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Introduction
The incidence of non-small cell lung cancer 
(NSCLC) is continuously increasing, consisting 
of about 85% of Korean lung cancer patients 
population.1,2 For more than a decade, immune 
checkpoint inhibitors (ICIs) have proven to be 
highly effective against multiple solid tumors.3,4 
Currently, programmed death-ligand 1 (PD-L1) 
expression serves as a predictive biomarker for 
ICI sensitivity and patient stratification; there-
fore, first-line treatment selection for NSCLC is 

largely dependent on PD-L1 expression in 
tumors. For patients with PD-L1 expression in 
⩾50% of NSCLC tumor cells, pembrolizumab 
monotherapy is recommended. The overall 
response rate (ORR) of pembrolizumab mono-
therapy in these patients is 44.8%.5 In patients 
with NSCLC tumor PD-L1 expression ⩾1%, 
pembrolizumab monotherapy is more effective 
than conventional chemotherapy.6 For patients 
with PD-L1 expression in <50% of tumor cells, a 
combination of doublet chemotherapy with 
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Abstract
Background: Programmed death-ligand (PD-L1) expression serves as a predictive biomarker 
for immune checkpoint inhibitor (ICI) sensitivity in non-small cell lung cancer (NSCLC). 
Nevertheless, the development of biomarkers that reliably predict ICI response remains an 
ongoing endeavor due to imperfections in existing methodologies.
Objectives: ICIs have led to a new paradigm in the treatment of NSCLC. The current 
companion PD-L1 diagnostics are insufficient in predicting ICI response. Therefore, we sought 
whether the Olink platform could be applied to predict response to ICIs in NSCLC.
Design: We collected blood samples from patients with NSCLC before ICI treatment and 
retrospectively analyzed proteomes based on their response to ICI.
Methods: Overall, 76 NSCLC patients’ samples were analyzed. Proteomic plasma analysis 
was performed using the Olink platform. Intraplate reproducibility, validation, and statistical 
analyses using elastic net regression and generalized linear models with clinical parameters 
were evaluated.
Results: Intraplate coefficient of variation (CV) assays ranged from 3% to 6%, and the 
interplate CV was 14%. In addition, the Pearson correlation coefficient of the Olink Normalized 
Protein eXpression data was validated. No statistical differences were observed in the 
analyses of progressive disease and response to ICIs. Furthermore, no single proteome 
showed prognostic value in terms of progression-free survival.
Conclusion: In this study, the proximity extension assay-based approach of the Olink panel 
could not predict the patient’s response to ICIs. Our proteomic analysis failed to achieve 
predictive value in both response or progression to ICIs and progression-free survival (PFS).
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concurrent pembrolizumab is recommended for 
both squamous and non-squamous NSCLC.7,8 
Atezolizumab monotherapy or a combination of 
Nivolumab and Ipilimumab is another feasible 
first-line therapy for NSCLC.9–12

Even though PD-L1 expression serves as a pre-
dictive biomarker for ICI sensitivity, there remains 
an unmet need for the development of more pre-
cise biomarkers that can accurately predict ICI 
response. Tumor mutation burden,13,14 and 
tumor-infiltrating lymphocytes have been sug-
gested as predictive biomarkers; however, their 
predictive power is limited.15–17 In addition, dif-
ferent companion diagnostic kits are used for dif-
ferent cancer types, confirming that a unified 
diagnostic method does not exist.18,19

Proteomic analysis is a powerful tool for the 
global assessment of protein expression and has 
been extensively applied in cancer studies as it 
allows for the identification of potential biomark-
ers.20 In addition, in NSCLC, proteomic analysis 
has been used to assess subtypes,21,22 disease 
stage, and the status of metastasis.23,24 We hypoth-
esized that a high-throughput proteomics 
approach, using blood samples, could possibly 
predict the response to the use of ICIs.

Therefore, we aimed to investigate the clinical 
utility of a highly sensitive proteome analysis plat-
form, Olink. Specifically, whether Olink could be 
used to predict ICI response in patients with 
NSCLC.

