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Abstract: Increasing temperatures and drought occurrences recently led to soil moisture depletion
and increasing tree mortality. In the interest of sustainable forest management, the monitoring of
forest soil properties will be of increasing importance in the future. Vis-NIR spectroscopy can be used
as fast, non-destructive and cost-efficient method for soil parameter estimations. Microelectromechan-
ical system devices (MEMS) have become available that are suitable for many application fields due
to their low cost as well as their small size and weight. We investigated the performance of MEMS
spectrometers in the visual and NIR range to estimate forest soil samples total C and N content of
Ah and Oh horizons at the lab. The results were compared to a full-range device using PLSR and
Cubist regression models at local (2.3 ha, n: Ah = 60, Oh = 50) and regional scale (State of Saxony,
Germany, 184,000 km2, n: Ah = 186 and Oh = 176). For each sample, spectral reflectance was collected
using MEMS spectrometer in the visual (Hamamatsu C12880MA) and NIR (NeoSpetrac SWS62231)
range and using a conventional full range device (Veris Spectrophotometer). Both data sets were
split into a calibration (70%) and a validation set (30%) to evaluate prediction power. Models were
calibrated for Oh and Ah horizon separately for both data sets. Using the regional data, we also
used a combination of both horizons. Our results show that MEMS devices are suitable for C and N
prediction of forest topsoil on regional scale. On local scale, only models for the Ah horizon yielded
sufficient results. We found moderate and good model results using MEMS devices for Ah horizons
at local scale (R2 ≥ 0.71, RPIQ ≥ 2.41) using Cubist regression. At regional scale, we achieved
moderate results for C and N content using data from MEMS devices in Oh (R2 ≥ 0.57, RPIQ ≥ 2.42)
and Ah horizon (R2 ≥ 0.54, RPIQ ≥ 2.15). When combining Oh and Ah horizons, we achieved good
prediction results using the MEMS sensors and Cubist (R2 ≥ 0.85, RPIQ ≥ 4.69). For the regional
data, models using data derived by the Hamamatsu device in the visual range only were least precise.
Combining visual and NIR data derived from MEMS spectrometers did in most cases improve the
prediction accuracy. We directly compared our results to models based on data from a conventional
full range device. Our results showed that the combination of both MEMS devices can compete with
models based on full range spectrometers. MEMS approaches reached between 68% and 105% of the
corresponding full ranges devices R2 values. Local models tended to be more accurate than regional
approaches for the Ah horizon. Our results suggest that MEMS spectrometers are suitable for forest
soil C and N content estimation. They can contribute to improved monitoring in the future as their
small size and weight could make in situ measurements feasible.

Keywords: forest soil; humus; proximal soil sensing; vis-NIR spectroscopy; MEMS-spectrometer

1. Introduction

The drought events of 2003 and 2010 broke the 500 year record, and the probability of
occurrence of extreme heat events is increasing in the future due to global climate change [1].
In 2018, this record was broken again [2], with immediate effects on vegetation growth and
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further causing soil moisture depletion [3]. As direct consequence, tree mortality increased
in many species. As trees are highly vulnerable to other impacts such as insect calamities
or fungal attacks after the drought, mortality is likely to go on for years [4].

In Europe, forest areas affected by mortality doubled since 1984, with increasing
annual temperature being identified as one of the causes [5]. As a result of the extreme
drought stress, the 2018 event caused unprecedented drought-induced tree mortality in
many species throughout the region. Moreover, unexpectedly strong drought legacy
effects were detected in 2019. This implies that the physiological recovery of trees was
impaired after the 2018 drought event, leaving them highly vulnerable to secondary
drought impacts. As a consequence, the whole extent of mortality of trees triggered by the
2018 events can not be foreseen yet. In North America, increased rates of forest dieback are
reported, linked to drought and rising temperatures [6,7]. Evidence for heat-induced tree
mortality was found around the whole globe [8]. Forest ecosystems will be substantially
altered by these ongoing effects, which will as well have a strong impact on forest soils.
Gessler et al. [9] state that high nutrient availability in soils can increase water use efficiency.
Further, organic substance can positively influence water storage capacity in soils [10,11].
Therefore, apart from observation of soil moisture and forest vegetation, there is a clear
need for improved soil monitoring to ensure proper detection of changes in soil nutrients
availability. Methods of proximal soil sensing can be helpful for fast, non-invasive and
cost-effective determination of soil properties [12].

On agricultural sites, numerous studies successfully applied vis-NIR spectroscopy to
predict soil properties on field scale, e.g., [13–16]. There are examples for application of the
method on different larger scales as well, e.g., for Australia [17], Europe [18] or Belgium
and Luxembourg [19]. Some results proved that accuracy is decreasing with extension of
the geographic range the samples were originating from [20]. Other studies also showed
that local calibrations result in best prediction performance [21].

Regarding forest ecosystems, ref. [22] used near-infrared spectroscopy to estimate
total and exchangeable cations and [23] successfully predicted carbon and nitrogen content.
The spectral ranges important for prediction of physical properties lie around 480 and
580 nm in the visual range and around 1400, 1900 and 2200 nm in the NIR-range of the
electromagnetic spectrum [24]. Unlike as in agricultural areas, satellites or airplanes can not
be used to gain spectral information of forest soils due to the permanent vegetation cover.
Using information gained from vegetation as proxy remains difficult and inapplicable.
Even most recent approaches show poor results when compared to predictions based on
bare soil data [25]. Measurements of forest soils are therefore mostly taken after sample
collection under laboratory conditions. Due to the big size and heavy weight of the
available devices, successful in situ measurements are scarce.

Recently, low-cost microelectromechanical system (MEMS) spectrometer with reduced
spectral range are becoming available. Due to their size and weight, these devices are
portable and possibly suitable for in situ measurements. This could reduce field campaign
cost and make small-meshed recording of soil properties more feasible.

