (forecasting). In particular, in the case of judgment

Tj = 0.35 (the normalized mean of the experimental sequence), and in the case of dynamic

experimental setting Tf = normalized last element of the experimental sequence.

Next, the similarity between the stimulus and the task is assumed to depend exponen-

tially on the distance between them (Myung, Pitt, & Navarro, 2007). To take account of

the trend in the model, we do not use the absolute value of the distance between stimulus

and task item; we also normalize the values of the stimulus and task items such that Si
and Tk 2 (0, 1). Hence, the similarity weight (SWik) depends on the distance between an

idealized item stimulus Si and an idealized task item (Tk). Specifically, we calculate the

similarity weight using the following exponential representation:

SWik ¼ expð�ðSi � TkÞÞ ð1Þ
In addition, we take into account an experience-dependent anchor, EAi, i = s (static)

i = dt (historic-dynamic, i.e., dynamic with trend), or i = dc (momentary-dynamic, i.e.,

dynamic with current value only). In the case of static experience EAs = 3,500 (the mean

of the experimental sequence), whereas in the case of dynamic experience

EAdt = EAdc = last element of the experimental sequence.

Furthermore, the similarity weight scales the magnitude of the behavioral response

depending on the distance between the stimulus and the task target; in other words, it rep-

resents critical factors that may act in relation to the position of the stimulus. The stimuli

in our experiments are time series bars with heights (representing quantities) and the task

of the observers is to judge the average and forecast the next trend value (both tasks

using response bars with heights). This is a similar version to some of the abstractions

implicit in multidimensional scaling (Schiffman, Reynolds, & Young, 1981) and distance-

based similarity metrics (Nosofsky, 1992).

Finally, as suggested by the memory-based scaling model (Petrov & Anderson, 2005),

we take into account perceptual noise (to account for individual perceptual variability

among participants). Hence, the behavioral response (BRik) in the model is a Gaussian ran-

dom variable whose mean and variance depend on the stimulus-task similarity weight, SWik,

as well as the experience-dependent anchor, EAi, and is given by the following product:

BRik ¼ SWik � EAi � ð1þ kpxpÞ; ð2Þ
where kp is a dimensionless coefficient of proportionality and xp is a random variable with

zero mean and unit variance (Petrov & Anderson, 2005). We note that Eq. 2 can be consid-

ered a stochastic version of the linear regression equations used in previous research on fore-

casting and judgment where the anchor point depends on specific properties of the time

series used in the experiments (Lawrence & O’Connor, 1992, 1995). However, our model

takes into account the similarity between task and type of experience.
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3. Experiment

We expect that human forecasting and average estimation are informed by the most

recent event from dynamically experienced sequences (dynamic mode) or “average” rep-

resentations of the whole time series from statically experienced sequences (static mode),

with different consequences on judgment accuracy. Specifically, we predict a fourfold

pattern of judgment accuracy: (a) enhanced forecasting accuracy with dynamic mode

(where success accuracy will be informed by the most recent event), (b) induced average

estimation errors with dynamic mode (recency), (c) induced forecasting errors with static

mode (drawing the respondents’ attention on the “average” event with insufficient adjust-

ment to the most recent event), and (d) enhanced average estimation accuracy with static

mode (one simultaneous presentation of all values of a series).

Accordingly, an experiment was designed to establish the effects of presentation mode

of experiencing a time series and judgment tasks on behavioral response, and to evaluate

the difference between the behavioral response data and model predictions from ADAM,

linear regression, autoregressive-integrated-moving-average (ARIMA), and exponential

smoothing models. Two sorts of judgment were studied: (a) predictions of the next event

(forecasting), and (b) estimation of the average value of all the events in the presented

series (average estimation). We chose these two judgment tasks as they are somewhat

disparate; plausibly, they will invoke diverse processing strategies requiring differential

attention to features of the time series (trends, distribution, volatility) that may be differ-

entially influenced by the mode of experiencing time series.

3.1. Method

3.1.1. Participants
One thousand six hundred and twenty participants (876 female; Mage = 42, SD = 13)

were recruited through a recruitment service of online survey panels. They took part indi-

vidually and received a payment of £1. All participants were treated in accordance with

the British Psychological Society’s code of human research ethics.