Materials and methods

Patient characteristics and plasma sample
This study had been designed before the reim-
bursement of the ICIs as a first-line therapy for 
lung cancer in combination with cytotoxic chem-
otherapy. Thus, this study enrolled patients who 
had received monotherapy of ICIs. The patients 
were evaluated with imaging according to 
RECIST 1.1 (Response Evaluation Criteria in 
Solid Tumors, Version 1.1).25 Overall, 95 patients 
with stage IV lung cancer who received an ICI 
treatment (Nivolumab, Pembrolizumab, or 
Atezolizumab) at the Yonsei Cancer Center 
between December 2018 to November 2020 were 
enrolled. All patients provided written informed 
consent for the collection of blood samples (IRB: 
4-2016-0678). The reporting of this study 

conforms to the STRAD 2015 statement 
(Supplemental Table 1).

Among the 95 samples, 8 patient samples were 
used as bridge samples, and 7 failed to pass the 
quality control (QC) test. Therefore, 80 samples 
were analyzed; however, samples from four 
patients were excluded due to missing or vague 
patient characteristics. Finally, 76 samples were 
included in the final cohort and were evaluated 
using correlation analysis. Before ICI treatment 
(baseline), whole blood was collected in BD 
Vacutainer CPT tubes (BD362753). Tubes were 
centrifuged for 30 min at room temperature 
(25°C) to obtain plasma (3 mL). Plasma was 
stored at −80°C for further use and thawed at the 
time of proteomic analysis. For better under-
standing, detailed figure for batch arrangement 
was shown in Supplemental Figure 1.

Following the RECIST criteria, the response to 
anticancer agents is categorized as complete 
response, partial response, stable disease (SD), 
and progressive disease (PD). In this study, the 
patient population was divided into two groups. 
Firstly, into progressors (P) and non-progressors 
(NP), where P includes patients whose best 
response to ICIs was PD, and NP includes those 
with other responses. Additionally, the subjects 
were classified as non-responders (NR) and 
responders (R), where R comprises patients with 
best responses of SD or PD to ICIs, while NR 
includes those with PD or SD. We have done 
these two separations of subjects because a single-
agent immunotherapy may not always induce 
abrupt tumor shrinkage, but may induce long-
term disease stabilization, which is linked to clini-
cal benefit. Although seemingly overlapping, 
these separate categorizations were established to 
discern and confirm the clinical benefits associ-
ated with such outcomes.

Proteomic plasma analysis using the  
Olink Immuno-Oncology Panel
Plasma samples were analyzed at the Macrogen 
Precision Medicine Institute (Seoul, South 
Korea), where Normalized Protein eXpression 
(NPX) levels were measured. NPX values were 
obtained for 84 patients at baseline and post-anti-
PD1/PD-L1 treatment. The Olink Immuno-
Oncology Panel was used to detect the soluble 
proteins related to immunotherapy. This panel 
offers a multiplexed immunoassay for 92 protein 
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biomarkers associated with various biological 
processes such as the promotion and inhibition of 
tumor activity. Full validation information about 
this panel was provided by the manufacturer, 
including the scalability, specificity, and analyti-
cal measurements of the testing samples. Briefly, 
dual proximity extension assay antibody probes, 
labeled with DNA nucleotides, bind to the target 
protein in plasma samples with high specificity, 
which encourages more specific reactions than 
traditional immune assays. The generated dou-
ble-stranded DNA barcodes were amplified, and 
the amount of each barcode was measured using 
a real-time qPCR (Supplemental Figure 2).

Reproducibility of Olink panel results
Experimental replicates were performed to assess 
reproducibility. For each experimental replicate, 
all samples were included in the same order on 
each plate, and analyses were performed using the 
same version of the Immuno-Oncology Panels. 
Only difference was the additional freeze–thaw 
cycle in the newer plates. We compared the NPX 
values of each protein produced from distinct 
time points using Pearson correlation.