First studies show that these devices can as well be used for soil properties predic-
tion. Refs. [26,27] report model performances comparable to standard full-range devices.
Their applicability for fertilizer recommendations are investigated as well [28]. However,
there are so far no investigations evaluating their performance on forest soil humus and
topsoil layers. In addition, information about the influence of the size of the study area
on model predictions for forests are rare. Investigations comparing local and regional
scales were mainly carried out on agricultural soils. Forest soils are different as they have
an organic surface layer called O-horizon. It consists of organic matter in different states
of decomposition. Within this layer, the Oh horizon consists of humus and amorphous
organic material. Below this horizon, the Ah horizons lies as mineral layer, containing
less than 30% organic matter. For forests, retained soil samples of the National Forest
Soil Inventory (BZE) in Germany are highly suitable as they cover a wide range of parent
material and soil types. The objectives of this work are (i) to assess the accuracy of forest
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humus properties prediction in Oh and Ah horizons based on MEMS-spectrometers using
solely the visual, the near-infrared range and a combination of both, (ii) to compare the
results to models build using data from full-range devices and (iii) see if and how model
accuracy depends on the different spatial scale the samples originate from.

2. Methods
2.1. Study Area and Sampling Design

In this study, we used data sets collected at two different spatial scales. On one hand,
we used retained samples from the periodic BZE in the federal state of Saxony, Germany,
supplemented with data from sites representing typical natural areas of Saxony (see [29]).
The BZE Saxony sampling was conducted from 2006 to 2014. Samples in this data set
originate from all over Saxony (18.400 km2). More information on the methodology of the
periodic BZE sampling can be found in [30]. From all 727 available retained samples, we
selected a subsample that represents abundant vegetation types and parent materials in
Saxony. The focus lay on dominating forest stands. Conditioned Latin hypercube sampling
(clhs) was used for samples from spruce and pine stands to get the optimal number of
samples. Further, samples from mixed stands, and minima, median and maxima per
horizon and humus form were added, resulting in 362 samples. This data set includes
samples from organic and mineral horizons, with 176 samples from Oh-horizon (humified
plant material) and 186 samples from Ah horizon (mineral layer with less than 30% organic
matter). The main parent materials are sand, loess loam, gneiss, granite, shale and phyllite.
Cambisols, gley and podsols are the most abundant soil types. This data set is referred to
as “BZE Saxony”.

On the other hand, we collected 110 (50 from Oh and 60 from Ah horizon) further
samples for a second data set at forest stand scale in a field campaign that took place in
June and July 2019 at the forest site “Zellwald” (2.3 ha), located in Middle Saxony. Parent
material is loess loam, dominant soil types are luvisols and stagnic luvisols. For this data,
the sampling points were selected using clhs sampling beforehand to ensure data collection
at representative points and a good representation of the areas soil properties variability.
Therefore, all collected samples were used. The data set is referred to as “Zellwald”.
The location of the sampling points in Saxony and at the forest site “Zellwald” can be seen
in Figure 1.

Figure 1. Location of BZE Sample Points in Saxony with Forest Area Zellwald (left), Location of the Sampling Points within
the Zellwald Area (right), vegetation data provided by [31].
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The study design described in the sampling standard for the BZE was used as basis
for the acquisition [32]. The samples were collected using a satellite sampling scheme with
eight satellites per point. In case that, due to the site conditions, one or more satellites
could not be probed, it was shifted inwards or outwards the circle to facilitate the collection.
At every satellite, soil material from Ah horizon and, if present, from organic Oh-horizon
was collected and mixed for each horizon. This procedure results in one sample per horizon
per sampling point.

2.2. Laboratory Analysis

All chemical analysis was performed by the laboratory of Sachsenforst public en-
terprise, following german-wide standards for forest soil chemical analysis [33]. Total
carbon (C) and nitrogen (N) fractions were determined. For total carbon content the dry
combustion method with elementary analysis was applied [34].

Before the spectral analysis was conducted, all samples were dried and sieved with a
2 mm mesh to ensure homogeneous material. To protect volatile compounds of the soil
during the drying process, the temperature for the samples was set to 40 ◦C.

The spectral measurements were acquired following a self-developed protocol, which
was created based on literature research and several trial measures. Aims of the proto-
col were to capture each samples variability, to enable a fail-safe procedure and ensure
comparability of the measurements. Per soil sample, two petri dishes were filled with soil
material. Each dish was then measured five times, rotating the dish after every measure
to increase the acquired variability. Further, this procedure balances the values within
the measured area [35]. According to the protocol, the procedure results in ten spectra
per sample.

The R language for statistical computing was used for all processing and calculation
steps in this study [36].

During the spectral measuring, light scatter can result in effects like baseline shifts or
other anomalies. To antagonize these effects, numerous suitable preprocessing techniques
exist [37]. First, we smoothed our data using the Savitzky–Golay-Filter. It calculates the
sum over a given window, computed as follows in Equation (1):

xj∗ =
1
N

k

∑
h=−k

chxj+h (1)

where xj∗ is the new value, N is a normalizing coefficient, k is the gap size on each side of
j and ch are pre-computed coefficients, that depend on the chosen polynomial order and
degree [38,39]. We used the third polynomial and a window size of 11.

We further normalized our spectra using standard normal variate (SNV). It is calcu-
lated as displayed in Equation (2):

SNVi =
xi − x̄i

si
(2)

where xi is the signal of a sample i, x̄i is its mean and si its standard deviation [37,40]. The
above described and applied pre-processing steps were carried out by means of the the R
package prospectr [39].

2.3. Sensors

We used three different spectrometers in our study: one full-range vis-NIR devices
(Veris Technologies Inc., Salina, KS, USA), one MEMS-spectrometer for measuring in the
visible range (Hamamatsu Photonics K.K.) and one MEMS-spectrometer capturing the NIR
range only (Si-Ware Systems Inc., Menlo Park, CA, USA). An overview of the devices and
their technical specifications can be seen in Table 1.
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Table 1. Overview of technical specifications for the selected devices.

Device Veris Spectrophotometer NeoSpec SWS62231 Hamamatsu C12880MA

Wavelength 400–2220 nm 1350–2550 nm 340–850 nm
Spectral Resolution 6 nm @ 350–1000 nm, 5 nm @ 1100–2220 nm 16 nm 15 nm
SNR 300:1 @ 400–1000 nm, NA @ 1100–2220 nm 2000:1 NA
Wavelength reproducibility NA @ 350–1000 nm, ±0.4 @ 1100–2000 nm ±0.15 nm ±0.5 nm
Weight 24 kg 17 g 5 g

The Veris device uses two internal spectrometers (Ocean Optics USB4000 and Hama-
matsu C9914GB). At the beginning and end of the spectra of the Hamamatsu C12880MA
device some bands were cut off to match the transition range of the used optical fibre.

