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Abstract

Background: Chromatin states and enhancers associate gene expression, cell
identity and disease. Here, we systematically delineate the acute innate immune
response to endotoxin in terms of human macrophage enhancer activity and
contrast with endotoxin tolerance, profiling the coding and non-coding
transcriptome, chromatin accessibility and epigenetic modifications.

Results: We describe the spectrum of enhancers under acute and tolerance
conditions and the regulatory networks between these enhancers and biological
processes including gene expression, splicing regulation, transcription factor binding
and enhancer RNA signatures. We demonstrate that the vast majority of differentially
regulated enhancers on acute stimulation are subject to tolerance and that
expression quantitative trait loci, disease-risk variants and eRNAs are enriched in
these regulatory regions and related to context-specific gene expression. We find
enrichment for context-specific eQTL involving endotoxin response and specific
infections and delineate specific differential regions informative for GWAS variants in
inflammatory bowel disease and multiple sclerosis, together with a context-specific
enhancer involving a bacterial infection eQTL for KLF4. We show enrichment in
differential enhancers for tolerance involving transcription factors NFκB-p65, STATs
and IRFs and prioritize putative causal genes directly linking genetic variants and
disease risk enhancers. We further delineate similarities and differences in epigenetic
landscape between stem cell-derived macrophages and primary cells and
characterize the context-specific enhancer activities for key innate immune response
genes KLF4, SLAMF1 and IL2RA.

Conclusions: Our study demonstrates the importance of context-specific
macrophage enhancers in gene regulation and utility for interpreting disease
associations, providing a roadmap to link genetic variants with molecular and cellular
functions.
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Introduction
Macrophages play a critical role in immune homeostasis and tissue inflammation

as well as immune clearance of bacteria, viruses and fungal pathogens [1, 2]. Dys-

regulation of macrophage functions is a key mechanism underlying susceptibility

and pathogenesis of many autoimmune disorders, chronic inflammatory diseases,

infections and cancer [3]. Upon immune stimuli such as bacterial lipopolysacchar-

ide (LPS) exposure, macrophages can follow different functional programs. The

initial acute response reprograms macrophages into a pro-inflammatory state.

However, repeated immune activation such as occurs in severe infection leads to

tolerance, with macrophages entering a refractory state characterized by dimin-

ished pro-inflammatory signalling upon secondary stimulation and where inappro-

priate or prolonged this can contribute to the pathogenesis of diseases such as

sepsis [4]. These functional phenotypes are associated with substantial reorganisa-

tion of the chromatin/epigenetic architecture and binding of specific transcription

factors [5–7]. Most macrophage epigenetic studies have focused on the acute re-

sponse to LPS or secondary responses following LPS pre-exposure in monocytes

[6–9], but acute exposure following chronic, low-dose stimulation has been rela-

tively unexplored despite reflecting more accurately the phenotype of endotoxin

tolerance. Induced pluripotent stem cell-derived macrophages (iPSMs) provide an

important model system with opportunity for genetic manipulation, but it is un-

clear to what extent they reflect the epigenetic landscape of response seen in pri-

mary macrophages [10, 11]. Moreover, whether context-specific regulatory DNA

sequences are associated with functional genetic variants and which gene networks

and expression signatures are key modulators is also poorly understood. Such

knowledge is important as expression quantitative trait (eQTL) mapping and

genome-wide association studies (GWASs) have shown that common genetic vari-

ants are important drivers of individual differences in the immune response and

disease susceptibility. These variants, typically single nucleotide polymorphisms

(SNPs), are most commonly found in non-coding genomic regions and may act to

modulate gene regulation in a highly tissue and context-specific manner

dependent on immune stimuli and host-pathogen environment [12–15]. Improved

understanding of the epigenetic landscape of immune activation and tolerance in

macrophages offers the opportunity to understand such variants and the func-

tional basis of genetic associations [16, 17].

In this study, we describe the spectrum of human macrophage enhancers under in-

nate immune response and tolerance conditions and the regulatory networks be-

tween these enhancers and various biological processes, including gene expression,

splicing regulation, transcription factor binding and enhancer RNA (eRNA) signa-

ture. We find that the vast majority of enhancers that are upregulated upon acute re-

sponse subsequently undergo endotoxin tolerance and that enhancers modulated by

innate immune state are significantly enriched for regulatory genetic variants and as-

sociated with gene expression levels. We demonstrate the extent of shared chromatin

accessibility in primary macrophage and iPSMs relative to other immune cell types.

We prioritize the disease-gene interactions and further demonstrate how the

variant-containing enhancers regulate gene expression in a human macrophage

model system through CRISPR interference (CRISPRi).
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Results
Epigenetic and transcriptional changes upon LPS response and tolerance

We first sought to generate epigenetic maps of innate immune activation and tolerance

in primary human macrophages differentiated from circulating blood monocytes

(monocyte-derived macrophages; MDMs). We compared three innate immune states:

naïve unstimulated MDMs, MDMs exposed to high-dose LPS (HD) (acute response) or

MDMs exposed to low-dose LPS and subsequent high-dose LPS challenge (LDHD)

(endotoxin tolerance) [4]. We assayed chromatin accessibility (ATAC-seq) and two in-

formative histone modifications, H3K27ac (mark for active enhancers) and H3K4me3

(promoters) together with total RNA sequencing to profile coding and non-coding

RNA (Fig. 1a). Principal component analysis showed the naïve MDMs clustered to-

gether and were clearly distinct from acute response and tolerance states for all these

chromatin profiles as well as gene expression (Fig. 1b). In total, 8.5% (5985 out of

70,100) of accessible chromatin peaks present in at least 30% of samples (denoted re-

current ATAC peaks; ATACs), 20.3% (5729 out of 28249) of H3K27ac and 3.3% (656

out of 20103) of H3K4me3 peaks were found to be differential, changing during HD vs.

untreated (UT) and/or LDHD vs. HD (FDR < 0.05; fold change > 2; Fig. 1c and S1a).

