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Abstract

Current family-based association tests for sequencing data were mainly developed for identifying rare variants associated
with a complex disease. As the disease can be influenced by the joint effects of common and rare variants, common variants
with modest effects may not be identified by the methods focusing on rare variants. Moreover, variants can have risk,
neutral, or protective effects. Association tests that can effectively select groups of common and rare variants that are likely
to be causal and consider the directions of effects have become important. We developed the Ordered Subset - Variable
Threshold - Pedigree Disequilibrium Test (OVPDT), a combination of three algorithms, for association analysis in family
sequencing data. The ordered subset algorithm is used to select a subset of common variants based on their relative risks,
calculated using only parental mating types. The variable threshold algorithm is used to search for an optimal allele
frequency threshold such that rare variants below the threshold are more likely to be causal. The PDT statistics from both
rare and common variants selected by the two algorithms are combined as the OVPDT statistic. A permutation procedure is
used in OVPDT to calculate the p-value. We used simulations to demonstrate that OVPDT has the correct type I error rates
under different scenarios and compared the power of OVPDT with two other family-based association tests. The results
suggested that OVPDT can have more power than the other tests if both common and rare variants have effects on the
disease in a region.
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Introduction

Genome-wide association studies (GWAS) have been successful

in identifying common variants associated with complex diseases.

However, most identified variants explain only a small portion of

heritability for the complex trait [1]. The missing heritability may

be explained by rare variants, which can now be efficiently

generated by studies using the next-generation sequencing (NGS)

technology, such as the 1000 Genomes Project [2]. Moreover,

with the advancements in NGS, sequencing a large number of

individuals for an association study has become possible. Thus, the

development of statistical association tests for the analysis of rare

variants has become important.

Association tests for rare variants have been developed rapidly

for case-control studies. The cohort allelic sums test (CAST) was

the first test developed specifically for rare variant association

analysis [3]. For the test, counts of mutant alleles were summed

over a region (e.g., a gene or an exon), and the difference in allele

frequencies for the collapsed alleles between cases and controls is

tested. The combined multivariate and collapsing (CMC) test

extended the CAST to jointly test both common variants and

groups of rare variants [4]. The weighted-sum test further

extended the CAST to assign informative weights to variants in

a group, assuming that rarer variants have larger effects on a

disease [5]. This type of tests (often referred to as the Burden test)

assume that variants have the same direction of effects on a disease

but may significantly lose power when both risk and protective

variants are present. The replication-based test accounts for

different directions of effects of the variants by grouping variants

with the same effects based on their allele frequencies in cases and

controls [6]. The C-alpha test also accounts for the mixture of risk

and protective variants by testing the distributions of rare variant

alleles between cases and controls [7]. The sequence kernel

association test (SKAT) uses a regression framework and a

variance-component test to consider common and rare variants

and different directions of effects [8]. SKAT was further extended

to SKAT-O, which finds an optimal weight to combine the

Burden test statistic and the SKAT statistic, such that the power

for association test can be maximized [9]. SKAT was also

extended to several combined tests that assign optimal weights to

combine the common and rare variant statistics [10].
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Several family-based association tests have been developed

recently for rare variants. Most of them were extended from

methods developed for case-control design. For example, the

weighted-sum approach was applied to the FBAT multimarker test

[11]. The Burden and SKAT tests have also been extended to

account for relatedness among family members [12,13]. These

tests focused on identifying a group of rare variants associated with

a disease and generally assigned higher weight to rare variants and

much lower weight to common variants. However, as common

and rare variants may both be causal variants [14], common

variants with modest effects in a region may not be identified by

these methods.

In this work, we propose to use the ordered subset algorithm

[15,16] to select common variants and the variable threshold

algorithm [17] to select rare variants. The ordered subset

algorithm was originally proposed to identify a subset of families

that have the strongest linkage or association signal based on a

trait-related covariate. Here we propose a modified algorithm to

identify a subset of common variants that have the strongest

association signal based on genotypic relative risks of common

variants. Based on evolutionary theory, the variable threshold

algorithm aims to identify an allele frequency threshold such that

rare variants with allele frequencies below the threshold are more

likely to be causal [17]. Incorporating both of these algorithms, we

use the Pedigree Disequilibrium Test (PDT) [18] to calculate the

association test statistics. The statistics for the rare and common

variants are combined to form the final test statistic. A simulation

study considering several scenarios was conducted to examine the

type I error rates for the test. Power studies were performed to

evaluate the performance of the test with other existing tests under

various simulation scenarios.