Furthermore, for the Veris spectromters bands were cut of at the beginning and
end due to a known high amount of noise. Data between the ranges of the two Veris
spectrometers (1000 to 1100 nm) were removed. Calibration of the Veris spectrometer
was done using four Fluorillon grey standards as external references [41]. The other
devices were calibrated by means of a Spektralon plate. In our study, we investigated
the performance of each single device and moreover, the data from the Hamamatsu
and NeoSpectra device were merged into one vis-NIR data set to evaluate combined
performance of the MEMS-spectrometers using the visual and near-infrared range at the
same time. This data fusion results in a gap between the ranges of devices from 850 to
1350 nm and therefore still contains less spectral information than the full-range device.

2.4. Regression Analysis

For forest soil properties predictions, we selected two regression approaches. First,
partial least square regression (PLSR) was applied, which can be seen as widely known
standard method to for soil properties prediction using vis-NIR spectral data [42]. It was ini-
tially introduced as a solution for multivariate calibration problems using spectroscopy [43].
PLSR constructs a set of linear combinations of the input data by extracting a sequence
of derived, orthogonal directions [44]. These so called factors have high variance as well
as high correlation with the response variable and are used for the regression instead of
the original data. In this way, the amount of data and therefore the computation time are
reduced considerably.

As second method from the field of machine learning, we used the Cubist regression
model. The technique is based on the M5 algorithm. It constructs tree-based linear models
and is suitable for learning tasks with high dimensionality [45]. It is based on a regression
tree, where intermediate linear models at each step are the basis of the predictions. By using
subsets of the original data with similar attributes, rules for regression are set by selecting
the best predictor, which is used as regression variable. The rules are then connected using
if/else statements. If a condition is fulfilled, the regression rule for this subset is applied,
otherwise, the next rule is probed [46]. The advantage of this approach is the capability
of detecting non-linear relationships [47]. Recently, it was successfully applied for soil
properties prediction. Ref. [48] used cubist amongst other methods to predict soil organic
carbon (SOC), total nitrogen (TN) and pH values and found it to be superior amongst
different algorithms. Similar results were reported by [27] when estimating SOC and total
C of agricultural soils based on spectra recorded with different devices.

2.5. Model Tuning and Validation

Model calibration was done by means of a ten-fold cross validation and independent
validation was performed using parts of the data as test set. Accordingly, we split our data
into a calibration and validation set using a ratio of 70:30. In this way, 70% of the data is
used to calibrate the model. The remaining 30% are held back and used for independent
validation of the prediction performance after the regression models are calibrated.
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We calibrated models for Oh and Ah horizons for the regional BZE data and local
Zellwald data separately. For the regional BZE data, we also carried out an approach using
samples from both horizons. This can be reasonable as the separation of the horizons can be
difficult during the sampling. In this case, soil samples of the two horizons from the same
sampling point were always kept together as spatial dependence between the horizons
my otherwise led to overoptimistic results. The accuracy of the selected algorithms for
regression analysis can be improved by tuning specific hyperparameters. In case of PLSR,
the number of used components has to be optimized. For Cubist regression, we have to
select the ideal number of committees and neighbours. To ensure a robust selection of
values for the hyperparameters of each approach, we used a 10-fold cross validation during
the model calibration. In this procedure, we randomly split the data into ten subsets of the
same size. Again, samples from the same point were kept in the same splits. Then, model
calibration is performed with nine of the subsets, and the remaining subset is used for
validation of the model. This procedure is repeated ten times, until each of the ten subsets
was used as validation for the model performance once. By this, in total ten models are
built, always using different parts of the training data and thus resulting in ten estimates of
the model performance using all the data in the calibration set. The estimated prediction
errors of all ten models is then combined [44]. This ten-fold cross validation was repeated
several times, using different values for the hyperparameters of the algorithms. The tuning
was done by a grid-search. Regarding PLSR, one up to 20 components were used to
optimize the results. For Cubist, we selected the ideal combination of hyperparameters
while searching between values of 1 and 50 for committees, values for neighbours ranged
from zero to nine. The values resulting in the lowest error were then chosen and used to
evaluate the performance on the test data set, which consists of data the model has not seen
yet. For regression model calibration, log-transformed values of C and N content were used.
All values were back-transformed prior to model performance validation. For assessing
the models performance on the test data, we used different error measures. To evaluate the
deviation of the predicted from the measured values, we used the root mean squared error
(RMSE). The RMSE is computed as can be seen in Equation (3):

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2 (3)

where yi are the predicted, xi are the observed values.
Apart from error measures based on the deviations of the predictions to the actual

observed values, overall model performance was assessed using the coefficient of determi-
nation, R2, described in Equation (4):

R2 = 1 − ∑(yi − ŷi)
2

∑(yi − ȳ)2 (4)

where y are the observed, ŷ are the predicted values and ȳ is the mean value of the
observed values.

We computed the ratio of performance to interquartile distance in addition. It is
calculated as follows in Equation (5) [49]:

RPIQ =
Q3obs − Q1obs

RMSE
(5)

where Q1 and Q3 are the first and the third quantile of the observed values.
Chang et al. [50] suggested a system to rank RPD values. We adapted it for RPIQ

(transformation was done by multiplying the values with 1.34896 (as the interquartile range
of a Gaussian distribution equals 1.34896 × SD)). Model with RPIQ > 2.70 are considered
good, models with 1.89 < RPIQ < 2.70 are moderate and the threshold for poor performance
is RPIQ < 1.89.
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In general, the models accuracy is indicated by low RMSE and high R2 and RPIQ
values. All calculations were carried out by means of the R language for statistical comput-
ing [36] and the caret package for classification and regression training [51].