The vast majority of the differential ATACs and/or H3K27ac peaks associated with

the acute response were found to be subject to tolerance (Fig. 1c). We determined that

54.6% (308 out of the 564) of differential ATACs and 70.2% (1019 out of 1451) differ-

ential H3K27ac peaks downregulated in LDHD vs. HD were upregulated in the HD vs.
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Fig. 1 Macrophage epigenetic landscape for acute and tolerant innate immune response. a Schematic
diagram of recurrent epigenetic marks (occurring in at least 30% samples) with varying signals in different
macrophage states. b Principal component analysis (PCA) of the chromatin accessibility (n = 6), H3K27ac/
H3K4me3 activity (n = 3) and gene expression (n = 6) upon LPS treatments. Each dot represents an
independent sample and colours indicate different macrophage states. c Heatmaps showing ATAC-seq and
H3K27ac signals at differential ATAC regions (FDR < 0.05, > 2-fold changes in HD vs. UT and/or LDHD vs.
HD). The normalized mean signals across sample replicates in each condition were plotted. d Correlations
of log2 fold change of ATACs, H3K27ac, H3K4me3 and gene expression (nGene: nearest gene to ATAC
peaks; eGene, genes linked with ATAC peaks based on MDM eQTLs) upon LPS response (HD vs. UT) and
LPS tolerance (LDHD vs. HD). See also Fig. S1
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UT condition (Additional file 1: Fig. S1b). These differential ATACs and H3K27ac

peaks were mainly located in intronic and distal intergenic regions (> 60%; Additional

file 1: Fig. S1a). Overall, 31.5% (1887 out of 5985) of differential ATACs overlap

H3K27ac peaks and displayed clear correlation upon responses (Fig. 1d), indicating a

substantial fraction of these accessible ATACs are likely enhancers.

Coincident relationship with genetic drivers of individual differences in gene expression

Transcription factors (TFs) bind to specific DNA consensus sequences and are master

regulators of gene expression and cell identity. We reasoned that identification of

context-specific ATAC regions and linked genes would enable the systematic discovery of

functional regions for which regulatory patterns were likely to be driven by specific TFs.

We identified 47 out of 428 known TF sequence recognition motifs were enriched in dif-

ferential ATAC regions (FDR < 0.05 and fold change > 1.5; Fig. 2a). Of these, 10 motifs

were linked to the tolerized phenotype, i.e. highly enriched in ATAC regions that were

upregulated upon LPS but downregulated in response to LPS re-exposure (Fig. 2a right

panel). These TFs, including genes encoding signal transducer and activator of transcrip-

tion factors (STATs), nuclear factor-κB (NF-κB) and interferon regulatory factors (IRFs),

are known to be involved in tolerized pathways. For example, two tolerance-associated

ATAC regions (highlighted in Fig. 2b) harbouring the NFkB-p65 motif aligned consist-

ently with the dynamics of gene expression for two known NFkB-p65 target genes TNF

and CXCL11. Genome-wide, we found that the majority of TFs with binding motifs

enriched in tolerance-associated regions also exhibited consistent gene expression pat-

terns showing endotoxin tolerance (Fig. 2c). Together, these observations suggest that the

differential ATACs are likely to be functionally dependent on their associated TFs, provid-

ing putative connections between TFs and regulatory functions.

The effect of eQTLs on gene expression varies across tissues and contexts, and they

are highly enriched in cis-regulatory elements [13, 18]. We hypothesized that functional

context-specific and disease-relevant eQTLs are more likely be enriched in context-

specific enhancer regions. Consistent with previous observations, we found cis-eQTLs

identified in MDMs [14] are more enriched in macrophage accessible chromatin re-

gions (recurrent ATAC peaks) compared with all common variants (Additional file 1:

Fig. S2a; ~ 8% per eQTL dataset vs. 3% of all common dbSNPs). We observed similar

enrichment using primary monocytes [12], iPSMs [19] and sepsis eQTLs [20] (Add-

itional file 1: Fig. S2a), suggesting a shared effect in similar tissues and infectious envir-

onment. Interestingly, we found greater proportions of context-specific eQTLs (eQTLs

that are associated with gene expression upon immune stimulations but not in naïve

state) overlapped the corresponding differential ATACs (Additional file 1: Fig. S2b).

For example, 328 out of 3729 (8.8%) eQTLs that were only identified in Salmonella

treated MDMs [14] reside in differential ATACs compared to 190 out of 3297 (5.8%) of

naïve-specific eQTLs (OR = 1.6; p = 1.2e−06). We also reasoned that the genes linked

with differential ATACs through context-specific eQTLs would be differentially

expressed. Indeed, we observed significant enrichment of differentially expressed genes

linking differential ATACs compared to non-differential ATACs, using eQTLs only

identified in stimulated macrophages or monocytes but not eQTLs that were only iden-

tified in the naïve state (Fig. 2d). These genes included key components involved in TLR4
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inflammatory responses to infection, such as KLF4 (Additional file 2: Table S1; Fig. 2e), for

which the context-specific eQTLs link differential enhancer activity and/or chromatin ac-

cessibility that were positively correlated with mRNA levels upon LPS treatments.

eRNA signatures in different macrophage states

Enhancer activity is associated with recruitment of RNA polymerase II and transcrip-

tion of non-polyadenylated, bidirectional enhancer RNAs (eRNAs) [21]. As described

Fig. 2 Transcription factor motifs, context-specific eQTLs and differential chromatin accessibility and
modifications. a Heatmap showing the enrichment of transcription factor (TF) binding motifs in differential
ATAC versus non-differential ATAC regions. Greyscale values indicate enrichment levels. Only statistically
significant results (FDR < 0.05) are shown. The LPS treatment conditions are shown on the x-axis and enriched
TF motif clusters on the y-axis. Motifs enriched in both upregulated ATAC regions upon LPS response and
downregulated ATAC regions upon tolerance are highlighted on the right panel. b Example of
proinflammatory cytokine and chemokine genes TNF (left panel) and CXCL11 (right panel), for which the
promoter regions have differential ATAC regions containing NFkB motifs. The average sequencing depth
(normalized per million mapped reads) for RNA-seq and ATAC-seq from 6 independent biological replicates are
shown on the y axis. c Heatmap showing the log2 fold change of gene expression (upper: HD vs. UT; lower:
LDHD vs. HD) for the enriched TFs. Gene upregulation is indicated in brown and downregulation in green. d
Forest plot showing enrichment of differentially expressed genes linking differential ATACs compared to non-
differential ATACs using MDM eQTLs (upper), iPSM eQTLs (middle) or monocytes eQTLs (lower). The odds ratio
and p-values are depicted and were calculated using a two-tailed Fisher test. In case multiple genes were
attributed to an ATAC peak, the gene associated with the most significant eQTL that overlaps the peak was
selected for the analysis. e KLF4 locus showing differential chromatin accessibility and H3K27ac (region
highlighted in grey) harbouring context-specific KLF4 eQTLs (red circles). See also Fig. S2
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above, we observed a clear correlation of differential ATAC regions with enhancer ac-