Material and Methods

The PDT Statistic
We first introduce the PDT statistic as it is used as the

fundamental test statistic in the proposed test. An informative

nuclear family for the PDT is a family that has at least one affected

child and two genotyped parents, where at least one parent is

heterozygous. A discordant sibship is informative for the PDT if

there is at least one affected and one unaffected sibling with

different genotypes. Here we consider families that contain an

informative nuclear family and/or an informative sibship. Assume

that allele 1 is the minor allele and allele 2 is the other allele at a

variant. For a triad (two parents and one affected offspring) in a

nuclear family, T = (count of allele 1 transmitted) – (count of allele

1 not transmitted). For a discordant sib pair, S = (count of allele 1

in affected sib) – (count of allele 1 in unaffected sib). Then the PDT

statistic Di for a family i is defined as

Di ~
XnT

j~1

Tijz
XnS

j~1

Sij ð1Þ

where nT is the number of triads and nS is the number of

discordant sib pairs in the family i. Assume that we have N nuclear

families. The single-variant PDT statistic X is

PN
i~1

Di

� �2

PN
i~1

D2
i

, which

follows a chi-square distribution with 1 degree of freedom [18].

The null hypothesis is no linkage or no association. Because it

considers squared values, the statistic is the same if the minor allele

shows a risk or protective effect.

Estimating Genotypic Relative Risks Using Parental Data
We use genotypic relative risks (GRRs) to select common

variants in the proposed test. We modified the approach in [19] to

estimating GRRs in family data. Let fx be the penetrance function

for the genotype x at a variant, where x can have values of 0, 1, or

2 based on the minor allele count at the variant. Then the GRRs

y1 and y2 are defined as y1~f1=f0 and y2~f2=f0, respectively.

Assuming Hardy-Weinberg Equilibrium (HWE) and that each

family was ascertained with at least one affected sib, four ratios of

parental mating types as functions of the GRRs can be defined as

[19]:

r1~
y2

4y2
1

~
p22p00

p2
20

r2~
(1zy1)(1z2y1zy2)

y1zy2

~
p10p11

p00p21

r3~
y1zy2

2y1(1zy1)
~

p00p21

p20p10

r4~
2(y1zy2)(1zy1)

y1(1z2y1zy2)
~

p21p10

p20p11

ð2Þ

where pij is the probability of a mating type of parents (one has

genotype x = i and the other has genotype x = j) conditional on the

fact that their child is affected. The probability pij can be estimated

using the sample, and estimates of the four ratios (i.e. r̂r1, r̂r2, r̂r3, and

r̂r4) can be obtained. Moreover, if we assume an additive model

(i.e., y2~2y1{1 and y1w0:5), y1 and y2 can be estimated

based on each of the ratios. Murphy et al. calculated conditional

power based on the estimated GRRs and used the conditional

power to prioritize SNPs. Their simulation studies suggested that

y1 and y2 estimated based on r̂r4 resulted in the highest power for

the prioritizing strategy [19]. However, y1 and y2 may not have a

unique solution or no solution may exist, as the calculations

involve solving the square root. In addition, information can be

lost if y1 and y2 are estimated using only r̂r4. Instead of estimating

y1 and y2 based on only one ratio, we heuristically search for y1

in the range of (0.5, 20), assuming an additive model. Note that y1

can be less than 1 if the allele has protective effect on the disease.

The best estimates of cy1y1 and cy2y2 are those whose ratios have the

minimum sum of the Euclidean distances to r̂r1, r̂r2, r̂r3, and r̂r4. The

estimates are unique and always solvable. We use a similar

bootstrap approach as in [20] to estimate the variance of the log ofcy1y1. The log of cy1y1 can then be normalized as:

lr~
log (cy1y1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarvar( log (cy1y1))

q ð3Þ

When minor allele frequency is low for a variant, some parental

mating types may not be observed in the sample. Then some ratios

in equations (2) cannot be estimated. In this case, we only estimatecy1y1 and cy2y2 based on the ratios that can be estimated. If all of the

ratios cannot be estimated, cy1y1 and cy2y2 cannot be estimated and lr
in equation (3) is set as 0. Using simulation studies, we found thatcy1y1 and cy2y2 for variants with MAF.0.1 generally can be estimated.