3. Results
3.1. Results of Chemical and Spectral Data Analysis

The summary of the results of the chemical analysis of the soil samples from both
data sets are shown in Table 2, separated by horizon. The BZE Saxony data consisted
of 362 samples in total, with 176 samples from Oh horizons and 186 samples from Ah
horizons. In the organic horizon, values for total C content ranged from 8.60 to 49.4%,
with a mean of 27.15%. Percentage of nitrogen in the sample lay between 0.32 and 2.08%.
Mean value was 1.22%. For the Ah horizon, C content values lay between 0.40 and 17.22,
with a mean of 5.12. The mean of the N content was 0.23, with values ranging from 0.02
to 1.06.

Table 2. Descriptive statistics for C and N content of Oh and Ah horizons for soil samples from both data sets.

Data Set Horizon Parameter N Mean St. Dev. Min Pctl (25) Pctl (75) Max

BZE Saxony Oh C [%] 176 27.15 8.01 8.60 21.73 32.53 49.43
N [%] 176 1.22 0.38 0.32 0.96 1.53 2.08

Ah C [%] 186 5.12 2.77 0.40 2.88 6.99 17.22
N [%] 186 0.23 0.15 0.02 0.11 0.31 1.06

Zellwald Oh C [%] 50 33.99 5.03 18.81 32.11 37.37 41.36
N [%] 50 1.66 0.20 1.04 1.53 1.79 2.11

Ah C [%] 60 6.43 2.14 3.16 4.86 7.81 13.88
N [%] 60 0.34 0.14 0.17 0.25 0.41 1.08

Regarding the data set collected in the forest area Zellwald, values for C content in
the Oh horizon were measured to be between 18.81 and 41.36 %, with a mean of 33.99 %.
The N content in these samples ranged from 0.2 to 2.11 %. The mean was 1.66 %. In the Ah
horizon, C content lay between 3.16 and 13.88 with a mean value of 6.43. Measured values
for N content ranged from 0.17 to 1.08, mean value was 0.34.

Graphs of the spectra obtained with the different devices can be seen in Figure 2.
It shows all measured samples (mean of ten single measurements) of both data sets per
spectrometer, with the mean of all measurements. The raw spectra is shown on the left,
while pre-processed data can be seen on the right side. It clearly can be seen that remarkable
trends in all measured spectra were emphasized by the applied pre-processing methods.

The Hamamatsu and Veris spectra both showed the steady ascent through the whole
visual range. In the NIR-range, the important reflectance dips around 1400 as well as
around 1900 could be detected in both measured spectra using the Veris and Neospectra
devices. They are also known as strong water absorption features. The preprocessing
accentuated these trend for both devices. In the Neospectra data, the feature around 2200
could be seen as well as it ranges until 2500 nm.
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Figure 2. Raw (left) and preprocessed (S-G Filter and SNV, right) spectra of samples from both data
sets using the selected devices, the black line represents the mean of all measurements

3.2. Predicting Total Carbon Content

To evaluate the application of the selected spectrometers for total C prediction of forest
topsoil samples, we calibrated models for Oh and Ah horizon using PLSR and Cubist for
every spectral data set, once for the BZE data from whole Saxony (regional scale), and once
for the forest site Zellwald (local scale). An additional model was calibrated using samples
from Oh and Ah horizons combined for the regional scale.

The validation results of the separate models for the Oh and Ah horizons for the
regional BZE data set are shown in Table 3. Using the spectral data in the visual range
derived by the Hamamatsu device to predict carbon, the results were: RMSE = 8.98%,
R2 = 0.01 and RPIQ = 1.48 (Oh) and 2.36%, 0.29 and 1.67 (Ah) for the PLSR approach. Using
Cubist, RMSE, R2 and RPIQ were 7.03%, 0.40 and 2.90 (Oh) and 2.13%, 0.36 and 2.86 (Ah),
respectively. When calibrating the models with NIR range data from Neospectra, results
for PLSR regression were: RMSE = 6.87%, R2 = 0.43, RPIQ = 1.94 (Oh) and RMSE = 1.97%,
R2 = 0.48 and RPIQ = 2.00 (Ah). The Cubist regression resulted in lower RMSE values of
6.70% and R2 and RPIQ of 0.43 and 1.99 for Oh horizons. For the Ah horizon data, model
performance was more accurate as well (RMSE = 1.69% and R2 = 0.61, RPIQ = 2.34). The
combination of Hamamatsu and Neospectra data using both visual and NIR range for
regression resulted in RMSE, R2 and RPIQ values of: 5.87%, 0.57 and 2.27 (PLSR, Oh),
2.01%, 0.49 and 1.97 (PLSR, Ah), 5.60%, 0.61 and 2.38 (Cubist, Ah) and 1.75%, 0.55 and 2.25
(Cubist, Ah).
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Table 3. Model validation results for total carbon and nitrogen values from Oh (left) and Ah (right) horizon separately using
PLSR and Cubist and spectral data from different devices for the regional BZE data set.

Oh Horizon Ah Horizon

Parameter Algorithm Sensor RMSE % R2 RPIQ RMSE % R2 RPIQ

C Hamamatsu 8.98 0.01 1.48 2.36 0.29 1.67
PLSR Neospectra 6.87 0.43 1.94 1.97 0.48 2

Hamamatsu + Neospectra 5.87 0.57 2.27 2.01 0.49 1.97
Veris 6.79 0.47 1.96 1.93 0.55 2.05

Hamamatsu 7.03 0.40 1.90 2.13 0.36 1.86
Cubist Neospectra 6.70 0.43 1.99 1.69 0.61 2.34

Hamamatsu + Neospectra 5.60 0.61 2.38 1.75 0.55 2.25
Veris 5.98 0.58 2.23 1.59 0.62 2.48

N Hamamatsu 0.38 0.18 1.75 0.13 0.17 1.55
PLSR Neospectra 0.36 0.31 1.84 0.09 0.55 2.15

Hamamatsu + Neospectra 0.29 0.51 2.28 0.10 0.52 2.05
Veris 0.30 0.48 2.21 0.13 0.66 1.48

Hamamatsu 0.36 0.23 1.83 0.14 0.04 1.37
Cubist Neospectra 0.26 0.61 2.56 0.09 0.54 2.15