tivities marked by H3K27ac. To further determine whether the differential ATAC sig-

nals were concordant with putative enhancer activities associated with eRNAs, we

localized the eRNAs using ATAC-seq and total RNA-seq in MDMs and assessed (i)

whether the eRNAs were regulated by LPS treatments and (ii) whether eRNAs modu-

lated by LPS are positively related to ATACs and H3K27ac profiles. We focused our

analysis on distal ATAC regions that did not overlap with known expressed transcripts

in MDMs (± 3000 bp from both transcription start site and end site) (Fig. 3a, b). We

found the distal H3K27ac-containing ATAC regions were more likely to have highly

expressed eRNAs relative to distal ATAC only regions (Fig. 3c), indicating H3K27ac

modification plays a major role in controlling eRNA expression. Furthermore, the

eRNA signature was positively correlated with both ATAC and H3K27ac activity (Fig.

3d). In total, 379 out of 880 detectable eRNAs (CPM ≥ 1) were differentially expressed

upon LPS (Fig. 3e; Additional file 2: Table S2). These differential eRNAs are proximal

to key immune modulators that showed concordant LPS-induced expression patterns

(Fig. 3f, g). Such non-coding regions are likely to be highly functional, providing targets

for experimental manipulations to investigate connections between regulatory DNAs/

RNAs and genes

Annotating genome-wide association signals and therapeutic implications using

differential ATACs

Inflammation and the immune response are critical pathological processes underlying

many common diseases. Thousands of genomic risk loci for these diseases, most of

which are non-coding, have been identified though GWASs [22, 23]. We found signifi-

cant enrichment of SNPs associated with immune-related disorders, such as Crohn's

disease (CRO), ulcerative colitis (UC) and multiple sclerosis (MS), in differential ATAC

regions relative to non-differential ATAC regions (Fig. 4a). For example, 14% (155 out

of 1081) GWAS SNPs (either lead or proxy SNPs with r2 > 0.8) associated with Crohn’s

disease resided in differential ATAC regions, relative to 8% (81,235 out of 982,296) of

other traits. (P = 3.3e−11, OR = 1.9; Fig. 4a). Similar results were observed when we re-

stricted the analysis using the GWAS lead SNPs only (Additional file 1: Fig. S3a). On

average, about 4% of the independent risk loci have overlap with differential ATAC

peaks across the top enriched disease traits (Additional file 1: Fig. S3b). We next quan-

tified the enrichment in GWAS signals of the macrophage differential ATAC regions

using stratified LD Score Regression [24] (see Methods). We found strong enrichments

(Pr((h2g ) / Pr(SNPs)) of the differential ATAC regions in GWAS signals for CRO, US,

MS and IBD (>70X on average, Fig. 4b; Additional file 2: Table S3), which were much

weaker or not significant with the non-differential ATACs. It is important to note that

these significant enrichments only occur in immune-relevant traits, but not in other

diseases and quantitative traits such as body mass index and height measurements (Fig.

4a, b; Additional file 2: Table S3). In total, there were 416 unique immune disease asso-

ciated GWAS risk SNPs in 194 differential ATAC peaks proximal to 145 genes, of

which 61% (88 out of 145) were differentially expressed upon LPS treatments (Fig. 4c

and Fig. 5a; Additional file 2: Table S4), including known risk genes for top enriched

disease traits (CD, UC and MS) [25, 26] (for instance, TNFSF15, STAT3 and HLA-
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DRA), known immune regulators (for instance, IL12A in celiac disease and auto-

immune disease, and IRF1 in CD, allergy and autoimmune diseases), as well as yet

uncharacterized non-coding RNA genes (Additional file 1: Fig. S3c-d).

We have recently established a genetics-led drug target prioritization approach (Pri-

ority index; Pi) to identify potential therapeutic targets in immune traits using immune

disease GWAS, functional immunogenomics and gene interaction network [27]. To ac-

cess the therapeutic implications of the macrophage enhancers, we intersected the Pi

Fig. 3 Enhancer RNAs and differential epigenetic macrophage landscape. a Schematic defining distal
regulatory DNAs by epigenetic signatures and proximity to expressed gene (maximum TPM ≥ 1 across
samples) bodies in MDMs. b Outline of context-specific eRNA analysis procedure. c A bar plot showing the
percentage of distal enhancers (orange) and distal ATAC-only regions (brown) that contain expressed
eRNAs (CPM ≥1). p value was calculated by two-tailed fisher test. ***p < 0.001. d Correlation of log2 fold
change of eRNAs and ATAC regions (upper) or H3K27ac peaks (lower) in HD vs. UT. Pearson’s r and p values
are shown. e Volcano plot showing differentially expressed eRNAs following acute LPS stimulation. The
nearest gene for the top three hits are highlighted. f Example of differential eRNAs proximal to differentially
expressed genes (TMPRSS13 and IL10RA) for acute LPS response and tolerance. The average sequencing
depth for RNA and epigenetic marks are shown on the y axis. Regions with differential eRNAs, ATACs and
H3K27ac are highlighted in grey. g mRNA expression of each gene indicated in f was compared upon LPS
response (HD vs. UT) and LPS tolerance (LDHD vs. HD) with samples from 6 different donors (indicated by
different colour dots with linked lines). p value was calculated by linear regression. ***p < 0.001
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resource [28] with the disease-gene interactions identified in macrophages. We re-

trieved the Pi ratings for 70.6% (327 out of 463) of the interactions we had identified

(Fig. 5b). This involved 14 immune traits, and we found that interaction-associated Pi

ratings are higher than those of the other genes in a given trait (Additional file 1: Fig.