3.1.2. Stimuli and equipment
An interactive computer program for judgments and forecasting was developed and used.

Three time series (linear positive trend with superimposed noise, linear negative trend with

superimposed noise and stationary noise only; see Fig. 1A–C) of monetary values were

generated. The three time series can be described with Eqs. 3–5, respectively:

YðtÞ ¼ 3; 000þ 21:28� t þ n: ð3Þ
YðtÞ ¼ 4; 000� 21:28� t þ n: ð4Þ
YðtÞ ¼ 3; 500þ n; ð5Þ

where t = 1, . . ., 48, and n followed a normal distribution with mean = 0 and

variance = 10.
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3.1.3. Design and procedure
A 3 9 3 9 2 independent-measures experimental design was used. The first indepen-

dent variable was trend direction; this was positive linear trend with superimposed

Gaussian noise, negative trend with superimposed Gaussian noise, or stationary series

A. Positive trend.

B. Negative trend.

C. Stationary series.

SALARY /
AMMOUNT

MONTHS

SALARY /
AMMOUNT

MONTHS

SALARY /
AMMOUNT

MONTHS

Fig. 1. Time series used in the experiment.
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(Gaussian noise only). The second independent variable was presentation mode; this was

historic-dynamic (self-paced value-by-value presentation of a series with all previous val-

ues visible at all times), momentary-dynamic (self-paced value-by-value presentation of a

series with only the last value visible at any one time), or static (one simultaneous pre-

sentation of all values of a series). The third independent variable was trend consistency;
this was consistent or inconsistent. In consistent trends, 48 data points were presented,

according to Eqs. 3–5. In inconsistent trends, 49 data points were presented; after 48

points according to Eqs. 3–5, the mean value of 3,500 followed, producing an inconsis-

tent continuation of positive and negative trends. Participants were asked to make only

two judgments (no multiple forecasts and estimations) from the time series: a prediction

of the next event, and a judgment of the average value in the series after being presented

with the entire 48 or 49 data points.

Accordingly, the first dependent variable was forecasting error. This was relative to the

next predicted value from the appropriate regression model—(3), (4), or (5) for consistent

trends and with adjusted model parameter values to account for inconsistent trends with

an additional 49th data point. The second dependent variable was error in the judged

average value (relative to the true mean, which was the same for all series).

Participants were told that the time series represented the average monthly earnings (in

pounds sterling) of employees in one company over 48 or 49 months. In the static presen-

tation the whole series was displayed at once (with no behavioral dynamic task engage-

ment). In contrast, tasks with dynamic presentation required participants to click a button

(labeled “Next Month”) to observe each month’s salaries, with previous values remaining

on the screen (in historic-dynamic presentation) or not (in momentary-dynamic presenta-

tion). Therefore, all values of the series were presented in both the static and dynamic

conditions before any type of judgment was required to be made by the participants. In

each presentation condition, while the whole series (for static and historic-dynamic pre-

sentation) or the final value (for momentary-dynamic presentation) was displayed,

participants had to (a) predict the next value in the series (by clicking at their chosen

position on a vertical line), and (b) estimate the average salary over the presented 48 or

49 months (again, by clicking). These two tasks (performed only once) were presented in

random order for each participant and without training.

3.2. Results and discussion

We first present an exploratory analysis of the first two dependent variables, before

analyzing each of the two dependent variables in detail. We found that the mode of pre-

sentation (historic-dynamic, momentary-dynamic, or static) affected judgment of both

dependent variables (error of behavioral forecasting and average estimation), but the

effect was moderated by trend direction and trend consistency.

3.2.1. Exploratory analysis
The correlation between forecasting and estimation was low, r = .05, and non-

significant p > .05. The pattern of mean values for the two tasks (see Fig. 2A,B) indicates
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A. Prediction.

B. Average-estimation.

Fig. 2. Means values for dependent variables in the experiment. Error bars represent 95% confidence interval

of the mean.
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that forecasting performance was more influenced by trend direction than estimation per-

formance and this influence was most pronounced under dynamic presentation (historic or

momentary) and with consistent trends. In particular, the forecasting response seemed to

be more strongly influenced by the final values in the series than the estimation response.

Thus, performance on the two tasks was genuinely different and further analysis in terms

of error of forecasting and average estimation was subsequently conducted. Furthermore,

the pattern of results is consistent with the idea that under static presentation, the whole

presented series is taken into account to a larger extent when a response is made. In con-

trast, under (in particular historic-) dynamic presentation of consistent trend series, the

most recent value in the series is more heavily weighted in the behavioral forecasting and

estimation of the average responses.

3.2.2. Forecasting
Overall, the following behavioral forecasting results reveal that dynamic presentation

aids the forecasting accuracy of consistent trends. Fig. 3 shows the prediction error (cal-

culated as the difference between response value and predicted next trend value from the

regression equation of the trend that was presented) and illustrates that forecasting was

more accurate with dynamic presentations than with static presentation. One-way analysis

of variance (ANOVA) comparing the mean absolute error rate in the forecasts confirmed a

significant difference between the three presentation conditions, F(2, 1617) = 18.08,

Fig. 3. Prediction error. Error bars represent 95% confidence interval of the mean.
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e2 = .02, p < .001. Post hoc tests (Tukey’s HSD) confirmed that participants experiencing

historic-dynamic presentation series were significantly more accurate forecasters than par-

ticipants experiencing static presentation (95%-confidence interval of mean differ-

ence = [51.49; 117.50]) or momentary-dynamic presentation (95%-confidence

interval = [13.20; 79.21]).