For variants with MAF,0.05, cy1y1 and cy2y2 are generally not

estimable.

The Ordered Subset – Variable Threshold – PDT (OVPDT)
algorithm

We assume that there are k trio families (two parents and one

affected offspring). Although we focus our discussions on trios, the

method can be generalized to general nuclear family structures. In

a sequencing region, assume that there are n common variants

Family-Based Association Test for Sequencing Data
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with minor allele frequency (MAF).0.05 and mt rare variants with

MAF,t for a given allele frequency threshold t. The MAF for

each variant is estimated from the parental genotypes in the

sample. The region can be defined as any set of variants (e.g.

variants in exons, introns, gene boundaries, or pathways). The

PDT statistic X is calculated for each of the common and rare

variants.

We use the ordered subset algorithm to select a set of common

variants from the n variants. The log of relative risk (lr) with

respect to minor allele is calculated for each of the n variants. The

absolute values of lr are ordered from large to small, and the PDT

statistics are ordered based on the rank of their corresponding lr
values. We use the absolute values of lr for ordering so that

variants with protective effects can also be in the top rank. Assume

that the ordered PDT statistics areX(1),X(2):::X(n). The statistics

are added one by one into a subset, and each time a statistic is

added into a subset, we calculate a p-value for the sum of statistics

in the subset. After all n variants are added to the subset, the

minimum p-value is calculated as follows:

min
1ƒiƒn

p{valuef
X

jƒi
X(j)g ð4Þ

where
P

jƒi X(j)*x2
i , assuming that the i variants are independent.

The approach in (4) is similar to the adaptive rank truncated

product (ARTP) method [21], except that ARTP sorts the SNPs

based on their p-values, while our method sorts the SNPs based on

their relative risks estimated only based on parental genotypes. As

variants may not be independent due to linkage disequilibrium

(LD), we will show in our simulations that the proposed test is

robust to the assumption of independence. We define the common

variant statistic C as the statistic corresponding to the minimum p-

value if the minimum p-value is less than or equal to 0.05. C is

defined as 0 if the minimum p-value is larger than 0.05.

We found that the ordered subset algorithm incorporating

GRRs is only suitable for selecting common variants. Calculating

the ratios in Equations (2) requires parents with homozygous

minor alleles, which are often not observed in the sample for rare

variants. Therefore, a different strategy is used to select rare

variants. We use the variable threshold algorithm to select several

sets of rare variants based on different t. For a set of mt variants

with MAF,t, we calculate the rare variant statistic as follows:

Rt~
Pmt

i~1 Xi, where Xi is the single-variant PDT statistic for

variant i. The combined statistic for rare and common variants at

the threshold t is defined as follows:

Vt~RtzC ð5Þ

The OVPDT algorithm is summarized as follows:

1. Calculate the normalized lr values for variants with MAF.

0.05.

2. Calculate the single-variant PDT statistics for all variants.

3. Calculate the combined statisticsV0:05, V0:03, V0:01, and V0:005

across four thresholds.

4. Permute the transmitted/nontransmitted alleles from parents

to siblings simultaneously within each family. Repeat steps 2

and 4 for K times. For a permutation i, we obtainVi0:05
, Vi0:03

,

Vi0:01
, andVi0:005

.

5. Standardize V0:05, V0:03, V0:01, and V0:005 as V0:05
�, V0:03

�,
V0:01

�, and V0:005
� and the permuted statistics asVi0:05

�, Vi0:03

�,
Vi0:01

�, and Vi0:005

� based on the permuted statistics.

6. Define the OVPDT statistic M~ max (V0:05
�,V0:03

�,V0:01
�,

V0:005
�), and Mi~ max (Vi0:05

�,Vi0:03

�,Vi0:01

�,Vi0:005

�) for per-

mutation i.