S4; Additional file 2: Table S5). In total, 176 (53.8%) out of the 327 disease-gene pairs

involving 66 unique genes have high ratings (> 95th percentile; Fig.5b), for which 71%

of the genes are differentially expressed upon LPS treatments (Fig. 5b, c highlighted in

blue), including the top ranked genes IL2RA and TNFAIP3 that were highly rated in 10

different traits (Fig. 5c). We hypothesized that the variant-containing differential en-

hancers would be more likely functional and hence associate with differential gene

Fig. 4 GWAS enrichment and macrophage chromatin state. a Enrichment of GWAS risk SNPs that are located
in differential ATACs amongst each trait relative to other traits (1,379 EFO term). The horizontal green dash line
represents the Bonferroni-adjusted p value of 0.05. b Bar plots showing the enrichment of the annotations of
macrophage differential ATACs (green), non-differential ATACs (black) and the top5 (enrichment p values)
baseline LD score models (grey) in GWAS signals for Crohn’s disease, ulcerative colitis, inflammatory bowel
disease traits, multiple sclerosis or BMI. Bars are ordered by enrichment magnitude in each trait. Error bars
represent jackknife standard errors around the estimates of enrichment as described in [24]. #: FDR < 0.05 after
correction for all the annotations tested. n.s: not significant. c Chord Diagram of GWAS SNPs (either leads or
proxies) in differential ATAC regions that associate with differential risk to immune disorders. ATACs were
assigned to expressed genes through their genomic locations (nearest RefSeq genes). The connecting lines
indicate the lead SNPs for each GWAS association of different studies. The cyan and grey dots indicate the
median odds ratios and median –log10 p values of the associations, respectively. Colours in circle above cyan
dots represent the linked immune traits. The differentially expressed genes in HD vs. UT and/or LDHD vs. HD
are highlighted in blue. AD, autoimmune disease; AE, atopic eczema; ALG, allergy; AR, allergic rhinitis; AS,
ankylosing spondylitis; ATD, autoimmune thyroid disease; BE, Barrett’s esophagus; CD, celiac disease; CHC,
chronic hepatitis C virus infection; CL, cholelithiasis; CRO, Crohn’s disease; CVI, common variable
immunodeficiency; DC, dental caries; GAS, Gallstones; GD, Graves’ disease; HB, hepatitis B virus infection; IBD,
inflammatory bowel disease; JIA, juvenile idiopathic arthritis; KD, mucocutaneous lymph node syndrome; MS,
multiple sclerosis; PSA, psoriatic arthritis; PSO, psoriasis; RA, rheumatoid arthritis; SC, sclerosing cholangitis; SJIA,
systemic juvenile idiopathic arthritis; SJO, Sjogren’s syndrome; SLE, systemic lupus erythematosus; slgAD,
selective IgA deficiency disease; UC, ulcerative colitis; VIT, vitiligo. See also Fig. S3
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expression. Indeed, we determined that the differentially expressed (DE) genes were

significantly enriched in risk genes relative to those genes without risk SNPs (OR = 2.2;

P = 6.9e−06; Fig. 5d, 4th bar vs. 3rd bar). The enrichment was further enhanced when we

analysed those genes highly rated by Pi (OR = 3.4; P = 2.1e−06; Fig. 5d, 5th bar vs. 3rd

bar).

Shared chromatin accessibility in primary macrophage and iPSMs upon LPS response

and tolerance

Previous studies have revealed that closely shared signatures of regulatory genomic re-

gions across cell types exhibit common biological functions such as enhancer activity

and TFs binding [29–31]. To explore the differences and similarities of chromatin ac-

cessibility between immune cell types, we generated 21 uniformly processed ATAC-seq

Fig. 5 Drug target prioritization (priority index, Pi) for immune disease risk genes in macrophages. a
Heatmap showing the log2 fold change upon HD vs. UT or LDHD vs. HD of differentially expressed
immune disease risk genes in MDMs (as highlighted in Fig.4c). b Violin plot showing the distribution of the
Pi rating scores of all genes for which a Pi rating was computed. The number of genes analysed for each
trait is indicated in a parenthesis. The Pi prioritized risk genes identified by macrophage chromatin states
and with Pi rating scores more than the 95th percentile (the horizontal red line) are listed (DE gene in
blue). c Bar plot showing the number of traits associated with each Pi prioritized risk gene. d Bar plot of the
percentage of DE genes in each group as indicated on the x-axis. Numbers of genes (number of DE genes/
total number of genes) in each group are indicated within the bars. p values were calculated by two-tailed
Fisher test (***p < 0.001). ‘All genes’: all MDMs expressed genes; ‘with ATAC’: genes with proximal recurrent
ATACs; ‘with diff.ATAC’: genes with proximal differential ATACs; ‘with diff.ATAC (risk SNPs)’: genes with risk-
SNP-containing differential ATACs; ‘with diff.ATAC (risk SNPs)/Pi prioritized’: Pi highly rated genes with
diff.ATAC (risk SNPs). See also Fig. S4
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datasets in primary CD4/CD8 T cells, CD19 B cells, CD14 monocytes and MDMs as

well as iPSMs (Fig. 6a). We identified an average of ~ 70,000 high-confidence recurrent

ATAC regions per cell type derived from different healthy donors and replicates (Fig.

6b), and a total of 164,381 distinct ATAC consensus peaks, of which 55,373 were spe-

cific to a single cell type, 79,645 were active in 2 or more cell types, and 29,369 (18%)

were detected in all cell types (Fig. 6d; Additional file 2: Table S6). Interestingly, un-

supervised hierarchical cluster analysis showed two major clusters that clearly distin-

guish the adaptive and innate immune cell types, i.e. cells of the myelomonocyte

lineage were clustered together compared to T cells and B cells (Fig. 6c, d).

iPSMs are reported to share striking similarities, but also show differences with pri-

mary human macrophages in terms of phenotypic, secretome and transcriptome pro-

files [11, 32–34]. Consistent with these previous studies, we observed significant overlap