Trend-damping was evident for each presentation mode—future salary was under-pre-

dicted for a positive trend and over-predicted for a negative trend. However, these ten-

dencies were both markedly reduced with dynamic presentation in consistent trends,

resulting in improved forecasting with the dynamic presentation mode (see Fig. 3). A

3 9 3 9 2 ANOVA (Table 1, Panel 1) on the signed forecast errors confirmed that the

effect of trend direction and the interaction effect of trend direction and presentation

mode on forecasting error were statistically significant, but—unsurprisingly—given the

net effect of positive and negative errors, the main effect of presentation mode was not.

However, the interaction effect of trend consistency and trend direction was also signifi-

cant, with the effect of direction stronger for inconsistent trends, as was the three-way

interaction of trend direction, presentation mode, and trend consistency with the interac-

tion effect of direction and presentation mode only apparent for consistent trends.

Given the significant three-way interaction, follow-up 3 9 3 ANOVAs analyzed the

effect of trend direction and presentation on forecasting error for each trend consistency.

For inconsistent trends (Table 1, Panel 2), the main effect of trend direction was signifi-

cant, but the main effect of presentation mode and the interaction effect were not. For

consistent trends (Table 1, Panel 3), the effect of trend direction, F(2, 801) = 194.65,

e2 = .30, p < .001, and the interaction effect of trend direction and presentation mode on

forecasting error were again statistically significant, but—unsurprisingly—given the net

effect of positive and negative errors, the main effect of presentation mode was not. Sim-

ple effect tests (univariate ANOVA) showed that with consistent trends the effect of trend

direction was significant for both static (Table 1, Panel 4) and dynamic presentations,

though with a smaller effect size for the latter (see Table 1, Panel 5 [momentary-

dynamic] and Table 1, Panel 6 [for historic-dynamic]).

Further simple effect tests showed that with consistent trends the effect of presentation

mode on forecasting error was significant for the stationary series (Table 1, Panel 7), for

the positive trend (Table 1, Panel 8) and for the negative trend (Table 1, Panel 9). Post

hoc tests (Tukey’s HSD) corroborated the behavioral advantage (forecasting accuracy)

with experience of dynamic presentation modes. Compared to the static presentations, the

dynamic presentations significantly reduced under-predicting of positive trends (95%-

confidence interval of mean difference = [�343.73; �146.38] for historic-dynamic, and

95%-confidence interval = [�241.55; �44.19] for momentary-dynamic) and over-predict-

ing of negative trends (95%-confidence interval = [127.54; 296.01] for historic-dynamic

and 95%-confidence interval = [92.90; 261.37] for momentary-dynamic).

These results (see also Fig. 3) demonstrate more behavioral adjustment toward the final

(and most recent) values in the conditions where the trend series are dynamic and consis-

tent. Specifically, the increase in forecasting accuracy for dynamic presentation is due to

reduced trend-damping; the dynamic presentation of trend series draws forecasters’
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Table 1

Analysis of variance—prediction error

Source df F p e2

Panel 1: 3 9 3 9 2 analysis, all conditions

Presentation mode 2 1.64 .194 .00

Direction 2 1,029.76 .000 .51

Length 1 1.93 .165 .00

Presentation by direction 4 14.49 .000 .01

Presentation by length 2 0.75 .474 .00

Direction by length 2 118.06 .000 .06

Presentation by direction by length 4 11.85 .000 .01

Residual 1,602

Total 1,619

Panel 2: 3 9 3 analysis, inconsistent trend

Presentation mode 2 0.28 .756 .00

Direction 2 1,120.04 .000 .73

Presentation by direction 4 1.24 .292 .00

Residual 801

Total 809

Panel 3: 3 9 3 analysis, consistent trend

Presentation mode 2 1.83 .161 .00

Direction 2 194.65 .000 .30

Presentation by direction 4 21.45 .000 .07

Residual 801

Total 809

Panel 4: One-way analysis, consistent trend, static presentation

Direction 2 114.00 .000 .46

Residual 267

Total 269

Panel 5: One-way analysis, consistent trend, momentary-dynamic presentation (last value only)

Direction 2 27.49 .000 .17

Residual 267

Total 269

Panel 6: One-way analysis, consistent trend, historic-dynamic presentation

Direction 2 56.27 .000 .29

Residual 267

Total 269

Panel 7: One-way analysis, consistent trend, stationary series

Presentation mode 2 4.41 .013 .03

Residual 267

Total 269

Panel 8: One-way analysis, consistent trend, positive trend

Presentation mode 2 17.29 .000 .11

Residual 267

Total 269

Panel 9: One-way analysis, consistent trend, negative trend

Presentation mode 2 20.20 .000 .13

Residual 267

Total 269
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attention to a smaller subset of more recently experienced events. For trended series,

more recent events are closer to the normatively correct value than less recent events, so

anchoring on more recent values would result in more accurate forecasts.