7. The p-value is calculated as ((# of Mi.M)+1)/(K+1).

We compute the rare variants statistic (Rt) for variants with

MAF below each of the four MAF thresholds (i.e., 0.05, 0.03, 0.01,

0.005), and select the maximum statistic from the standardized

statistics combining rare and common variant statistics (Rt+C)

across different t. Therefore, for rare variants, only variants with

MAF below a certain threshold contribute to the statistic M. This

is based on the observations in the simulation studies in [17] that

rare variants below a certain MAF threshold are more likely to be

functional than rare variants with MAF above the threshold.

Similar to the permutation strategy used in [22], we randomly

permute the transmitted/non-transmitted alleles from parents to

siblings in step 4. The transmitted/non-transmitted alleles from

parents to all siblings are permuted simultaneously so that the

identify-by-descent (IBD) status for alleles between siblings does

not change. Therefore, linkage is maintained in the permutations.

The permutation of the transmitted/non-transmitted alleles for a

family results in a sign change in the PDT statistic for the family.

We simultaneously permute the signs of the statistics for variants

on the same chromosome to preserve the linkage disequilibrium

(LD) structures among the variants. An adaptive permutation

strategy [23] is used so that small p-values can be calculated

efficiently. Based on the recommendations in Che et al. [23], the

permutation procedure is stopped when the number of Mi greater

than M equals 36 and when K is greater than 2,000. This strategy

guarantees that the standard error in estimating p-values at

2:5|10{6 is less than5|10{7.

BecauseV0:05, V0:03, V0:01, and V0:005 have different distribu-

tions, they are not directly comparable in step 6. For a specific Vt,

we use its permuted statistics to calculate the mean and standard

deviation for the null distribution. Then Vt and its permuted

statistics are standardized based on the mean and standard

deviation in step 5, similar to the procedure used in [24].

Simulations
We used simulations to evaluate the type I error rates and power

for the OVPDT statistic. We used the sequence simulator cosi [25]

based on a coalescent model. The best-fitting model provided in

the software, which includes parameters such as ancestral

population sizes, duration of expansion, migration rates, and

mutation rates, was used to generate sequences with an allele

frequency spectrum similar to the European and African

American populations. Two different sizes of regions, 10 kb and

25 kb, were simulated for each simulation replicate. The 10 kb

and 25 kb regions had an average of 198 and 512 variants,

respectively.

We used the simulation software SeqSIMLA [26] to generate

family data and disease status based on the sequences generated by

cosi. The prevalence model in SeqSIMLA, which is based on a

logistic penetrance function with odds ratios and prevalence

specified by the user, was used in the simulations. The disease

prevalence was assumed to be 5%. We estimated allele frequencies

based on the sequences from cosi and defined variants with

MAF,0.01 as rare variants and other variants as common

variants for the simulations. The average numbers of rare and

common variants were 166 and 32 in the 10 kb region, while the

average numbers of rare and common variants were 429 and 83 in

the 25 kb region. The odds ratio for a rare variant with risk effect

was a function of its MAF, e0:4Dlog10MAFD, which is the same function

used in [12]. As odds ratios for common variants identified by

Family-Based Association Test for Sequencing Data
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GWAS do not have strong correlations with allele frequencies

[27], we randomly generated an odds ratio between 1.05 and 1.3

for a common variant with risk effects, regardless of its allele

frequency. A variant with a protective effect had an inverse of the

odds ratio generated based on the above methods. Table 1

summarizes the scenarios we used for the type I error and power

simulations. For type I error simulations, we considered different

sequencing regions (10 kb or 25 kb), sample sizes (500 or 1,000

families), family structures (trios, families with two affected sibs or

families with three siblings, with one sib is affected), and the

presence of population stratification (Caucasian and African

American). For power simulations, the parameters we considered

included different sequencing regions (10 kb or 25 kb), propor-

tions of causal variants (10% or 30%), proportions of common and

rare variants in the causal variants (100% rare variants, 100%

common variants, or 50% common and 50% rare variants), and

proportions of risk and protective variants in the causal variants

(100% risk variants, or 30% protective and 70% risk variants).

One thousand Caucasian trios were simulated for each scenario

for the power studies. A total of 20,000 and 1,000 replicates were

simulated to calculate the type I error rate and power, respectively,

for each scenario.