Fig. 6 Differential chromatin accessibility across cell types and informativeness of context-specificity. a
Purified human innate and adaptive cell types/models analysed for chromatin accessibility by ATAC-seq
profiling. b Bar plot showing the median number of recurrent ATAC peaks on the y-axis and sample size on
the x-axis for each cell type. One outlier (black dot) was excluded from the clustering analysis in c. c
Phylogenetic tree showing the relatedness of chromatin accessibility amongst cell types based on
hierarchical clustering using Average method and Jaccard similarity measure. d Clustered binary matrix
showing the 164,381 ATAC consensus peaks across 21 datasets derived from 5 cell types. Dark and white
indicate presence and absence of recurring ATAC regions in each dataset respectively. e Bar plots showing
correlation of log2 fold change of ATAC peaks upon HD vs. UT (left) and LDHD vs HD (right), between
iPSMs and MDMs. Pearson’s r are shown on the y-axis. ***p < 0.001. f Example of a locus with clustered pro-
inflammatory genes that have nearby tissue- (MDMs in purple, iPSMs in red, CD14 monocytes in orange,
CD4 T cells in green, CD8 T cells in blue and CD19 B cells in grey) and context-specific (UT/HD/LDHD for
MDMs and iPSMs) ATAC regions. The normalized signals across the replicates of each cell type are shown
on the y axis. See also Figs. S5 and S6
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and strong correlation in genes that were differentially expressed (DE) and had differential

exon usage (DEU) (Additional file 1: Fig. S5) and in differential ATAC profiles upon both

LPS response and tolerance between MDMs and iPSMs (Fig. 6e). Although the LPS re-

sponses in these two macrophage models are broadly conserved, we also observed clear

differences in numbers of DE genes/DEUs identified (Fig.S5), which is consistent with pre-

vious studies [32–34]. To directly compare the epigenetic changes upon stimulations, we

counted the iPSMs ATAC-seq reads by using the recurrent peak regions identified in

MDMs. As expected, the main variance of chromatin accessibility between the two cell

types was explained by the cell origin (Additional file 1: Fig. S6a). When we corrected vari-

ance due to the differing cell types and donors, samples from the two cellular models tend

to be clustered together based on the treatment conditions (Additional file 1: Fig. S6b). In

total, we determined 56.7% (2898 out of 5019 upon LPS response) and 25.4% (331 out of

1305 upon LPS tolerance) of the differential ATACs identified in MDMs were also differ-

ential in the same direction in iPSMs (Additional file 1: Fig. S6c-d; Additional file 2: Table

S7). For example, iPSMs and MDMs displayed multiple cell-type-specific (adaptive cells

vs. innate cells) and context-specific ATACs in a locus containing pro-inflammatory che-

mokines CXCL9/10/11 (Fig. 6f highlighted in grey). Together, these findings support the

fidelity of iPSMs, relative to primary MDMs, in functions of macrophages in innate im-

munity, providing a useful tool for genotype-specific functional disease modelling.

Observed context-specific gene expression is dependent on coincident enhancer activity

To explore how knowledge of the context-specific enhancers could help prioritize ex-

perimental studies to characterize causal genetic variants, we tested the effects of

variant-containing enhancers on gene expression using CRISPRi. We infected iPSMs,

constitutively expressing dCas9-KRAB, with lentiviral particles expressing CRISPRi

single-guide RNAs (sgRNAs) that target the enhancers, and examined the effect on

gene expression upon different LPS stimulations (Additional file 1: Fig. S7a). By target-

ing a distal enhancer containing context-specific eQTLs associated with KLF4 (~ 337

Kb to gene TSS; Fig. 2e and Additional file 1: Fig. S7b), we observed clear reduction of

KLF4 expression upon acute LPS response (2.3-fold, P = 7.7e−04; Additional file 1: Fig.

S7e) but not in untreated and LPS-tolerized conditions. Consistently, amongst all genes

that lie approximately 2Mb on either side of the enhancer, KLF4 is the only one that

was significantly upregulated upon LPS response and downregulated upon LPS toler-

ance (Additional file 1: Fig. S7c-d).

We next examined two distal enhancers containing disease risk SNPs. A single MS

GWAS lead SNP rs6427540 [35], which was located in a differential ATAC peak be-

tween the transmembrane receptor genes SLAMF1 (also called CD150; ~ 17 Kb to gene

TSS) and CD48 (~ 20 Kb to TSS), overlapped a clear eRNA that was only observed

upon acute response (Fig. 7a). We observed coincident dynamics of chromatin accessi-

bility and gene expression upon immune stimulations at this locus (Fig. 7b, c). As pre-

dicted from the above-described associations, we found significantly lower SLAMF1

expression in macrophages with enhancer-targeting sgRNAs compared with a non-

targeting control sgRNA upon acute immune response (2.8-fold, P = 0.014; Fig. 7g left

panel), but not in untreated and LPS-tolerized conditions. The enhancer activity on

LPS-mediated SLAMF1 induction was also observed in terms of protein levels via flow
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cytometry (Additional file 1: Fig. S8). We found no significant differences for the other

nearby gene, CD48 (Fig. 7g right panel; Additional file 1: Fig. S8). Two lead SNPs

(rs10795791 [36] in RA and rs4147359 [37] in SC) were located within the differential

enhancer that is proximal to the top Pi prioritized gene IL2RA (~ 4 Kb to TSS), and

RBM17 (~ 22 Kb) (Fig. 7d–f). Similarly, we observed 5.5-fold reduction of IL2RA ex-

pression by targeting this enhancer (P = 0.0021; Fig. 7h). It is also important to note

Fig. 7 CRISPR interference-based enhancer inactivation in iPSMs. a A differential eRNA and ATAC region at
chr1q23.3 containing a GWAS lead SNP associated with MS risk (rs6427540 [35]). The differential ATAC peak
identified in both MDMs and iPSMs is highlighted in a grey bar, eRNA expression in MDMs is indicated by a
black arrow, and the sgRNA sites for CRISPRi are highlighted by red arrows. The normalized RNA and ATAC
signals across the replicates of each cell type are shown on the y axis. b, c Quantifications of the ATAC
peak (highlighted in a in MDMs (b, upper panel) and iPSMs (b, lower panel) and the expression of its
proximal genes SLAMF1 (c, upper panel) and CD48 (c, upper panel) in MDMs. Each coloured line represents
samples from one donor across different treatment conditions. The significance was determined by linear
regression, comparing normalized sequencing counts upon LPS response (HD vs. UT) or LPS tolerance
(LDHD vs. HD). ***p < 0.001; **p < 0.005; n.s: not significant. d–f A MDMs/iPSMs shared differential ATAC
peak at chr10p15.1 contains GWAS lead SNPs associated with RA (rs10795791 [36]) and SC disease risk
(rs4147359 [37]) (d) and the quantifications of the ATAC (e) and proximal gene expression (f) as described
above. g, h Bar plots of gene expression, measured using qRT-PCR normalized to GAPDH (2–ΔΔCt) in CRISPRi
edited iPSMs with either a non-target sgRNA control (green bars) or sgRNAs targeting enhancers as
indicated (red bars). Error bars represent SEM of 4 independent replicates. P value was calculated by two-
tailed Student’s t-test. See also Figs. S7, S8 and S9
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that the expressions of the target genes were not affected by targeting the non-

differential enhancers in the same locus (Additional file 1: Fig. S9). Together, these ob-

servations suggest that the transcriptional regulation of prioritized target genes may be

primed by cell-type- and stimulation-specific enhancer activities to influence disease

risk.