3.2.3. Average-estimation
In contrast to the behavioral forecasting results, the average-estimation judgments

results reveal that static presentation aids the average-estimation accuracy of consistent

trends. Average salary was generally underestimated (Fig. 4), but not for the consistent

positive trends with dynamic presentation. One-way ANOVA comparing the mean absolute

error rate in average estimation demonstrated no significant difference between the three

presentation modes, F < 1.

With dynamic presentation, there was a difference in the signed error between the positive

and negative trended series, suggesting again anchoring on a subset of more recent events. A

3 9 3 9 2 ANOVA (Table 2, Panel 1) on the signed average-estimation errors confirmed that

the effect of trend direction and the interaction effect of trend direction and presentation

mode on error in the judged average value were statistically significant. Unsurprisingly, given

the net effect of positive and negative errors, the main effect of presentation mode was not.

However, the interaction effect of trend consistency and trend direction was also significant,

with the effect of direction stronger for consistent trends. Moreover, the three-way interaction

of trend direction, presentation mode, and trend consistency was significant too, with the

interaction effect of direction and presentation mode only apparent for consistent trends.

Fig. 4. Average-estimation error. Error bars represent 95% confidence interval of the mean.
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Table 2

Analysis of variance—average-estimation error

Source df F p e2

Panel 1: 3 9 3 9 2 analysis, all conditions

Presentation mode 2 0.36 .695 .00

Direction 2 61.45 .000 .06

Length 1 0.14 .705 .00

Presentation by direction 4 11.30 .000 .02

Presentation by length 2 0.08 .919 .00

Direction by length 2 42.40 .000 .04

Presentation by direction by length 4 8.02 .000 .02

Residual 1,602

Total 1,619

Panel 2: 3 9 3 analysis, inconsistent trend

Presentation mode 2 0.13 .877 .00

Direction 2 1.85 .157 .00

Presentation by direction 4 0.30 .878 .00

Residual 801

Total 809

Panel 3: 3 9 3 analysis, consistent trend

Presentation mode 2 0.31 .733 .00

Direction 2 99.20 .000 .18

Presentation by direction 4 18.50 .000 .07

Residual 801

Total 809

Panel 4: One-way analysis, consistent trend, static presentation

Direction 2 0.58 .561 .00

Residual 267

Total 269

Panel 5: One-way analysis, consistent trend, momentary-dynamic presentation (last value only)

Direction 2 62.37 .000 .32

Residual 267

Total 269

Panel 6: One-way analysis, consistent trend, historic-dynamic presentation

Direction 2 83.53 .000 .38

Residual 267

Total 269

Panel 7: One-way analysis, consistent trend, stationary series

Presentation mode 2 0.37 .692 .00

Residual 267

Total 269

Panel 8: One-way analysis, consistent trend, positive trend

Presentation mode 2 14.38 .000 .09

Residual 267

Total 269

Panel 9: One-way analysis, consistent trend, negative trend

Presentation mode 2 20.95 .000 .13

Residual 267

Total 269
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Given the significant three-way interaction, follow-up 3 9 3 ANOVA s analyzed the effect

of trend direction and presentation on error in the judged average value for each trend con-

sistency. For inconsistent trends (Table 2, Panel 2), neither the main effect of trend direc-

tion nor the main effect of presentation mode nor the interaction effect was significant. For

consistent trends (Table 2, Panel 3), the effect of trend direction and the interaction effect

of trend direction and presentation mode were again statistically significant, but—unsur-

prisingly—given the net effect of positive and negative errors, the main effect of presenta-

tion mode was not. Simple effect tests (univariate ANOVA) showed that with consistent

trends the effect of trend direction on error in the judged average value was not significant

for static presentation (Table 2, Panel 4), but was significant for both dynamic presenta-

tions—momentary-dynamic (Table 2, Panel 5) and historic-dynamic (Table 2, Panel 6).

Further simple effect tests showed that with consistent trends the effect of presentation

mode on error in the judged average value was significant for the positive trend (Table 2,

Panel 8) and the negative trend (Table 2, Panel 9), but not for the stationary series (Table 2,

Panel 7). Post hoc tests (Tukey’s HSD) corroborated the behavioral advantage (accuracy of

average estimation) with experience of static presentation mode. Compared to the dynamic

presentations, static presentations significantly reduced over-estimation of positive trends

(95%-confidence interval of mean difference = [�254.34; �89.68] for historic-dynamic,

and 95%-confidence interval = [�232.61; �67.95] for momentary-dynamic) and under-

estimation of negative trends (95%-confidence interval = [108.39; 256.19] for historic-

dynamic and 95%-confidence interval = [94.58; 242.38] for momentary-dynamic).