Protein measurements using Luminex
Serial dilutions of five plasma samples with 2-fold 
and 10-fold factors were quantified by the Human 
Immuno-Oncology Checkpoint Protein Panel 
1&2 using a Luminex 200 system (Cosmo 
Genetech, Seoul, South Korea). The most sig-
nificant proteins identified in this study, meas-
ured by Luminex, were arginase-1 (ARG1), 
galectin-1 (GAL1), MIC-A, MIC-B, PD-1, 
PD-L1, and PD-L2. Concentrations were meas-
ured in duplicate based on the antibody responses 
per sample.

Statistical analysis
This study aimed to analyze whether certain pro-
teomic levels could possibly lead to prediction of 
ICI treatment. Therefore, primary endpoint of 
the study is to validate whether specific proteomic 
levels can accurately classify patients into catego-
ries of P versus NP or NR versus R.

Due to the limited number of events of progres-
sion or response compared to the analyzed num-
ber of the proteome, an initial exploration was 
conducted to identify significant variables. First, 
the samples were separated into train and test 

sets. The train set consisted of 70% of the original 
data set, chosen at random while preserving the 
proportions of the response classes initially avail-
able. Statistical significance was set at p < 0.05.

Then, logistic regression was performed for each 
proteome among the train set, assessing their sig-
nificance in the context of P versus NP or R versus 
NR. Proteomes with p values < 0.05 in logistic 
regression were designated as significant. Subs-
equently, elastic net regression was carried out 
using the identified significant proteomes for each 
respective comparison. An elastic net regression 
model was employed to create a predictive model 
for distinguisihg both P versus NP, and R versus 
NR within the train set, using the ‘caret’ (v6.0-
94) and ‘glmnet’ (v4.1-7) packages in R. Elastic 
net regression is a regularization technique devel-
oped by Zou and Hastie26 to overcome the limita-
tions of l1 (lasso) and l2 (ridge) regularization. It 
was designed to provide good classification per-
formance while employing a minimal number of 
predictor variables. α and λ are the hyperparam-
eters for this model, and help determining the 
mixture and weight of penalization, where setting 
α = 1 results in the elastic net penalty only con-
tributing a penalty equivalent to the l1 regulariza-
tion, and α = 0 results in the elastic net penalty 
only contributing a penalty equivalent to the l2 
regularization. These penalties together are scaled 
by λ; the higher the value for λ, the higher the 
penalty accrued to the regression. The α and λ 
were set at the lowest root mean square error 
(RMSE). Herein, RMSE is defined as follows:

RMSE
Actual Value Predicted value

=
−( )

=∑ i

n

i i

n
1

2

In this study, a sequence of 10 α values ranging 
from 0 to 1 was explored, and a sequence of 20 λ 
values ranging from 0.0001 to 1 was examined to 
investigate different combinations of l1 and l2 reg-
ularization strengths in elastic net regression. The 
range of λ values was determined based on the 
preliminary results from l1 and l2 regressions. 
After modeling a prediction model, validation 
with test set was analyzed.

Since both R versus NR and P versus NP are cat-
egorical variables with only two values each, we 
employed the logit link function in elastic net 
regression. After obtaining results for each varia-
ble, in the R versus NR model, we defined values 
below 0.5 as R and values equal to or above 0.5 as 
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NR. Similarly, in the P versus NP model, values 
below 0.5 corresponded to NP, while values equal 
to or above 0.5 indicated P.

Receiver operating characteristic (ROC) curves 
for the two models: R versus NR and P versus NP, 
were plotted, both for train and test sets. 
Subsequently, area under curve (AUC) for each 
model were calculated. Ninety-five percent confi-
dence intervals (CIs) for the AUC values were 
calculated by the bootstrap method.

Further explanatory analysis was done on rela-
tionship between PFS and proteomes. Since there 
is no evidence to suggest that the models for both 
R versus NR and P versus NP are associated with 
PFS, we conducted univariate regression analysis 
on individual proteomes with respect to PFS. 
Subsequently, we selected significant proteomes 
and performed multivariate Cox regression with 
clinical parameters to calculate hazard ratio of 
PFS. All statistical analyses were performed using 
R 4.3.0.