Discussion
We characterized the innate immune epigenetic and transcriptional landscape of human

macrophages, acutely and in a tolerant state. We chose to focus on macrophages because

they play a critical and non-redundant role in sensing the presence of infection through

microbial-specific molecules and as key mediators of the innate response controlling in-

fection. This analysis enabled us to identify a subset of regulatory enhancers and demon-

strate that these differential epigenetic changes facilitate a dissection of the relationships

between enhancer accessibility, TF binding, mRNA/eRNA expression and the molecular

architecture of disease-associated genetic variants in human macrophages.

Genome-wide association studies have identified thousands of generic variants associ-

ated with common diseases and quantitative traits, and these variants are highly

enriched in non-coding regulatory elements [17, 23, 29]. These regulatory elements are

often cell type specific, regulating gene expression in different cellular states [38, 39].

We show that such genetic variants are highly enriched in stimulus-specific regulatory

elements relative to steady-state regions marked by chromatin accessibility. We identi-

fied hundreds of variant-containing context-specific ATAC regions in macrophages,

linking known risk genes, such as IL2RA, SLAMF1, TNFSF15, STAT3, HLA-DRA,

IL12A, and IRF1, that help inform the functional basis of the reported diseases associa-

tions. Despite the fact that disease-associated variants are highly enriched in regulatory

DNAs, a relatively small fraction of these loci can be explained by known eQTLs, even

those identified in relevant cell types [40–42]. One possible explanation is that the ef-

fects of genetic variants on gene expression are strongly context-specific, relying on the

right epigenetic environment to occur. Indeed, multiple reports have highlighted that

the activity induced by immune stimulation conditions the effect of regulatory variants

on gene expression [12, 14, 19, 20, 43]. Our results demonstrate that these context-

specific eQTLs are highly enriched in context-specific enhancers that were positively

correlated with target gene expression, providing evidence that overlap of generic vari-

ants with stimulus-specific enhancers for prioritizing causal disease genes are likely to

be more informative. For example, we show evidence for a context-specific enhancer

linking KLF4 through eQTLs that is only present on bacterial infection in macrophages.

KLF4 encodes a transcription factor that controls the expression of anti-inflammatory

genes in macrophages [44]. More relevant to infection, KLF4 downregulation is re-

ported in a mouse model of sepsis [45], which is consistent with the epigenetic evi-

dence based on our data, whereby the acute LPS-stimulated enhancer is remarkably

suppressed upon LPS tolerance, a hallmark of sepsis.

Context specificity for gene expression can also be achieved by differential binding of

signal-dependent transcription factors (SDTFs) and lineage-determining transcription

factors (pioneer TFs, e.g. PU1 in macrophages) [46, 47]. SDTFs such as LPS-induced NF-κB,

STAT or IRF protein family have been reported to trigger stimulus-specific regulatory pro-

gramming in open chromatin primed by PU1 [7, 46]. Our TF analysis reveals the enrichment
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of binding motifs for these SDTFs in differential ATAC regions upon LPS stimulation. Most

of the TFs whose binding motifs were enriched in both LPS-induced and tolerized ATAC re-

gions exhibited positively correlated gene expression patterns. Our data suggest that the func-

tional identity of differing macrophage states induced by the LPS response and in tolerance

may be controlled by the sequential PU1 and SDTF bindings, which subsequently modulate

the epigenetic landscape through recruiting histone-modifying enzymes to alter chromatin

accessibility, histone modifications and gene transcription. However, further investigation is

needed to underpin this observation and elucidate its molecular mechanisms.

The biological functions of eRNA are associated with TF recruitment, chromatin conform-

ation and histone modifications [48–51]. We identified novel strong eRNAs that are proximal

to important immune modulators such as the TMPRSS13/IL10RA and SLAMF1/CD48 re-

gions. We demonstrate that H3K27ac modification plays a major role in controlling eRNA

expression. However, based on total RNA-seq, we were able to only capture less than 1000

detectable eRNAs across conditions, and most of them are of low abundance and variable

across replicates, thus reducing our ability to detect highly confident context-specific eRNAs.

Although iPSMs and MDMs exhibited broadly conserved transcriptome and epi-

genetic profiles in response to LPS stimulations, we observed clear differences in

numbers of DE genes, DEUs and differential enhancers between the two macro-

phage models, which likely reflects iPSMs representing primitive, tissue resident

macrophages which are known to be developmentally and functionally distinct

from MDMs [52, 53]. We determined that about 50% of the differential ATACs

identified in MDMs showed consistent profiles in iPSMs. Using a CRISPRi system

in iPSMs, we experimentally validated the effects of three variant-containing en-

hancers on the expression of KLF4 and two prioritized disease risk genes IL2RA

and SLAMF1 encoding cell-surface receptors and for which an approved or investi-

gational drug was available [54]. This system provides us a valuable alternative

model for future study aimed at systematically characterizing the causal interac-

tions between stimulus-specific regulatory DNAs and associated genes and path-

ways and prioritising potential drug targets for disease intervention.

Methods
PBMCs purification and primary immune cell culture

Peripheral blood samples were obtained from healthy volunteers and PBMC isolated by

Ficoll-Paque centrifugation. Monocytes (CD14+), T cells (CD4+ and CD8+) and B cells

(CD19+) were separated from peripheral blood mononuclear cells (PBMCs) by positive

selection with magnetic MicroBeads (Miltenyi Biotec). The isolated CD14 monocytes

were differentiated into macrophages (MDMs) by culturing cells for 6 days in RPMI-

1640 (Sigma) supplemented with 20% FBS (Sigma), L-glutamine (Sigma), sodium pyru-

vate (Sigma), non-essential amino acids (Sigma) and 20 ng/mLM-CSF (Gibco).