We compared the power of OVPDT with the family-based

Burden (FB-Burden) and SKAT (FB-SKAT) tests [12]. FB-Burden

uses the weighted-sum approach, which is similar to the FBAT test

for rare variants [11]. FB-SKAT extends the SKAT approach to

family data. FB-Burden and FB-SKAT use a beta distribution to

assign more weight to rarer variants. We also changed the weight

function in FB-SKAT so that common variant can receive a larger

weight. A default weight for rare variant was used based on the

beta distribution, but a flat weight was assigned to common

variants equal to the weight for variant with MAF = 0.05, 0.03,

0.01 and 0.005. The FB-SKAT incorporating different flat weights

for common variant are referred to as FB-SKAT_0.05, FB-

SKAT_0.03, FB-SKAT_0.01, and FB-SKAT_0.005. As the

software implementation of FB-Burden and FB-SKAT assumes

trios, we only compared the power among different methods using

trios.

Results

We show the type I error rates for OVPDT under the 10

scenarios in Figure 1 at the 0.05 and 0.01 nominal levels. OVPDT

controls the type I error rates properly at both levels under all

scenarios. The 95% confidence intervals contain the nominal

levels under all scenarios. Although the genotypic relative risks for

common variants were estimated under the assumption that

families were ascertained with one affected sib and genotype

frequencies were under HWE, OVPDT maintains proper type I

error rates for the scenarios in which families had two affected sibs

(i.e., Scen4 and Scen8) and for the scenarios in which HWE was

violated (i.e., Scen9 and Scen10). Therefore, OVPDT is robust to

Table 1. Scenarios for type I error and power simulations.

Scenario Setting

Type I error

Scen1 10 kb1, 500 A2, Caucasian3

Scen2 10 kb, 1000 A, Caucasian

Scen3 10 kb, 1000 AUU, Caucasian

Scen4 10 kb, 1000 AA, Caucasian

Scen5 25 kb, 500 A, Caucasian

Scen6 25 kb, 1000 A, Caucasian

Scen7 25 kb, 1000 AUU, Caucasian

Scen8 25 kb, 1000 AA, Caucasian

Scen9 10 kb, 700 Caucasian trios and 300 African American trios

Scen10 25 kb, 700 Caucasian trios and 300 African American trios

Power

Scen11 10 kb, 1000 A, 30% of rare variants are risk variants

Scen12 Same as Scen11. But 30% of the causal variants are changed to protective variants.

Scen13 10 kb, 1000 A, 30% of common variants are risk variants

Scen14 10 kb, 1000 A, 10% of common and 10% of rare variants are risk variants

Scen15 10 kb, 1000 A, 30% of common and 30% of rare variants are risk variants

Scen16 Same as Scen15. But 30% of the causal variants are changed to protective variants

Scen17 25 kb, 1000 A, 30% of rare variants are risk variants

Scen18 Same as Scen17. But 30% of the causal variants are changed to protective variants.

Scen19 25 kb, 1000 A, 30% of common variants are risk variants

Scen20 25 kb, 1000 A, 10% of common and 10% of rare variants are risk variants

Scen21 25 kb, 1000 A, 30% of common and 30% of rare variants are risk variants

Scen22 Same as Scen21. But 30% of the causal variants are changed to protective variants

1Size of the sequence region.
2A: two parents and one affected sib; AUU: two parents, one affected and two unaffected sibs, AA: two parents and two affected sibs.
3Simulated population.
doi:10.1371/journal.pone.0107800.t001
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the violation of the assumptions based on the simulation models.

To evaluate the validity of the OVPDT test at more extreme tails,

we show the quartile-quartile (QQ) plot for the 20,000 replicates

for each scenario in Figure S1. The 20,000 replicates resemble

20,000 genes in real data analysis. As seen in the Figure, the

distribution of p-values agrees well with the expected values in

each scenario, and the p-values generally fall within the 95%

confidence intervals.

The power comparison for OVPDT with FB-Burden and FB-

SKAT is shown in Table 2. For Scen11 and Scen17, in which the

causal variants are rare and assumed to be risk variants, FB-

Burden had more power than OVPDT, followed by FB-SKAT.

However, when 30% of the rare causal variants are changed to be

protective variants (Scen12 and Scen18), OVPDT had more

power than FB-SKAT, while FB-Burden had the lowest power.

