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HKU1 is a human beta coronavirus and infects host cells via highly glycosylated spike
protein (S). The N-glycosylation of HKU1 S has been reported. However, little is known
about its O-glycosylation, which hinders the in-depth understanding of its biological
functions. Herein, a comprehensive study of O-glycosylation of HKU1 S was carried
out based on dual-functional histidine-bonded silica (HBS) materials. The enrichment
method for O-glycopeptides with HBS was developed and validated using standard
proteins. The application of the developed method to the HKU1 S1 subunit resulted in 46
novel O-glycosylation sites, among which 55.6% were predicted to be exposed on the
outer protein surface. Moreover, the O-linked glycans and their abundance on each HKU1
S1 site were analyzed. The obtained O-glycosylation dataset will provide valuable insights
into the structure of HKU1 S.
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INTRODUCTION

The human HKU1 coronavirus (CoV) was first discovered in Hong Kong in 2004 and found to
cause prevalent respiratory diseases (Woo et al., 2005). HKU1 is a kind of beta coronavirus
(β-CoV), which includes the severe acute respiratory syndrome (SARS-CoV), Middle East
respiratory syndrome (MERS-CoV), and SARS-CoV-2 (Christian et al., 2004; Woo et al.,
2009; Zaki et al., 2012; Hoffmann et al., 2020). The CoV spike (S) protein is a large type I
transmembrane glycoprotein, and it mediates virus entry to the host cells (Heald-Sargent and
Gallagher, 2012). The S protein has two subunits: the S1 subunit is responsible for receptor
binding, whereas the S2 subunit facilitates membrane fusion (Millet and Whittaker, 2015;
Kirchdoerfer et al., 2016). Specifically, S1 contains two independent domains: an amino (N)-
terminal domain (NTD) and a carboxy (C)-terminal domain (CTD) (Peng et al., 2011). Several
β-CoVs, including mouse hepatitis virus, human CoV OC43, and bovine CoV (BCoV), use their
NTDs to bind receptor protein (Peng et al., 2011; Peng et al., 2012). By contrast, HKU1 uses its
CTD to bind to receptors (Qian et al., 2015), similar to SARS-CoV, MERS-CoV, and SARS-CoV-2
(Li et al., 2003; Mou et al., 2013; Hoffmann et al., 2020). Glycosylation contributes significantly to
the conformation of the S protein and therefore profoundly affects receptor binding (Fung and Liu,
2018). The S protein of HKU1 is highly N-glycosylated, and 29 N-glycosylation sites have been
deciphered (Watanabe et al., 2020). The glycan shield density of the HKU1 S protein is
considerably higher than that of SARS-CoV and MERS-CoV (Watanabe et al., 2020).
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Except for N-glycosylation, viral O-glycosylation plays pivotal
roles in viral entry, propagation, and immune recognition
(Bagdonaite et al., 2015; Iversen et al., 2016; Olofsson et al., 2016;
Stone et al., 2016). The O-glycosylation of viral surface proteins on
human cytomegalovirus, Epstein–Barr virus (Bagdonaite et al., 2016),
and hepatitis C virus (Brautigam et al., 2012) have been extensively
reported. More importantly, the O-linked glycans on human
immunodeficiency virus type 1 can shield against one category of
broadly neutralizing antibodies (Silver et al., 2020). In addition, the
O-glycosylation on viral glycoproteins can be developed as the
epitopes for the potential development of subunit vaccines
(Olofsson et al., 2016). However, the O-glycosylation of HKU1 is
scarcely reported, and the related virology research on
O-glycosylation of S protein is severely hindered.

The identification of O-glycosylation is more challenging than
that of N-glycosylation, owing to the lack of conserved
O-glycosylation site sequon and consistent O-linked glycan
cores, inefficient O-linked glycan-specific glycosidases, and
extremely low O-glycosylation stoichiometry (You et al., 2018).
Thus far, hydrazide chemistry (Yang et al., 2017), “SimpleCell”
method (Steentoft et al., 2011), and lectin affinity chromatography
methods (Anan et al., 2019) have been adopted to enrich
O-glycopeptides. However, hydrazide chemistry method always
destroys the intact glycan structure during the oxidation step. The
“SimpleCell” technology blocks the natural elongation of O-linked
glycans but eliminates their heterogeneity (Steentoft et al., 2011).
The lectin affinity chromatography method can only enrich
individual O-linked glycan and lacks universality (Narimatsu
et al., 2019; Singh et al., 2020).

Hydrophilic interaction liquid chromatography (HILIC) has
been widely adopted to enrich N-glycopeptides with no bias to
glycan structures (Cao et al., 2014; Hoffmann et al., 2016; Shao et al.,
2016; You et al., 2018; Qing et al., 2020). In our previous work
(Dong et al., 2017), dual-functional histidine-bonded silica (HBS)
HILICmaterials were prepared, and they demonstrated the selective
enrichment of N-glycopeptides from human serum (Dong et al.,
2017; Qin et al., 2019). Thus, it was expected that HBSmaterials can
be applied for the enrichment of O-glycopeptides fromHKU1 S. To
achieve this goal, we first developed the enrichment method of
O-glycopeptides based on HBS by optimizing different enrichment
conditions with bovine fetuin as themodel glycoprotein. This newly
developed method was further validated by enriching
O-glycopeptides from a mixture of bovine fetuin and albumin
bovine serum digests, and commercial ZIC-HILIC materials
were used for comparison. Finally, O-glycosylation of HKU1 S1
was comprehensively characterized including the O-glycosylation
site identification, glycosylation site distribution, exposure ratio
prediction, and O-linked glycan analysis. We believe that
deciphering O-glycosylation will provide a significant
complement to glycosylation for HKU1 S.