Hamamatsu + Neospectra 0.27 0.57 2.42 0.11 0.33 1.74
Veris 0.25 0.66 2.64 0.06 0.78 3.08

Modeling results on basis of the full-range Veris spectrometer with PLSR achieved:
RMSE = 6.79%, R2 = 0.47, RPIQ = 1.96 (Oh) and RMSE = 1.93%, R2 = 0.55 and RPIQ = 2.05 (Ah).
The Cubist estimations results were calculated as: RMSE = 5.98%, R2 = 0.58 and RPIQ
= 2.23 (Oh) and RMSE = 1.59%, R2 = 0.62 and RPIQ = 2.48 (Ah), respectively. Therefore,
the most accurate predictions of C content were reported using the full-range approaches.
The usage of MEMS-spectrometer in combination led to similar predictive performance
(Oh: 105%, Ah:89% of the full range models R2 values) while the visual range model
showed the least precise results (Oh: 69%, Ah: 58% of the full range models R2 values).
Estimated and observed values of the independent validation sets of the Cubist regression
models based on data from all spectrometers and both Oh and Ah horizon are displayed in
Figure 3 on the left side. It can be seen that deviations of the predictions from the observed
values were not evenly distributed for the models based on the visual range. The other
approaches show a better orientation along the x = y line. For the Oh horizon, high values
seem to be overestimated while low values tend to be underestimated. The residual plots
(see Figure A1 in the appendix A) underline this observation.

For the regional BZE data, we also calibrated models using a combined approach of
both Oh and Ah horizons samples. The results of this approach can be seen in Table 4.
Using the visual range to predict C, the results were: RMSE = 6.64%, R2 = 0.75 and RPIQ
= 3.47 (PLSR) and RMSE = 6.36%, R2 = 0.76 and RPIQ = 3.63 (Cubist). Using the only the
NIR range for model calibration, RMSE, R2 and RPIQ were 6.67%, 0.74 and 3.46 for PLSR
and 5.01%, 0.85 and 4.60 for Cubist regression, respectively.
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Figure 3. Predicted vs. observed C content values for validation of cubist regression models for Oh and Ah horizon based
on spectral data obtained with the selected devices

Table 4. Model validation results for total carbon and nitrogen using combined horizons (Oh and
Ah) for calibration, PLSR and Cubist and spectral data from different devices for the regional BZE
data set.

Parameter C N

Algorithm Sensor RMSE % R2 RPIQ RMSE % R2 RPIQ

PLSR

Hamamatsu 6.64 0.75 3.47 0.33 0.72 3.26
Neospectra 6.67 0.74 3.46 0.35 0.67 3.08
Hamamatsu + Neospectra 6.98 0.73 3.30 0.34 0.71 3.17
Veris 5.41 0.83 4.26 0.29 0.79 3.80

Cubist

Hamamatsu 6.36 0.76 3.63 0.33 0.72 3.34
Neospectra 5.01 0.85 4.60 0.24 0.85 4.51
Hamamatsu + Neospec 5.13 0.84 4.49 0.24 0.85 4.57
Veris 4.29 0.89 5.38 0.21 0.88 5.24

When calibrating the models with data from both visual and NIR ranges combined,
results for PLSR were: RMSE = 6.98%, R2 = 0.73, RPIQ = 3.30 (PLSR) and RMSE = 5.13%,
R2 = 0.84 and RPIQ = 4.49 (Cubist). Using the full range spectral data of the Veris device
to predict carbon, the results were: RMSE = 5.41%, R2 = 0.83 and RPIQ = 4.26 (PLSR) and
4.29%, 0.89 and 5.38 for the Cubist regression approach.

In this case, the most accurate predictions of C content were reported using the
full-range device. The approaches using NIR range alone and MEMS-spectrometer in com-
bination led to similar predictive performance. The model based on the visual range again
showed less precise results. Calculated predicted and observed values of the independent
validation sets from the BZE data of the Cubist regression models based on data from all
spectrometers are displayed in Figure 4. It can be seen that deviations of the predictions
from the observed values were generally higher for the samples from Oh-horizons, which
were distinguishable from the Ah samples.
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Figure 4. Predicted vs. observed C content for validation of cubist regression models using both Oh and Ah horizon for
regional scale (BZE Saxony) based on spectral data obtained with the selected devices

For the visual range, it is further notable that, in contrary to the other approaches,
the deviations of predicted values were less oriented along the x = y line. Models including
data from the NIR area were more precise in this aspect.

The results of the model validation procedure for the Ah horizon of the local Zellwald
data set can be seen in Table 5 on the left side.

Table 5. Model validation results for total carbon (left) and nitrogen (right) values from Ah horizon
using PLSR and Cubist and spectral data from different devices for the local Zellwald data set.

Parameter C N

Algorithm Sensor RMSE % R2 RPIQ RMSE % R2 RPIQ

PLSR

Hamamatsu 0.99 0.62 2.66 0.10 0.24 1.46
Neospectra 1.44 0.44 1.83 0.07 0.67 2.15
Hamamatsu + Neospectra 1.58 0.66 1.66 0.09 0.58 1.54
Veris 0.74 0.89 3.55 0.06 0.87 2.19

Cubist

Hamamatsu 1.08 0.56 2.42 0.08 0.45 1.67
Neospectra 1.50 0.35 1.75 0.11 0.15 1.23
Hamamatsu + Neospectra 0.62 0.86 4.22 0.06 0.71 2.41
Veris 0.90 0.86 2.92 0.04 0.84 3.37

Using the spectral data in the visual range to predict carbon, the model results were:
RMSE = 0.99%, R2 = 0.62 and RPIQ = 2.66 for PLSR and 1.08, 0.56 and 2.42 for the Cubist
approach. Using NIR spectral data for the models, RMSE, R2 and RPIQ were 1.44%, 0.44
and 1.83 (PLSR) and 1.50%, 0.35 and 1.75 (Cubist). When calibrating the models with data
from combined visual and NIR range, results for PLSR regression were: RMSE = 1.58%,
R2 = 0.66, RPIQ = 1.66. For Cubist, model results were RMSE = 0.62%, R2 = 0.86 and
RPIQ = 4.22. The full-range Veris approach resulted in lower RMSE values of 0.74%,
and higher R2 and RPIQ of 0.89 and 3.55 for PLSR. For the Cubist model, performance was
calculate as RMSE = 0.90%, and R2 = 0.86, RPIQ = 2.92.