4. Model assessment

4.1. How the ADAM predicts behavioral forecasting and average-estimation

The task-specific subsystems of ADAM were implemented in a MATLAB program

(http://uk.mathworks.com) that takes experimentally presented sequences (3)–(5) as inputs
and produces behavioral responses as outputs. The model performance is thus directly

comparable to the human data and is tested in a simulation experiment that replicates the

behavioral experiment.

We statistically tested model predictions against the response data. First, in the case

when kp = 0 (without Gaussian noise), the model is deterministic and generates constant

predictions as BRik is calculated according to (2). We note that in the case of forecasting

under dynamic presentation we have the last element of the experimental sequence as a

model prediction and in the case of average-estimation judgment under static presenta-

tion the model predicts the mean of the experimental sequence as a behavioral response.

Second, in the case when kp 6¼ 0, the model takes into account individual variability.

Hence, we can simulate the responses given in the experiment better and compare the

average predicted in the model with the experimentally observed averages for each

experimental condition. In our simulations, we used kp = .04 as estimated in the mem-

ory-based scaling model (Petrov & Anderson, 2005). For each experimental condition
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(n = 90) and each of two values of the model parameter kp (0 and .04), we generated 90

model predictions that were to be compared with the 90 actual response data in that con-

dition.

Unrelated t tests were used to assess the difference ([lack of] fit) between response

data and model (ADAM) predictions. Fig. 5 shows the effect sizes for different combi-

nations of trend direction, presentation mode, and trend consistency. With kp = 0, 8 out

of 18 differences were significant for forecasting, as were 6 of 18 for judgment.

According to Cohen’s (1988) conventions for effect size r, average effect size was

small (M = .14 [SD = .13] for forecasting and mean = .12 [SD = .11] for average esti-

mation), but not negligible and indicating a lack of fit between response data and

model. For forecasting, model fit was poorest in experimental conditions with momen-

tary-dynamic presentation of positive trend and negative inconsistent trend, and historic-

dynamic presentation of positive and negative consistent trend. For judgment, fit was

poorest in experimental conditions with (historic- or momentary-) dynamic presentation

of consistent positive trend.

With kp = .04, none of the differences was significant, all p > .05 (and |t| < 1 for 16

out of 18 combinations). Average effect size was extremely small and consistent across

the 18 experimental conditions, M = SD = .03, for forecasting, M = SD = .02, for judg-

ment, indicating an excellent fit. The source of the data (our human participants or

ADAM) explained hardly any variance: <.01% of variance in forecasting data and <.05%
of variance in average estimation data—again evidence for a good fit.

Further evidence for the advantage for the simulation with model parameter kp = .04

comes from comparisons between simulations with kp = .04 and those with kp = 0. Of

the 14 conditions where the mean of the response data differed significantly from the

mean of the simulation results with kp = 0, 10 conditions also showed a significant differ-

ence between the simulation results with kp = .04 and those with kp = 0 at the .05 signifi-

cance level, and another three conditions showed a significant difference at the .10 level.

An explanation for the difference in results is that the model with kp = .04 represents a

degree of individual variability, whereas model with kp = 0 represents no variability at

all. In fact, in the current dataset Petrov and Anderson’s (2005) parameter value kp = .04

produced variability in the series of model predictions that was very close to variability

in the series of the actual data, mean of SD ratio = 1.00 (SD of SD ratio = 0.12) for fore-

casting and mean of SD ratio = 1.00 (SD of SD ratio = 0.11) for average estimation. Fur-

ther confirmation of this finding comes from the Levene’s test results showing that the

assumption of equality of variance was not violated in any of the 18 experimental condi-

tions. Given that fit between model and data was substantially better with kp = .04 com-

pared to kp = 0 (see also Fig. 5), kp = .04 was used in the following assessment of model

predictions.

Cross-validation within the large sample (N = 1,620) was undertaken by randomly

splitting the sample for each experimental condition (n = 90) in two subsamples

(45 + 45). 2 9 2 ANOVA was then conducted with independent variables series (re-

sponse data or model predictions) and subsample for both tasks. The main purpose of

the analysis was, first, to establish that the interaction effect was not significant
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Fig. 5. Effect size r of comparisons between response data and model predictions (ADAM). (A) The model

simulations were performed with perceptual noise parameter k = 0.04 and (B) the model simulations were

performed with perceptual noise parameter k = 0. Model comparisons: Exp (presentation mode): 0 static (one

simultaneous presentation of all values of a series]), 1 historic-dynamic [self-paced value-by-value

presentation of a series with all previous values visible at all times], and 2 momentary-dynamic (self-paced

value-by-value presentation of a series with only the last value visible at any one time). Dist (trend direction):