This is as expected because OVPDT and FB-SKAT take the

directions of effects for causal variants into account. For Scen13

and Scen19 where only common variants are responsible for the

disease, OVPDT can have much higher power than FB-Burden

and FB-SKAT. This is also as expected because lower weights are

given to common variants in FB-Burden and FB-SKAT. For all

scenarios where the causal variants are a mixture of rare and

common variants, OVPDT showed more power than FB-Burden

and FB-SKAT. The results demonstrated that considering rare

and common variants using different types of algorithms in

OVPDT can increase the power of family-based association

analysis for sequence data, particularly when the causal variants

are mixed with rare and common variants.

We also show the power for FB-SKAT_0.05 in Table 2 for the

FB-SKAT test incorporating different weight functions for rare

and common variants. The power for FB-SKAT_0.03, FB-

SKAT_0.01, and FB-SKAT_0.005 is not shown because we

found that FB-SKAT_0.05 always had more power than these

tests in our simulation scenarios. When the causal variants are all

rare (i.e. Scen11, Scen12, Scen17, and Scen18), FB-SKAT_0.05

had significantly lower power than OVPDT, FB-Burden and FB-

SKAT. FB-SKAT_0.05 can have the highest power when the

causal variants are all common (i.e. Scen13 and Scen19). This is

not surprising as a higher weight is given to common variants in

FB-SKAT_0.05. When the causal variants are mixed with

common and rare variants, the power for FB-SKAT_0.05 and

FB-SKAT is similar, but lower than the OVPDT. In general, the

OVPDT still has the highest power in most of the scenarios.

We applied OVPDT to the Genomic Origins and Admixture in

Latinos (GOAL) study dataset. The dataset consists of 25 trios

genotyped on Illumina Human Exome Beadchips. Variants with

missing rates.10% were removed. Variants with HWE test p-

values ,0.001 were also removed. The overall genotyping rate

was 99.97% and there were 55,569 polymorphic variants in the

data. The 25 trios do not have disease status as the aim of the

GOAL project is to investigate the haplotype structures in

Hispanics. Therefore, we assumed the child was affected (but

affection status was unrelated to genotypes) and parents were

unaffected in each trio. Although the affection status was

artificially determined, the analysis results can be used to evaluate

the validity of the test in real data. Because most of the genes

contain only one or a few variants, we performed pathway-based

analysis. We downloaded the entire gene sets from the Molecular

Signatures Database (MSigDB) from the GSEA website (http://

www.broadinstitute.org/gsea). We extracted the gene sets that

each pair of the gene sets do not overlap for more than 5% of the

genes. A total of 442 gene sets were tested. The QQ plot for the

analysis results is shown in Figure 2. The p-values fall within the

95% confidence intervals in the plot, which demonstrates that the

OVPDT maintains a valid test in real data.

Discussion

We have developed a novel family-based association test,

OVPDT, which considers both common and rare variants and the

directions of effects of the variants. We performed a simulation

study to evaluate the properties of the proposed tests. Our

Figure 1. Type I error rates for OVPDT at the 0.05 and 0.01 significance levels. The error bars represent the 95% confidence intervals for the
type I error rates.
doi:10.1371/journal.pone.0107800.g001
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simulation results showed that the proposed test has correct type I

error rates under all simulation scenarios. We also used

simulations to compare the power of the proposed test with FB-

Burden and FB-SKAT. The simulation results showed that, when

the causal variants are a mixture of rare and common variants,

OVPDT is more powerful than FB-Burden and FB-SKAT.

OVPDT takes advantage of the unique property of family data

that parents can be used to calculate the relative risks for common

variants. The calculations of the relative risks are based on the

assumptions that families were ascertained with at least one

affected sib and the genotype frequencies were under HWE. Using

simulations, we demonstrated that type I error for OVPDT was

maintained at the expected levels even when the two assumptions

were violated. The calculations of the relative risks can be

extended to more general family structures, such as families with

more than one affected sib or families with missing parents.

Different ratios of parental mating types which are independent

from population allele frequencies need to be derived, which can

be accomplished by sophisticated mathematical packages [19].