Results

Patient characteristics
A total of 76 samples of NSCLC patients were 
collected between December 2018 and November 
2020 (Figure 1). Among 76 subjects, 58 subjects 
were analyzed as train set, and 18 subjects were 
analyzed as test set. There were no significant dif-
ferences in sex, age, and ICI treatment agents 
between the two groups. However, patients 
receiving first-line ICI therapies were exclusively 
included in the train set. The baseline character-
istics of patients are depicted in Table 1.

Reproducibility
Four replicates were performed, and the obtained 
NPX values were compared to verify reproduci-
bility of the result. The intraplate coefficient of 
variation (CV) for 92 protein assays between all 
plates ranged from 3% to 6%, and interplate CV 
in those plates was 14%. We normalized the 
NPX values from all replicates by adjusting the 
median values of all markers per plate to stand-
ardize plate variations. Pearson correlation analy-
sis (Supplemental Figure 3) revealed that between 
replicates, 83 markers were highly correlated 
(r = 0.85–0.99). The six highest and least correlated 
proteins were presented in Figure 2 with the corre-
lation scores. The proteins with highest correlation 
were PDGF subunit B, IL6, and C-X-C motif 
chemokine 5 (CXCL5) with r > 0.99. Notably, the 
NPX values of the nine proteins were below limit 
of detection: IL-1α (r = 0.63), IL2 (r = 0.048), 
IL33 (r = 0.26), IL5 (r = 0.68), IL4 (r = 0.35), 
IL13 (r = 0.44), Pleiotrophin (r = 0.55), CXCL12 
(r = 0.65), CD28 (r = 0.75).

Validation of Olink data based on  
antigen–antibody reaction assay
To validate the results obtained from the Olink 
platform, Pearson correlation tests were employed 
to analyze the correlation between the results 
obtained from Olink (NPX data on a log2 scale) 
and the results obtained from Luminex [concen-
trations in pictograms per milliliter (pg/mL)]. We 
have randomly selected five patients’ samples to 
compare the validation, results (NPX value and 
concentration) of seven different proteins were 
analyzed. The highest correlations were observed 
with PD-L1 (r ⩾ 0.92), followed by PD-L2 and 
PD-1 also showing high correlation coefficients 

Figure 1. Patient enrollment and consort diagram.
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Table 1. Baseline characteristics of subjects.

Train set (N = 58) Test set (N = 18) p Value

Age

 Mean (SD) 64.21 (10.15) 62.67 (10.09) 0.575

NR versus R

 Responder 10 (17.2%) 3 (16.7%)  

 Non-responder 48 (82.8%) 15 (83.3%) >0.999

P versus NP

 Non-progressor 35 (60.3%) 7 (38.9%)  

 Progressor 23 (39.7%) 11 (61.1%) 0.174

Sex

 Male 43 (74.1%) 13 (72.2%)  

 Female 15 (25.9%) 5 (27.8%) >0.999

Smoking

 Never 20 (34.5%) 3 (16.7%)  

 Former/current 38 (65.5%) 15 (83.3%) 0.240

Pathology

 Adenocarcinoma 37 (63.8%) 14 (77.8%)  

 Squamous 16 (27.6%) 4 (22.2%)  

 Others 5 (8.6%) 0 0.350

IO treatment

 Nivolumab 48 (82.8%) 14 (77.8%)  

 Pembrolizumab 5 (8.6%) 2 (11.1%)  

 Atezolizumab 5 (8.6%) 2 (11.1%) 0.893

Treatment line

 1 7 (12.1%) 0 (0%)  

 2 24 (41.4%) 11 (61.1%)  

 3 16 (27.6%) 5 (27.8%)  

 ⩾4 11 (18.9%) 2 (11.1%)  

PD-L1 (TPS)

 0% 29 (50.0%) 9 (50.0%)  

 1–49% 21 (36.2%) 7 (38.9%)  