Macrophage differentiation from human iPSCs

Induced pluripotent stem cell (iPSC) line (SFC841-03-01) was reprogramed from dermal fi-

broblasts from a healthy donor recruited by the Oxford Parkinson’s Disease Centre [55] and

cultured with feeder-free TeSR-E8 media (STEMCELL) on tissue culture plates coated with

Matrigel (Corning). Macrophages (iPSMs) were differentiated as described before [10].
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Briefly, iPSCs were transferred into AggreWell plate (STEMCELL) with E8 media (Gibico)

supplemented with 50 ng/mL BMP4 (ThermoFisher), 50 ng/mL VEGF (ThermoFisher) and

20 ng/mL SCF (Miltenyi Biotech) for 4 days to generate Embryoid Bodies (EBs) which were

then used for generation of macrophage precursor in XVIVO-15 media (Lonza) supple-

mented with 25 ng/mL IL-3 (Gibco), GlutaMax, 2-mercaptoethanol and 100 ng/mLM-CSF.

ATAC-seq

Omni-ATAC-seq was performed as described [56]. Cells (~ 50,000) were scraped

from a well of a 6-well plate and then spun down at 400 g for 10 min at 4 °C. Cells

were washed with 1x PBS buffer, lysed in 50 μl of lysis buffer (10 mM Tris-HCL

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.01% Digitonin, 0.1% Tween-20 and 0.1%

NP40) for 3 min on ice, added with 1 ml Wash buffer (10 mM Tris-HCL pH 7.4,

10 mM NaCl, 3 mM MgCl2 and 0.1% Tween-20) and spun down at 500 g for 10

min at 4 °C. The cell pellet were resuspended in the Transposition Mixture (22.5 μl

TD buffer, 2.5 μl Tn5 Transposase, 16.5 μl PBS, 0.5 μl % Digitonin, 0.5 μl 10%

Tween-20, 5 μl NF-free H2O) and incubated for 30 min at 37 °C. The reaction was

stopped by adding 250 μl of DNA Binding Buffer (Qiagen MinElute Kit), and the

DNAs were purified by MinElute Reaction Cleanup Kit (Qiagen) and eluted in

23 μL elution buffer. To determine the appropriate cycle number for library ampli-

fication, qPCR was carried out using 2 μL of purified DNA with 1 μL each Nextera

primers Ad1_noMX/Ad2.1 (25 μM), 10 μL 2X HiFi PCR Master Mix (NEB), 0.2 μL

100X SYBR Green, and 5.8 μL H2O. The libraries were purified using a Min-Elute

PCR purification kit (Qiagen). Purified DNAs were quantified by Qubit assays

(ThermoFisher) and quality-controlled using an Agilent TapeStation. Libraries were

amplified for optimized cycles and were subjected to sequencing using a HiSeq4000

platform (Illumina).

ChIP-seq for histone modifications

ChIPm was carried out on formaldehyde fixed MDMs from healthy donors following

the ChIPmentation protocol described by [57]. Briefly, cells (~ 120,000) were cross-

linked by 1% formaldehyde for 10 min, followed by 5 min quenching in 0.25M glycine.

Cells were lysed using SDS Lysis Buffer (0.25% SDS, 1 mM EDTA, 10 mM Tris.HCl pH

8 and 1x Protease Inhibitor), and sonicated using a Covaris sonicator (ChIP-5%DF-8

min program). Chromatin was re-suspended in ChIP Equilibration Buffer (1.66%

TritonX100, 1 mM EDTA, 10mM Tris.HCl pH 8, 233 mM NaCl and 1x Protease In-

hibitor) and ChIP Buffer (0.1% SDS, 1% TritonX100, 1 mM EDTA, 10mM Tris.HCl

pH 8, 140 mM NaCl and 1x Protease Inhibitor) and incubated with antibodies over-

night at 4 °C on an end-over rotor. Chromatin immunoprecipitation was carried out

with the following Diagenode antibodies, 2 μg of H3K27ac (Cat# C15410196, RRID:

AB_2637079) and 1 μg of H3K4me3 (Cat# pAb-003-050, RRID:AB_2616052). The com-

plex co-precipitates were captured by Protein A/G magnetic beads for 2 h at 4 °C with

rotation, followed by salt washes and tagmentation (20 μl TD buffer, 1 μl Tn5 Transpo-

sase and 9 μl NF-free H2O). Chromatin and the input control were eluted and reverse

cross-linked. DNAs were purified, quantified and sequenced as describe above.
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RNA extraction, qRT-PCR and RNA-seq

Cells were lysed and total RNA was prepared using the Monarch Total RNA Mini-

prep Kit (NEB #T2010) according to the manufacturer’s protocol. cDNA was syn-

thesized using LunaScrip RT SuperMix Kit (NEB# E3010). Quantitative real-time

reverse transcription PCR (qRT-PCR) was carried out with SYBR Green Real-Time

PCR Master Mix (Qiagen) in a CFX-96 C1000 platform (Rio-Rad). The transcript

levels were normalized by the readings for GAPDH (see Additional file 2: Table S8

for primer sequences). RNA-seq library was prepared using a standardized rRNA

depletion and dUTP protocol (NEB) followed by sequencing on either a HiSeq4000

or NextSeq500 platform (Illumina) at the Oxford Genomics Centre (Wellcome

Centre for Human Genetics, Oxford, UK).

RNA-Seq data analysis

RNA Sequencing reads were trimmed using Trim Galore (version 0.6.2), and

mapped to human genome assembly hg38 using the HISAT2 (version 2.1.0). The

aligned Binary-sequence Alignment Format (BAM) files were used to determine the

transcript counts through featureCounts (version 1.6.2) and GENCODE annotations

(release 31). The bigwig files normalized by RPKM (Reads Per Kilobase per Million

mapped reads) were generated using the bamCoverage function of deepTools (ver-

sion 3.3.1). For gene differential expression analysis, the raw read counts were used

as input into the R package DESeq2 (version 1.28.1) for pair-wise comparisons.

The exonic regions with read counts ≥10 in at least 30% of samples were used as

input into the R package DEXSeq (version 1.32.0). Genes with fold change > 2 and

FDR < 0.05 as per condition were considered as differentially expressed.