0 stationary series (Gaussian noise only), 1 positive linear trend with superimposed Gaussian noise, and 2

negative trend with superimposed Gaussian noise. Length (trend consistency): 48 according to Eqs. 1–3 or

49, where the mean value of 3,500 was inserted at the end of a series of 48—an inconsistent continuation of

positive and negative trends.
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(showing that the effect of series, and thereby fit between response data and model

predictions, was not different between the two samples) and that the main effect of

series was not significant (indicating a good model fit). For none of the experimental

conditions were the interaction effect or the main effect of series significant, all

p > .05, thereby providing evidence for consistency of model fit across subsamples

within the dataset.

4.2. Predicting behavioral response with a linear-regression time series model

Model fit was further assessed through comparison by way of statistical testing of the

predicted next trend value against response data. As a comparison, the same type of anal-

ysis was conducted comparing response data with the predicted next trend value (see

Fig. 6). To represent individual variability (IV) in task performance in the same way as

in the model with kp = .04, the predicted value was weighted by a random process as in

Eq. 2:

PVikðtÞ ¼ YðtÞ � ð1þ kpnpÞ ð6Þ
Fig. 6 shows the effect sizes for different combinations of trend direction, presentation

mode, and trend consistency. Twelve out of 18 differences were significant for forecasting

and 7 of 18 for average estimation. Average effect size was large for forecasting, M = .46,

SD = .36, and mid-sized for average estimation, M = .19, SD = .23, indicating a poor fit

and a lack of consistency of fit across experimental conditions. For forecasting, fit was
extremely poor in experimental conditions with static presentation of positive or negative

trends, historic-dynamic presentation of positive inconsistent and negative inconsistent

trends, and momentary-dynamic presentation of positive inconsistent and negative incon-

sistent trends. Fit was also poor for momentary-dynamic presentation of consistent positive

and negative trends, and dynamic-historic presentation of the consistent positive trend. For

average estimation, fit was extremely poor in conditions with (historic- or momentary-)

dynamic presentation of the negative trend. Fit was also poor for historic- and momentary-

dynamic presentation of the consistent positive trend as well as historic-dynamic presenta-

tion of the stationary trend. These results demonstrate that a linear-regression time series

model that describes the trend that is presented and generates the predicted next trend

value is a poor model of people’s response. In addition, it is notable that even the model

of (2) with kp = 0 performed better than the predicted next trend value, the model of (6)

(compare Fig. 5 with Fig. 6).2

As a further comparison, the same type of analysis was conducted comparing model

predictions of (2) with the model predictions of (6), the predicted next trend value (see

Fig. 6). The results were almost identical to those of the previous comparison between

the response data and the model predictions from (6), thereby indirectly providing further

evidence for the excellent fit between the response data and model predictions of (2) and

a poor fit between the response data and model of predictions of (6).
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Fig. 6. Effect size r of comparisons between response data and model predictions (Linear-regression time

series model). (A) The model simulations were performed with perceptual noise parameter k = 0.04 and (B)

the model simulations were performed with perceptual noise parameter k = 0. Model comparisons: Exp (pre-

sentation mode): 0 static (one simultaneous presentation of all values of a series), 1 historic-dynamic (self-

paced value-by-value presentation of a series with all previous values visible at all times), and 2 momentary-

dynamic (self-paced value-by-value presentation of a series with only the last value visible at any one time).

Dist (trend direction): 0 stationary series (Gaussian noise only), 1 positive linear trend with superimposed

Gaussian noise, and 2 negative trend with superimposed Gaussian noise. Length (trend consistency): 48

according to Eqs. 1–3 or 49, where the mean value of 3,500 was inserted at the end of a series of 48—an

inconsistent continuation of positive and negative trends.
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4.3. Predicting behavioral forecasting with ARIMA and exponential-smoothing
algorithms

Previous research (e.g., Andreassen & Kraus, 1990; Box, Jenkins, & Reinsel, 1994;

Bunn & Wright, 1991; Gardner, 1985; Gardner & McKenzie, 1985; Lawrence, Edmund-

son, & O’Connor, 1985; Lawrence & O’Connor, 1992, 1995) has used ARIMA and expo-

nential-smoothing algorithms to explore and model people’s forecasting behavior. We

therefore compared these algorithms with ADAM. We statistically tested model predic-

tions from an ARIMA (1, 0, 0) model (first-order autoregressive model, also known as

Box–Jenkins model [Box et al., 1994]) and those from an exponential-smoothing algo-

rithm (Gardner, 1985; Gardner & McKenzie, 1985) against the response data. For each

experimental condition (n = 90), we generated 90 model predictions from Eqs. 3 (for an

increasing trend), 4 (for a decreasing trend), or 5 (for a stationary trend) that were to be

compared with the 90 actual response data in that condition.