Calculated predicted and observed values of the independent validation sets of the
Cubist regression models based on data from all spectrometers are displayed in Figure 5.
It shows that that the models including data from both visual and NIR range were more
accurate, as the points cluster tight around the x = y line. It was not possible to calibrate
meaningful models based on the Oh horizon only (data not shown).
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Figure 5. Predicted vs. observed Ah horizon C content values for validation of cubist regression models for local scale
(Zellwald) based on spectral data obtained with the selected devices.

3.3. Predicting Total Nitrogen Content

In a second step, the performance of the different devices for total nitrogen content
prediction was assessed for Oh and Ah horizon for both data sets of the study using PLSR
and Cubist.

The results of the separate models of N prediction for the Oh and Ah horizons of
the regional BZE data set are shown in the lower part of Table 3. Regressions for Oh
horizon based on spectral data in the visual range were more precise using Cubist, with
values of RMSE = 0.36%, R2 = 0.23 and RPIQ = 1.86. For models based on the Ah samples,
performance was less precise.

For NIR range, Cubist model results were more precise with RMSE = 0.26%, R2 = 0.61
and RPIQ = 2.56 for the organic Oh horizon. For the Ah horizon models, we achieved very
similiar results for both approaches. Regarding the models for combined data set covering
visual and NIR range, Oh results were: RMSE = 0.29%, R2 = 0.51, RPIQ = 2.28 (PLSR) and
RMSE = 0.27%, R2 = 0.57, RPIQ = 2.42 when using the Cubist regression approach. PLSR
outperformed Cubist when predicting total N content of the Ah soil samples Additionally,
we used a full-range device for model calibration. The models based on Oh samples with
PLSR resulted in RMSE = 0.30%, R2 = 0.48, RPIQ = 2.42. The Cubist models were more
precise with RMSE = 0.25%, R2 = 0.66, RPIQ = 2.64. Using Ah samples the Cubist model
again resulted in higher accuracy with RMSE = 0.06%, R2 = 0.78 and RPIQ = 3.08. In
total, the full range device resulted in best prediction performance for total N estimation.
Predicted and observed total N content values for models based on data from both horizons
and all used spectrometers for the regional BZE data are shown in Figure A2. Largest
deviance in the predictions can clearly be seen for the models based on the visual range.
Results for the other approaches were more precise, as they were distributed closer and
more along to the x = y line. Further, lower values tended to be overestimated, while
higher ones were underestimated. This observation was stronger for the models of the
Oh horizon.

In addition, we also calibrated models using a combined approach of both Oh and Ah
horizons samples for the regional BZE data. The results of the calculations can be seen in
Table 4. In this case, the models calibrated based on the visual range to predict N content
achieved similar accuracy for both algorithms. Using the NIR range only, model accuracy
increased. RMSE, R2 and RPIQ were 0.35%, 0.67 and 3.08 for PLSR and 0.24%, 0.85 and
4.51 for Cubist regression, respectively. The results of the combined devices procedure
resulted in similar results. PLSR achieved RMSE = 0.34%, R2 = 0.71 and RPIQ = 3.17.
The usage of Cubist regression resulted in RMSE = 0.24%, R2 = 0.85 and RPIQ = 4.57.
Models calibrated using data derived from the full-range device yielded best accuracy.
The PLSR model resulted in RMSE = 0.29%, R2 = 0.79 and RPIQ = 3.80, the Cubist approach
in RMSE = 0.21%, R2 = 0.88 and RPIQ = 5.24. The predicted and observed values of the
Cubist model combing both horizons of the regional BZE data can be seen in Figure A3.
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The largest inaccuracies in the predictions could be observed for the models based on the
visual range. The other approaches were more accurate, indicated by tighter point clouds
and a better orientation along the x = y line.

We observed an equivalent prediction power of the combined MEMS-spectrometer
approach compared to the Veris device.

The results of the independent validation procedure for the Ah horizon of local
Zellwald data, separated by algorithm and sensor, can as well be seen in Table 5. The error
measures for N content are on the right side. Regression based on spectral data in the visual
range was more precise using Cubist and resulted in values of RMSE = 0.08%, R2 = 0.45
and RPIQ = 1.67. Regarding the NIR range, model performance increased and was more
accurate using PLSR, with RMSE = 0.07%, R2 = 0.67 and RPIQ = 2.15 for PLSR. Using
Cubist, models were less precise. Using the combination of visual and NIR data, the local
model for Zellwald resulted in in RMSE values of 0.09% (PLSR) and 0.06% (Cubist), R2

values ranged from 0.58 (PLSR) to 0.71 (Cubist). RPIQ was calculated as 1.54 for PLSR and
2.41 for Cubist. For the full range device data, prediction accuracy was the most precise.
PLSR results were: RMSE = 0.06%, R2 = 0.87, RPIQ = 2.19. For the Cubist regression, RMSE
was 0.04%, R2 was 0.84 and RPIQ = 3.37. Predicted and observed total Ah horizon N
content values for models based on local Zellwald data from all used spectrometers are
shown in Figure A4. Smallest deviance in the predictions can clearly be seen for the models
based on the combined and full rage approaches. As for the C predictions, no suitable
models could be calibrated for the Oh horizon of the local Zellwald data.