(Continued)
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(r ⩾ 0.91 and r ⩾ 0.85) in every intra-patient sam-
ple. Notably, ARG1 correlation for Patient B was 
replaced with not detectable, and the correlation 
with MIC-B for Patient A was quantified as nega-
tive 0.23 (r = −0.23) (Supplemental Table 2) in 
that the variables were associated with opposite 
directions. All other variables were highly corre-
lated (Supplemental Table 2) except ARG1 from 
Patient A (r = 0.40), GAL1 from Patient D 
(r = 0.50), and MIC-B from Patient B (r = 0.54) 
(Figure 3). The linearity of PDCD1, PD-L1, and 
PD-L2 between the measured signal versus theo-
retical concentration by both Olink and Luminex 
in patients A and B is described in Supplemental 
Figure 4. Supplemental Figure 4 illustrates the 
disparity between the actual measured values 
and the theoretical values predicted of the 
PDCD1, PD-L1, and PD-L2 based on a dilu-
tion factor (2×) for Patients A and B. This com-
parison is depicted graphically using two 
different methods, Olink and Luminex. While 
statistical comparison may be challenging, the 
graphical representation suggests that both 

patients exhibit less discrepancy using the Olink 
method compared to Luminex. We also 
observed the normalized linearity for Patient A 
and visualized it for each platform (Figure 4). 
The measurements from Olink and Luminex 
were both associated with dilution factors, such 
as increased slopes. The weakest correlation 
was observed for ARG1 using Olink (r = 0.0872) 
and for MIC-B using Luminex (r = 0.0132). 
The other markers showed r > 0.7 in Olink 
measurements associated with dilutions. 
However, ARG1 and GAL1 of Patient A were 
weakly correlated. Besides the sensitivity of 
these multiplex platforms, better linearity was 
observed with the Olink datasets.

Prediction of the response to ICI by  
proteomic level
To develop a predictive model for the relation-
ship between protein levels and response to ICIs, 
the coefficients of the best-fit elastic net were 
evaluated for R versus NR and P versus NP. 

Train set (N = 58) Test set (N = 18) p Value

EGFR

 ⩾50% 8 (13.8%) 2 (11.1%) 0.950

 No 40 (69.0%) 17 (94.4%)  

 Yes 10 (17.2%) 1 (5.6%) 0.265

ALK

 Unknown/not done 8 (13.8%) 0  

 No 43 (74.1%) 16 (88.9%)  

 Yes 2 (0.03%) 1 (5.6%) >0.999

 Unknown/not done 13 (22.4%) 1 (5.6%)  

ROS1

 No 39 (67.2%) 12 (66.7%)  

 Yes 0 0  

Unknown/not done 19 (32.8%) 6 (33.3%)  

p Value was calculated for patients who underwent immune histochemical study of EGFR, and ALK results. For ROS1, p 
value was not evaluated because no patients showed positive results.
ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; ICI therapy, immune checkpoint inhibitor 
therapy; NP, non-progressors; NR, non-responders; P, progressors; PD-L1, anti-programmed death-ligand 1; R, 
responders; ROS1, ROS proto-oncogene 1; SD, standard deviation; TPS, tumor proportion score.

Table 1. (Continued)
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Figure 2. Six highest and lowest correlation coefficient in 92 protein assays. Complete correlation data are 
provided in Supplemental Figure 3.

Figure 3. Results of correlation between Olink and Luminex assays. The x-axis shows the Pearson correlation 
coefficient, and the y-axis represents the selected assays for five patients arranged in ascending order.

Initially, we have selected proteomes that are con-
sidered significant in comparison of R versus NR 
and P versus NP from train set. Logistic regres-
sion was employed to every proteome each com-
parison. In R versus NR regression, CD4, NOS3, 
CD70, TNFRSF12A, MMP7, ANGPT2, and 
PD-L2 were selected, and in P versus NP 

regression, MUC-16, CCL19, HO-1, and 
CCL23 were selected as significant proteomes.