Genome-wide epigenetic profiling

Sequencing reads for chromatin accessibility (ATAC) and histone modifications

(H3K27ac and H3K4me3) were aligned to human genome assembly hg38 using bowtie2

(version 2.2.5). The resulting BAM files were filtered to remove non-uniquely mapped

reads, non-properly paired reads, reads mapped to mitochondrial chromosome, dupli-

cate reads and reads with a mapping quality score less than 30 using Picard (version

2.0.1) and Samtools (version 1.9). Peaks were called using MACS2 (version 2.1.0) [58]

with the appropriate input dataset (paired non-ChIP data were used as controls for his-

tone modifications). ATAC peaks were called using parameters --nomodel --shift -100

--extsize 200, and H3K27ac and H3K4me3 peaks were called using --bw 200. The nor-

malized bigwig files showing the average sequencing depth across replicates were gen-

erated using wiggletools and wigToBigWig. Peaks that overlay the ENCODE Blacklist

and with p value >1e−08 were filtered out. Peaks called in at least 30% of samples were

defined as recurrent and merged as a list of coordinates to count the number of over-

lapping reads in each condition using htseq-count (version 0.6.1). Finally, the reads

were normalized using DESeq2, and then pair-wise comparisons were performed to de-

termine the differential (fold change > 2, FDR < 0.05) ATACs and histone modifications

per condition. Potential batch effect or technical variable was examined by principal

component analysis and was included as a covariate in DESeq2 design formula.
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TF motif analysis

Enrichment of known TF motifs within the differential ATAC peaks was calculated using

the HOMER [47] (version 4.10) findMotifsGenome.pl command with default parameters.

All recurrent ATAC peaks were used as the background. HOMER annotatePeaks.pl with

default parameters was used to search each peak for a given de novo motif.

eQTLs, GWAS traits and summary statistics

eQTL summary data were downloaded from eQTL Catalogue (https://www.ebi.ac.uk/

eqtl/) [59]. The significant eQTLs with an association p value ≤1e−05 were considered for

the analysis. GWAS lead SNPs were downloaded from GWAS Catalog [60] on August 5,

2020. The SNPs with an association p value ≤5e−08 were considered for the downstream

analysis. We retrieved the associated proxy SNPs (r2 ≥ 0.8) for the lead SNPs in Europeans

within a 500-kb window using the 1000 Genomes phase 3 data through PLINK 1.9. We

used the GWAS Catalog Ontologies for mapping of reported traits to Parental and Ex-

perimental Factor Ontology (EFO) terms. The enrichment analysis was performed using

hypergeometric test (PHYPER function as implemented in R) and multiple hypotheses

testing by FDR correction. We used the stratified LD Score Regression [24] to estimate

partition heritability based on pre-defined genome-wide annotation sets and the context-

specific macrophage annotations and determined the enrichment of an annotation to be

the proportion of SNP heritability (h2g) divided by the proportion of SNPs in this annota-

tion. Briefly, we obtained the baseline model LD scores, the SNP reference panels (1000

Genomes Phase 3 in Europeans) and the GWAS summary statistics from https://

alkesgroup.broadinstitute.org/LDSCORE/. We converted the macrophage differential and

non-differential enhancer regions to hg19 coordinates using UCSC tool liftOver. We gen-

erated the functional annotation files and computed the LD scores using make_annot.py

as described in https://github.com/bulik/ldsc.

eRNA analysis

eRNA analysis was performed on ± 1000 bp regions centred on the distal ATAC-seq peaks.

Specifically, the midpoint of each ATAC peak was extended with 1000 bp from left and

right. The regions that overlap with the gene boundaries (± 3000 bp from both transcription

start site and end site) of the MDMs expressed genes (maximum TPM ≥1 across samples; n

= 19,439) were filtered out. The remaining ATAC peaks (distal; n = 24,812) were used as

coordinates to count the number of uniquely mapped total RNA-seq reads in each condi-

tion via the multicov function of bedtools (version 2.27.0). Those regions with RNA expres-

sion level of CPM (counts per million mapped reads) ≥ 1 were defined as eRNAs. The raw

read counts for each eRNA across treatment conditions were used as input into DESeq2 for

pair-wise comparisons. The strandedness of the RNA-seq reads was extracted using Sam-

tools, and the normalized bidirectional bedgrapgh files were generated using Bedtools and

Bedops and visualized through the WashU or UCSC Epigenome Browser.

Lentivirus production

Lentiviral particles were generated by cotransfecting HEK293-FT cells (maintained in

DMEM media with 10% FBS) with virus packaging vectors psPAX2 (Addgene #12260),

pCMV-VSV-G (Addgene #8454) and the vector expressing sgRNA (Addgene #62988)
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in equimolar ratios, as described previously [10]. Transfection was performed using jet-

PRIME reagent (Polyplus). Virus supernatant was collected in 48 h and 72 h post-

transfection, filtered with a 0.45-μm membrane filter (Millipore), ultracentrifuged at

29,000 rpm for 2 h at 4 °C. The pellet was resuspended in PBS with 1.5% BSA, aliquoted

and stored at − 80 °C. Lentivirus were titered by determining the BFP-positive cells

after transduction through flow cytometric analysis. We calculated the infectious units

(IU) per μl, and used the viral volume that results in 50–60% transduction efficiency.

CRISPRi-mediated enhancer silencing

We designed sgRNAs within the differential ATAC peaks and selected top ranked gRNAs

based on on-target and off-target scoring metrics through FlashFry [61]. For the human U6

promoter-based transcription, a guanine (G) base was added to the 5′ of the sgRNA when

the 20 bp guide sequence did not begin with G. The oligo sequences for the sgRNA synthe-

sis are listed in Additional file 2: Table S8. A KOLF-C2 iPSCs line expressing dCas9-KRAB

under the control of a CAG promoter, targeted to the AAVS1 locus, was generated and dif-

ferentiated into iPSMs as described above. One million precursor macrophages were trans-

duced with sgRNA-containing lentivirus in the presence of polybrene (4 μg/mL) and VPX-

VLPs by spinfection at 800 g for 2 h at 37 °C. Transduced cells were maintained in XVIVO-

15 media (Lonza) supplemented with 100 ng/mLM-CSF and assayed in 6 or 7 days.
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