4. Discussion
4.1. Feasibility of MEMS-Spectrometer for Forest Soil C and N Content Estimation

This study aimed to investigate the feasibility of using MEMS-spectrometer for forest
humus and topsoil total C and N content prediction. We used spectral data measured
with MEMS-devices in the visual and NIR range, and a combination of both in addition.
Models were calibrated separately for Oh and Ah horizon. Using the regional BZE data, we
also modelled C and N content in an approach using both horizons. As Cubist regression
showed higher prediction power, the discussion about feasibility and the comparison to
conventional devices is based on these results. Models calibrated for Oh samples with the
regional BZE data set showed comparable results. Again, the combination of the MEMS
devices yielded moderate accuracy for both total C and N content prediction (Cubist:
RPIQ ≥ 2.38, R2 ≥ 0.57). The solely usage of the visual range was least precise and it
was not possible to establish meaningful models. In the Ah horizon however, the NIR
range device had better predictions, reaching the threshold for moderate correlations
(Cubist: RPIQ ≥ 2.15, R2 ≥ 0.54). The combination of both devices performed slightly
less precise, the Hamamatsu alone was again insufficient (RPIQ < 1.89). In addition, we
calibrated models for the regional BZE data using data from both Oh and Ah horizon.
In this case, the Neospectra and the combined MEMS devices yielded very similar and
good model results (Cubist: RPIQ ≥ 4.49, R2 ≥ 0.84). The predictions based on the visual
range showed less accuracy. Even though the model reached the proposed threshold of
RPIQ = 2.7, visual assessment revealed high uncertainties within the investigated horizons
for both properties. In the Ah horizon of the local Zellwald data, Cubist models using
data both MEMS-devices resulted in moderate prediction accuracy for both properties
(RPIQ ≥ 2.41, R2 ≥ 0.71). Results for the solely usage of the visual range were moderate
only for C content. The estimations based on NIR range only were less precise. Therefore,
especially a combination of MEMS devices seemed to be suitable for forest soil C and
N content estimation. The solely usage of the visual range however was not sufficient.
Regarding the Oh horizon, no meaningful model could be calibrated. One reason for this
could be the small sample size.

The similar results of C and N content predictions lead to the question, if soil N content
is measured directly, or through auto-correlation with C content. In contrast, other studies
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presented results indicating that N content is measured independently from C content due
to successful prediction of total N and C:N ratios (e.g., [52]).

Further, the results achieved using MEMS devices were to be compared to regression
models built on spectral data obtained with a conventional full-range spectrometer. These
results were therefore used as benchmark to see if the MEMS devices could reach the
predictive performance of the full range device. In most cases the Veris full-range data
yielded the best results, with highest R2 and RPIQ values and lowest RMSE. However,
depending on horizon and scale, it was possible to achieve results that could compete with
the models based on the full-range device. Regarding the modelling of Oh samples of the
regional BZE data, the Cubist model of combined MEMS approach even outperformed the
Veris device for C content (Combined: R2 = 0.61, RPIQ = 2.38, Veris: R2 = 0.58, RPIQ = 2.23)
and therefore achieved 105% of the conventional device. When used alone, the visual range
approach had 69% and the NIR range approach 74% of the full range R2 value. For N
content, the models based on the full range data yielded better results, but the combined
MEMS approach could still compete (Combined: R2 = 0.57, RPIQ = 2.42, Veris: R2 = 0.66,
RPIQ = 2.64). In this case, 86% of the full range performance were reached. The models
based on NIR spectra solely were more precise (R2 = 0.61, RPIQ = 2.56, equals 92%). For
Ah horizon, Cubist models based on the NIR range only were the most competitive for
C and N content (Neospectra: R2 ≥ 0.54, RPIQ ≥ 2.15, Veris: R2 ≥ 0.62, RPIQ ≥ 2.48).
This equals 98% of the R2 values of the Veris device for C content and 69% for N content.
The combined approach reached 89% for C and 56% for N content. In general, the NIR
range and combined MEMS data devices as well as the full range approach resulted in
model performance classified as moderate. Further, we modelled C and N content using
samples from both horizons of the regional BZE data set. Similar to the results discussed
above, in this approach the Cubist models based on NIR range and the combined MEMS
data were able to compete with the full range device for both investigated properties
(combined: R2 ≥ 0.85, RPIQ ≥ 4.49, Veris: R2 ≥ 0.88, RPIQ ≥ 5.24). Therefore, more than
95% of the Veris R2 values were reached using MEMS devices, and the calibrated models
can be classified as good. However, it is important to mention that the increase of the data
range resulting from the usage of both Oh and Ah horizons also led to increased values
for the selected error measures. For the Ah horizon of the local approach in the Zellwald
forest, the data from combined MEMS devices resulted in comparable accuracy when using
Cubist for C (Combined: R2 = 0.86, RPIQ = 4.22, Veris: R2 = 0.86, RPIQ = 2.92) and N
content (Combined: R2 = 0.71, RPIQ = 2.41, Veris: R2 = 0.84, RPIQ = 3.37). The MEMS as
well as the conventional approach yielded moderate to good model predictions. In direct
comparison of the R2 values of the Cubist models, the combined MEMS approach reached
100% of the full range performance for C content and 85% for the N content.

Our results indicated that the MEMS spectrometers can generally be used to substitute
common full-range devices. For the investigated data sets and properties, especially
the combination of visual and NIR range data measured with MEMS devices showed
predictive performance comparable with the full range device. In some cases, estimations
even outperformed the conventional approach.

The two data sets used in this study allowed to investigate the impact of the scale on
the model prediction accuracy of the Ah horizon. The results showed that the C content
predictions calculated for the local Zellwald forest based on the combined MEMS and the
full range devices data were more accurate than the ones based on the BZE data set for both
algorithms. Exception is the NIR range model, which performed better on the regional
data. The difference in accuracy is bigger for the MEMS-devices than for the full-range
spectrometer. Similar observations could be made for the N content estimations. Again,
the local results for the combined and full range data models were more precise for both
properties. In this case, only the NIR range Cubist results represented an exception. One
reason for the differences in the results could be the greater variability in the BZE data set
due to the bigger geographical range. Further, data acquisition took place over several
years and was therefore carried out by different persons. In addition, there was a longer
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time span between chemical and spectral measurements. In contrast, the data collection
for the Zellwald area was conducted within a short amount of time (approximately one
month), all samples were taken by the same samplers and chemical as well as spectral
measurements were taken directly in the weeks after the sampling was finished.