Fig. 7 shows the effect sizes for different combinations of trend direction, presentation

mode, and trend consistency. For ARIMA(1, 0, 0), 13 of 18 differences were significant

Fig. 7. Effect size r of comparisons between response data (forecasting only) and model predictions (ARIMA

and exponential smoothing models). Model comparisons: Exp (presentation mode): 0 static (one simultaneous

presentation of all values of a series), 1 historic-dynamic (self-paced value-by-value presentation of a series with

all previous values visible at all times), and 2 momentary-dynamic (self-paced value-by-value presentation of a

series with only the last value visible at any one time). Dist (trend direction): 0 stationary series (Gaussian noise

only), 1 positive linear trend with superimposed Gaussian noise, and 2 negative trend with superimposed Gaus-

sian noise. Length (trend consistency): 48 according to Eqs. 1–3 or 49, where the mean value of 3,500 was

inserted at the end of a series of 48—an inconsistent continuation of positive and negative trends.
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for forecasting. The average effect size r was medium (M = .51 [SD = .39]), indicating a

lack of fit between response data and model. Model fit was poorest in experimental con-

ditions with momentary-dynamic or historic-dynamic presentation of positive and nega-

tive trends or inconsistent trends, and with static presentation of consistent or inconsistent

positive or negative trends. For exponential smoothing the pattern of results was the

same, with the same 13 out of 18 differences significant for forecasting. The average

effect size r was medium (M = .53 [SD = .39]), indicating a lack of fit between response

data and model. Model fit was poorest for the same conditions as with ARIMA(1, 0, 0).

In sum, ARIMA and exponential-smoothing models poorly fit our behavioral response

data.

4.4. Model comparisons: ADAM, ARIMA, and exponential smoothing

Next, we statistically compared model predictions of ADAM, ARIMA(1, 0, 0), and

exponential smoothing. We found that, overall, ADAM’s prediction differs significantly

from those of ARIMA(1, 0, 0), t(3238) = �2.86, p < .01, r = .05, and exponential

smoothing, t(3238) = �2.74, p < .01, r = .05, but ARIMA and exponential smoothing do

not differ significantly, |t| < 1, r = .00. The biggest differences between ADAM and

ARIMA(1, 0, 0) were observed for static presentation of both consistent and inconsistent

increasing and decreasing trends, and for historic and momentary dynamic presentation of

inconsistent increasing and decreasing trends.

As a further comparison, model predictions of ARIMA(1, 0, 0) and exponential

smoothing were compared, with the predicted next trend value from a linear-regression

time series model. The results show that, overall, the prediction of neither of the model

differs significantly from the predicted next trend value |t| < 1. In sum, the predictions of

ARIMA and exponential-smoothing models differ substantially from ADAM’s predic-

tions, but not from those of a linear-regression time series model.

5. General discussion

Many problems in the world confronting us are related to forecasting and anticipating

events whose actual outcomes have not been observed yet. Although forecasters some-

times review time series retrospectively, commonly forecasters will experience a time ser-

ies of events dynamically in real time. Certainly, most informal everyday forecasting

where we anticipate such things as the daily moods of our boss, our favorite team’s next

game, or the price of beer will be based on dynamically experienced time series. How-

ever, all the studies of judgmental time series forecasting of which we are aware investi-

gate how, when presented with a series of data points, forecasters predict the next event

(s) in the presented series. Specifically, behavioral forecasting time series studies (cf.

Lawrence & O’Connor, 1992) used procedures whereby the events were presented to par-

ticipants as a static time series and respondents engage in multiple forecasts. In contrast,

our method employs both dynamic and static presentations of time series and assesses

P. Kusev et al. / Cognitive Science 42 (2018) 97



how the accuracy of human forecasting and judgment depends on the presentation mode

(dynamic and static) that is experienced and type of judgment (forecasting and estimation

of the average) in “one-shot” forecast and judgment.

Accordingly and consistent with our results, a number of authors have argued and

empirically established that better probabilistic judgments are made through trial-by-trial

experience (Gigerenzer, Hell, & Blank, 1988; Koehler, 1995; Spellman, 1996). How-

ever, experience did not only influence one type of judgment. We found that judgments

in dynamic mode were different from those in static mode; specifically, they were

anchored on more recent events for both types of judgment (forecasting and estimation

of the average). One significant consequence was that forecasting accuracy was

enhanced, but estimation of average worsened. The increase in forecasting accuracy for

dynamic presentation is due to reduced trend-damping; a possible explanation is that

dynamic presentation draws attention to a smaller subset of more recent events. Accord-

ingly, the experimental findings revealed a fourfold pattern of judgment accuracy, in

which forecasting accuracy (where success accuracy is informed by the most recent

event) is enhanced by dynamically experienced sequences of events but average estima-

tion errors are induced because of recency. In contrast, where events are presented with

static sequences (one simultaneous presentation of all values of a series), forecasting

errors are induced (drawing the respondents’ attention on the “average” event with

insufficient adjustment to the most recent event) but average estimation accuracy is

enhanced.