Firstly, in the analysis of R versus NR created 
within train set, elastic net regression revealed the 
minimum RMSE at α = 0 and λ = 0.158 [Figure 
5(a)]. The R2 value, determined using the train 
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set on which this model was created, was found to 
be 0.0842. However, when validating this model 
with the test set, which consisted of 3 responders 
and 15 non-responders, the model predicted all 
subjects as non-responders (Supplemental 
Table 3). The variable importance analysis 
revealed specific predictors that significantly 
contribute to the predictive performance of the 
model. Among them, CD70 demonstrated the 
highest overall importance, receiving a score of 
100.00, whereas PD-L2 scores 0 in this model. 
Plot of each variable’s importance is shown in 
Figure 5(b).

In P versus NP analysis, elastic net regression was 
settled at α = 0, λ = 0.421 [Figure 5(c)]. Analysis 
of importance of variable reveals MUC-16 show-
ing the highest overall importance, where CCL23 
shows lowest importance [Figure 5(d)]. In this P 
versus NP analysis, R2 value equals 0.1739. 
Validation of this model by this model by test 
model shows sensitivity of 0.857, and specificity 
of 0.09 (Supplemental Table 3).

Considering the absence of a conclusive fit for 
both NR versus R and P versus NP in the analysis 
using elastic net regression, ROC curve and AUC 
values were assessed for both NR versus R and P 
versus NP models in both train and test sets. 
Firstly, in R versus NR model, AUC of train set 
was 0.81, with CI ranging from 0.656 to 0.965 
[Figure 6(a)]. AUC of test set was 0.867 (0.592–
1.00) [Figure 6(b)]. Similarly, P versus NP model 

yielded AUC of 0.81 (0.717–0.928) in train set 
[Figure 6(c)] and 0.494 (0.184–0.803) in test set 
[Figure 6(d)].

Furthermore, in order to figure out each pro-
teome’s prognostic value, we conducted a com-
parative analysis between PFS and individual 
proteomes. In this analysis, univariate analysis 
using generalized linear models was employed to 
examine the correlation between PFS and each 
proteome. Significant proteomes, which showed 
p < 0.05 in previous univariate analysis, were 
identified based on the outcomes of this analysis. 
Among the proteomes analyzed, only IL-2 and 
CXCL1 exhibited statistical significance in the 
univariate analysis. Subsequently, a multivariate 
Cox regression was performed, incorporating 
clinical parameters such as age, sex, tumor pro-
portion score (TPS), smoking, and treatment 
lines, along with the two significant proteomes, to 
provide a comprehensive exploration of the fac-
tors influencing PFS. To categorize the clinical 
parameters, TPS score was divided into three 
groups: 0, 1–49%, and 50–100%, while treat-
ment lines were categorized into 1, 2, 3, and 4 or 
more, representing the order of ICI treatment 
(Figure 7). However, the levels of IL-2 and 
CXCL1 did not exhibit statistically significant 
differences in association with PFS in this Cox 
regression analysis. The hazard ratios for the two 
proteomes were calculated as 0.62 (95% CI: 
0.31–1.28) and 0.82 (95% CI: 0.62–1.10), 
respectively, as shown in the forest plot.

Figure 4. Normalized measurements from Olink as dilutions (y-axis) on Patient E with coefficients of determination for all protein 
markers and normalized levels from Luminex (x-axis) as the same function.
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Discussion
In this study, we aimed to investigate the clinical 
utility of the Olink platform in NSCLC. First, we 
evaluated the reproducibility of results obtained 
using the Olink platform. Many markers showed 
strong intraplate correlations. Next, the Olink 
proteomic data was compared with the Luminex 
data. Strong correlations were observed between 
the obtained data, except for MIC-B and CAL1. 
Although only a few proteomes were available for 
analysis, Olink proteomics outperformed the 
Luminex system in terms of linearity since the 
graphical representation suggests that, in both 
patients, the Olink method exhibits less deviation 
between measured values and theoretical values 
compared to the Luminex method. However, a 
direct comparison between the two diagnostic 
tools needs to be further investigated because no 
single technique has been proven to be the gold 
standard. Our team had debated about the reason 
for the different correlations between patients. 

Our possible proposal was that the protein expres-
sion profiles could vary with the patient’s or sam-
ple’s traits or other environmental influences. 
Further investigations into protein sampling and 
variation in measurement might be needed.