4.2. Comparison to Other Studies

Few studies investigated the usage of MEMS-devices for soil properties prediction so
far. Their applications were using only soil samples originating from agricultural areas. In
Australia, e.g., [27] evaluated the prediction power of different low-cost NIR spectrometer
for organic as well as total carbon. Using the Neospectra device, they reported R2 values
of 0.78 (Cubist) and 0.73 (PLSR) for SOC. For total C content, their prediction metrics
descended with R2 = 0.7 for Cubist and R2 = 0.55 when using PLSR. The models were
therefore more precise than our results separated by horizon and less precise than our
combined models. Another study from Australia investigated the Neospectra for total C
content amongst other properties as well [26]. Soil material from 0 to 100 cm depth and
a Cubist regression model were used. They achieved R2 = 0.74, which is about the same
accuracy we calculated using PLSR and combined horizons. However, our estimations
based on separate horizons were less precise on local and regional scale. The discrepancies
regarding prediction accuracy could lie in the substantial differences in the study setup. All
studies investigated agricultural soils, where no humus layer is present. Further, different
depth ranges were investigated and the study areas were covering much bigger scales
than our study. In a study with focus on precision fertilization in Indonesia [28] reported
R2 = 0.57 for SOC and R2 = 0.52 for total N content, which is within the same range as our
regional Ah results. In this case, samples from 0 to 25 cm depth were used.

There were examples of studies using the visible range as well. Ref. [53] estimated
SOC using spectral data corresponding to red, green and blue light at field scale, reporting
R2 = 0.78 using the random forest algorithm. This accuracy equals our regional results
based on combined horizons. However, our results based on the visual range were less
precise for separated horizons.

Ref. [54] investigated predictions using artificial spectral data, concluding that the
range covering 350–975 nm increased inaccuracy when compared to approaches based on,
or including NIR range. Ref. [14] found no prediction accuracy difference using vis and NIR
range separately to estimate SOC (R2 = 0.6 in both cases). This study was conducted on a
local approach with sample material from 0 to 20 cm depth originating from an agricultural
field in Australia. In our local approach, we reached similar results using the visual range
for Ah horizon. However, we found different accuracies between visual and NIR range in
the combined horizons approach.

For the differences in prediction accuracy between the local and the regional data set,
opposed findings were reported. Ref. [55] investigated the scalability of soil total carbon
prediction models using data from different fields individually and in a combined approach.
They found the pooled data set and therefore the bigger scale to be more accurate than the
single fields. On the other side, Ref. [56] found small scales model calibrations to be more
accurate than large libraries when investigating SOC at field scale. Similar observations
were made by [20], who reported decreasing prediction accuracy with extension of the
geographic range. In our case, the smaller scale also yielded better results. Possible
reasons for this observations were suggested, e.g., by [42], who states that model accuracy
decreases when containing samples from diverse geographic origins and that the usage of
large diverse spectral libraries is therefore more difficult. Ref. [57] reported correlations
between the model errors and the standard deviations of the predicted soil properties. It
seems to us that the underlying correlations are still not sufficiently unterstood, and that
more research including up- and downscaling of models calibrated for forest soils should
be done.
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4.3. Relevance for Forest Soil Monitoring

Based on the good prediction accuracy we achieved under laboratory conditions,
we suggest that future in situ measurements are feasible with the investigated MEMS
devices due to their small size and weight. This way, obtained data could be used solely
or to supplement remote sensing approaches that lack applicability due to the vegetation
cover. Further investigations are especially recommended for local forest stands and sites.
On agricultural areas, first application of in situ measurements were already conducted [58].
Regarding in situ measurements, it is important to keep the possibility of wet conditions
in mind. The influence of water content on spectral data was as well already subject of
investigations in agricultural fields [59]. These effects should also be investigated for forest
humus and topsoil in order to get reliable in-situ measurements. Another possibility that
could be probed is to test a short drying of the soil surface directly before measuring. This
way, the impact of soil moisture could possibly be reduced. Another factor that could
influence in-situ measurements is the unsieved soil material.

The predictions could, e.g., be used to monitor long term processes. Over the last
decades, steadily increasing carbon stocks were reported in forest soils, e.g., in western
Europe where an increase of 65% is estimated between 1990 and 2050 [60]. Similar obser-
vations were made for China [61]. Such effects could be monitored more easily and with
higher spatial resolution by data collection using MEMS devices, as needed efforts can be
remarkably reduced.

5. Conclusions

In summary, this study demonstrates that low-cost MEMS spectrometers can be suc-
cessfully used to predict forest humus total C and N content. Models based on spectral
data obtained with MEMS are can compete models built with data from full range spec-
trometer when combining visual (340–850 nm) and NIR (1350–2550 nm) range data. We
achieved moderate prediction accuracy for local Ah horizons and regional Oh and Ah
horizon samples with data from MEMS and full-range devices. Our results showed that
the the performance decreased when using only the visual range, and that it is difficult
to establish sufficient models to predict forest total C and N content in this case. Results
for Ah horizons were more precise for the local Zellwald area when compared to models
based on data from whole Saxony. We conclude that the investigated devices could be
suitable for spectral in situ measurements of forest soils due to their small size and weight.
The actual application of low-cost MEMS spectrometers in in situ measurements at forest
soils should be investigated. Their usage could reduce expenditure of time and costs and
of spectral data acquisition and could therefore contribute to build larger spectral libraries
of forest soil that can be used for forest soil C and N content monitoring purposes.
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Abbreviations
The following abbreviations are used in this manuscript:

NIR near-infrared range of the electromagnetic spectrum
vis visual range of the electromagnetic spectrum
MEMS microelectro mechanical system
BZE National Forest Soil Inventory
SOC Soil organic carbon
clhs Conditioned Latin hypercube sampling
SG Savitzky - Golay Filter
SNV Standard Normal Variate
PLSR Partial Least Square Regression
RPD Ratio of Performance to Deviation
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Figure A1. Residuals of C content prediction for validation of separate cubist regression models for Oh and Ah horizon
based on spectral data obtained with the selected devices.
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Figure A2. Predicted vs. observed N content values for validation of cubist regression models for Oh and Ah horizon based
on spectral data obtained with the selected devices.
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Figure A3. Predicted vs. observed N content for validation of cubist regression models using both Oh and Ah horizon for
regional scale (BZE Saxony) based on spectral data obtained with the selected devices.
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Figure A4. Predicted vs. observed Ah horizon N content for validation of cubist regression models for local scale (Zellwald)
based on spectral data obtained with the selected devices.
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