The relative risks are used in both the two-stage method in

Murphy et al. [19] and our method to rank the variants. In the first

stage of the two-stage method by Murphy et al., the genotypic

relative risks are used to calculate the conditional power of the

FBAT test [28] for each variant. In the second stage, variants are

ranked by their conditional power and a weighted Bonferroni

approach is applied to the ranked p-values to determine whether a

variant is significant. In our method, the genotypic relative risks

are normalized by their variance and are incorporated in the

ordered subset algorithm to select a promising subset of variants.

Therefore, the general purpose of the two-stage method and our

method is to use the genotypic relative risks to prioritize the

variants. However, two different algorithms (i.e. the weighted

Bonferroni approach and the ordered subset algorithm) are used

after the variants are ranked by their relative risks, because the

goal of the two-stage method is to identify association for single

variants, while our goal is to identify a subset of promising

common variants.

The common and rare variant statistics contribute equally to the

OVPDT statistic. Different weights can be assigned to the

common and rare variant statistics to increase the power for the

test, when the overall effect sizes for the common and rare variants

are very different [10]. Similar adaptive approach to determining

the optimal weights as used in [10] can potentially be applied to

the OVPDT algorithm. However, the adaptive approach relies on

the fact that the distributions for the common and rare variants are

known, which is not the case for OVPDT. More research will be

needed to decide the optimal weights for the common and rare

variant statistics in OVPDT.

We used a permutation procedure to approximate the

distribution for the proposed test. As permuting transmitted and

non-transmitted alleles in the permutation procedure does not

change parental mating types, the relative risks and their variance,

which are calculated based only on parental mating types, do not

need to be recalculated in the permutation. We do not specifically

model LD in the test statistic by taking the sum of the individual

statistics. However, LD structures among variants were properly

maintained in the permutation. Therefore, although LD is not

Table 2. Power comparison of OVPDT with FB-Burden and FB-SKAT at the 0.05 significance level.

Scenario FB-Burden FB-SKAT FB-SKAT_0.05 OVPDT

Scen11 0.815 0.659 0.216 0.716

Scen12 0.470 0.564 0.175 0.608

Scen13 0.179 0.294 0.603 0.436

Scen14 0.364 0.421 0.513 0.519

Scen15 0.750 0.726 0.659 0.757

Scen16 0.373 0.703 0.722 0.801

Scen17 0.918 0.826 0.344 0.854

Scen18 0.596 0.740 0.226 0.776

Scen19 0.240 0.448 0.722 0.611

Scen20 0.535 0.613 0.678 0.722

Scen21 0.658 0.811 0.759 0.853

Scen22 0.337 0.871 0.829 0.896

doi:10.1371/journal.pone.0107800.t002

Figure 2. QQ plot for the pathway-based analysis using the
GOAL study data.
doi:10.1371/journal.pone.0107800.g002

Family-Based Association Test for Sequencing Data

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107800



specifically modeled, the presence of LD does not affect the

validity of the test.

The permutation procedure has a nice property in that

permuting the transmitted and non-transmitted alleles from

parents to siblings simply results in a sign change for the PDT

statistic for each family. However, this property only holds for

nuclear families. For extended pedigrees, permuting the transmis-

sion and non-transmission alleles is challenging, especially when

there are missing parents. Linkage also needs to be considered

when there are multiple affected siblings [29] in the permutation.

Alternatively, a Monte-Carlo simulation method, as used in

MERLIN [30], can be used to generate null data. This is our

future work to extend the proposed methods to extended pedigrees

based on a Monte-Carlo simulation procedure.

In conclusion, OVPDT will be useful in detecting both common

and rare variant effects on a complex disease based on family

sequencing data. The proposed test provides an alternative test to

the currently available family-based rare variant tests. We have

implemented the proposed test in a software package, OVPDT,

with C++. POSIX Threads (Pthreads) in C++ are used to

parallelize the code. The program can finish the analyses based on

2,000 permutations for the simulated 10 kb and 25 kb regions in

1,000 nuclear families in 8.6 and 17.3 seconds, respectively, on a

Linux server with Xeon 2.0 GHz CPUs with 8 threads. Therefore,

the program can perform genome-wide gene-based analysis in a

reasonable time frame. The program can be downloaded for free

at http://ovpdt.sourceforge.net.

Supporting Information

Figure S1 QQ plots for the type I error simulations.
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