The modeling results revealed an excellent fit between response data and ADAM’s pre-

dictions. With kp = .04, none of the differences between response data and model

(ADAM) predictions for both forecasting and judgment (average estimation) were signifi-

cant. The results revealed evidence for the advantage for the simulation with model

parameter kp = .04 (representing a degree of individual variability). Given that fit

between model and data was substantially better with kp = .04 than with kp = 0 (without

Gaussian noise), kp = .04 was used in further assessment of model predictions.

In addition, when model fit was further assessed, the results established that a linear-

regression time series model that describes the trend that is presented and generates the

predicted next trend value is a poor model of respondents’ forecasts and judgments. Simi-

larly, the results also revealed a lack of fit between, on the one hand, Box–Jenkins
(ARIMA; Box et al., 1994) and exponential-smoothing models and, on the other hand,

behavioral forecasting data. Moreover, we compared model predictions of ADAM,

ARIMA, and exponential smoothing. We found that ADAM’s prediction differs signifi-

cantly from those of ARIMA and exponential smoothing, but ARIMA and exponential

smoothing do not differ significantly. Moreover, ADAM accounts for the difference

between processing sequences of dynamically and statically presented stimuli (visually

presented data). In contrast to the ARIMA and exponential smoothing models, ADAM

also accounts for behavioral judgment (non-forecasting) tasks (e.g., average estimations).

ADAM captured how variation in presentation mode produces variation in responses (and

the accuracy of these responses) in both forecasting and judgment tasks.
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The new ADAM proposed and tested in the present article embodies a number of prin-

ciples for human judgments and forecasts: representations of time series and classifica-

tion, similarity and psychologically weighted decision units, intrinsic variability, and

recency. The representation subsystem accounts for presentation model and task in the

judgment of perceptually encountered stimuli. This subsystem maps the external stimulus

environment onto an internal decision space. Statistical analysis of this space explains

why a simple behavioral response classifier is sufficient to account for the judgments and

forecasts in our task. It is of course quite possible that other tasks might require more

complex (e.g., nonlinear) decision classifications. Whether human perceptual judgments

and forecasts may require a nonlinear decision classification is an important open empiri-

cal question largely unaddressed at present. Perhaps human subjects can explore complex

perceptual decision spaces, in which case more complex multilayer models will be neces-

sary. On the other hand, the behavioral response might indicate that the perceptual deci-

sion-making system is restricted to simplified solutions even for problems that require

nonlinear classification formulations for optimal performance.

Research on judgment and behavioral forecasting has argued that (a) rational and adap-

tive heuristics (e.g., Gigerenzer & Gaissmaier, 2011; Goldstein & Gigerenzer, 2009) or

(b) “effort reduction” irrational heuristics (e.g., Payne, Bettman, & Johnson, 1993; Shah

& Oppenheimer, 2008; Tversky, 1972; Tversky & Kahneman, 1974) underlie behavior

(and accuracy) for judgments and forecasting. For example, W€ubben and von Wangen-

heim (2008) explored the beneficial effect of recency (buying behavior) on forecasting

accuracy. Relying only on recency heuristic (simple and more accurate than the Pareto

negative binomial distribution model;3 also see Schmittlein, Morrison, & Colombo,

1987), forecasters are more accurate by ignoring information such as the frequency of

previous purchases. Yet previous research did not explore systematically these assump-

tions across judgment and behavioral forecasting tasks, taking into account type of expe-

rience. Accordingly, in our argument, the way information is psychologically weighted

depends on the (combination of) modes (presentation and task) in which the information

that forms the basis for the judgment was acquired. Indeed, we found that human judg-

ments are informed by presentation mode and judgment tasks with different consequences

for prediction accuracy in behavioral forecasts and average estimations.

6. Conclusion

Given the theoretical and practical significance of the process and accuracy of people’s

judgment of numerical sequential information, future research should investigate how

responses to experienced events and responses to described events differ in real-life set-

tings. Our model of adaptive anchoring (ADAM) provides a flexible vehicle for modeling

this judgment, and we look forward to its wider application and further development to

account for judgments across contexts.
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Notes

1. Typically, respondents are given a summary description of each option, including

the likelihoods of the different payoffs.

2. Furthermore, as expected, the model of (2) performed worse when kp = 0 instead

of .04.

3. According to a Poisson process, in which purchases and dropouts are distributed

according to a gamma distribution (W€ubben & von Wangenheim, 2008).
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