We also sought to determine the relationship 
between the response to ICIs in NSCLC and pro-
teomic analysis. However, the regression test 
results did not reveal any significant model. Our 
two elastic net regression models, R versus NR 
and P versus NP, showed α value of 0. This out-
come suggests that the model is attempting to 
shrink the coefficients using only l2 regularization, 
leading to the model’s overfitting and may not 
effectively perform variable selection. We further 
investigated the model’s fitting using ROC curves 
and AUC, but the results were disappointing. 
The R versus NR model failed to identify patients 
corresponding to actual responders, with a sensi-
tivity of 0. While the AUC of the ROC curve itself 

Figure 5. (a) Elastic net regression and hyperparameters for best fit (lowest RMSE) were presented for R 
versus NR model. (b) Proteomes were arranged in the order of importance in R versus NR model. (c) Elastic 
net regression and hyperparameters for best fit in P versus NP model. (d) Proteomes were arranged in the 
order of importance in P versus NP model.
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was high, its interpretation as a suitable predictor 
was challenging due to the absence of true posi-
tive predictions. Additionally, in the P versus NP 
model, the AUC was significantly lower in the 
test set compared to the training set, indicating 
overfitting of the model to the training data and 
rendering it unfit for prediction.

Our study is similar to that of Eltahir et al.27; how-
ever, the proteins that significantly affect the 
overall parameters do not overlap. Previous 
research has emphasized the importance of the 
C-X-C motif chemokines, CXCL9 and CXCL10, 
in response to checkpoint inhibition. In our study, 
IL-2 and CXCL1 exhibited statistical significance 
concerning PFS among the proteomes. Both the 
cytokines are known to be related to unfavorable 
prognosis factors in various reports.28,29 However, 

when conducting Cox regression through multi-
variate analysis, including both two proteomes 
and clinical parameters, the statistical analysis 
revealed that the predictive value of the pro-
teomes was not statistically significant.

This study had some limitations. Firstly, the sam-
ple cohort was smaller than the number of prot-
eomic panels. Applying classical models of 
regression was challenging, so only regression by 
training and validation was available. Secondly, 
this study included about 18.4% of responders, 
which is almost identical to previously reported 
KEYNOTE-010 study,30 where administration of 
pembrolizumab 2 mg/kg to previously treated 
NSCLC shows 18% of objective response rate. 
However, relatively small numbers of total 
responders seemed to lead to utilization of only l2 

Figure 6. Receiver operating curve of (a) train set and (b) test set in R versus NR model, and (c) train set and 
(d) test set in P versus NP model.
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regularization without incorporating l1 regulariza-
tion in both models. The elastic models might be 
prone to overfitting and may not effectively per-
form variable selection, resulting in low R2 in 
regression model, and overestimation of non-
responders, and progressors. Nonetheless, recent 
studies discussed various applications of the Olink 
platform. Studies by the LC3 consortium have 
shown promising prognostic value of proteomic 
analysis in diagnosis and risk stratification.31,32 In 
the future, imaging tests, and proteomic analyses 
may be prerequisites for tumor diagnosis. 
Although this study seems disappointing, it solely 
demonstrated its application in predicting the 

response to ICIs in NSCLC rather than the over-
all treatment effect. The Olink platform could 
potentially provide a new strategy for assessing 
the risk, diagnosis, and treatment of lung cancer; 
therefore, application of the Olink platform in 
clinical settings is highly anticipated.

Conclusion
In conclusion, our study showed good reproducibil-
ity and validation in intraplate analysis among 
NSCLC patients by Olink proteomics. However, 
our attempts to predict the response to ICIs through 
proteomic analysis were not statistically significant, 

Figure 7. Hazard ratio forest plots. Data are based on multivariate Cox regression analysis for PFS with 
clinical parameters and proteomes that were significant in prior univariate analysis.
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both in terms of R versus NR, and P versus NP. 
Despite the negative results, this study emphasizes 
the need for future research to elucidate the rela-
tionship between proteomics and cancer treatment.
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