MATERIALS AND METHODS

Reagents and Materials
Bovine fetuin, albumin bovine serum (BSA), trypsin, elastase, and
chemical reagents of iodoacetamide (IAA), 1,4-dithiothreitol

(DTT), acetic acid (HAc), ammonium bicarbonate
(NH4HCO3), ammonia water (NH3·H2O), urea, and the
zwitterionic hydrophilic interaction liquid chromatography
(ZIC-HILIC) materials were obtained from Sigma (St. Louis,
MO). HKU S1 (expressed from HEK293 cells, the purity ＞
93.2%) was purchased from Sino Biological. PNGase F was
purchased from New England Biolabs (Ipswich, MA).
Acetonitrile (ACN, HPLC grade) was from Merck (Darmstadt,
Germany). Formic acid (FA) was obtained from Honeywell
(Shanghai, China). Trifluoroacetic acid (TFA) was obtained
from Macklin (Shanghai, China). Pure water used in all
experiments was purified with a Milli-Q system (Millipore,
Milford, MA). GELoader tips were purchased from Eppendorf
(Hamburg, Germany). C18 AQ materials were obtained from
Acchrom (Beijing, China). Histidine-bonded silica (HBS)
materials were homemade.

Digestion of Proteins
Each protein (BSA, bovine fetuin, and HKU1 S1) of 1 mg was
denatured with 100 μl 6 M urea in 50 mMNH4HCO3 for 3 h, and
then 20 μl DTT (200 mM) was added for reduction at 56°C for
45 min. After adding 40 μl IAA (200 mM) in dark for 30 min,
fivefold volume of 50 mM NH4HCO3 was added to the solution
and then mixed with different enzymes. Trypsin was added for
BSA digestion at an enzyme/protein mass ratio of 1:25 (w/w).
Bovine fetuin was first digested by elastase at an enzyme/protein
ratio of 1:40 (w/w), and then PNGase F was added at 37°C
overnight to remove N-glycans. HKU1 S1 was first digested by
trypsin and chymotrypsin with the enzyme/protein ratio of 1:20
(w/w), and then PNGase F was used to remove N-glycans at 37°C
overnight. Finally, the protein digests were collected and
lyophilized to dryness.

Enrichment of O-Glycopeptides From
Protein Digests
Optimization of HBS-Based Enrichment Conditions for
O-Glycopeptides
Although the HBS-based enrichment method for
N-glycopepitdes has been established, the strategy for
O-glycopeptide enrichment has not been developed. Thus, we
investigated the effect of different ACN contents (from 50 to 80%,
v/v), pH value (adjusting by FA or NH4HCO3), and types of acid
additive (FA, HAc, and TFA) on the O-glycopeptide enrichment
efficiency. Bovine fetuin was selected as model protein, and the
typical O-glycopeptides with m/z 1300.2193 (3+) and 1440.0979
(2+), and non-glycosylated peptides with m/z 1122.5524 (1+) and
1213.5851 (1+) were selected to evaluate the enrichment
performance. The detailed information of the peptide sequence
and the glycan structure of the typical O-glycopeptides is shown
in Supplementary Table S1, signed with green.

Enrichment of O-Glycopeptides From Bovine Fetuin
Digests With Optimized Method
One milligram of HBS materials suspended in 20 μl of ACN was
packed into a GELoader tip. The tip was activated with 50%ACN/
0.1% TFA (30 μl × 3) and equilibrated with 80% ACN/0.1% TFA
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(30 μl × 3) successively. Then, 10 μg bovine fetuin digests in 80%
ACN/0.1% TFA was loaded on the HBS materials and then
washed with 20 μl of 80% ACN/0.1% TFA twice. Subsequently,
the materials were eluted with 20 μl of 10% NH3·H2O, then the
eluent was collected and dried to remove NH3·H2O, followed by
redissolving in 20 μl of 50% ACN/0.1% FA for ESI Q-TOF MS
analysis.

Enrichment of O-Glycopeptides From Mixed Standard
Protein Digests
The digest mixture of fetuin and BSA at a mass ratio of 1:20, 1:200
(10 μg bovine fetuin) was mixed with 1 mg HBS in 500 μl and
2 mg HBS in 4 ml of 80% ACN/0.1% TFA, respectively. The
obtained solution was shaken for 40 min, followed by
centrifugation at 10,000 g for 2 min. Then, the supernatant
was removed, and the precipitation was washed with 80%
ACN/0.1% TFA (250 μl × 3 for ratio of 1:20, and 1 ml × 3 for
ratio of 1:200, respectively) to remove the non-glycosylated
peptides. Subsequently, the precipitation was transferred into a
GELoader tip, respectively, and eluted with 30 μl of 10%
NH3·H2O. The eluent was collected and dried to remove
NH3·H2O, followed by redissolving in 30 μl of 50% ACN/0.1%
FA for analysis by ESI Q-TOF MS.

In comparison, the enrichment with ZIC-HILIC was carried
out as previously described (Huang et al., 2020), with relevant
modification. The digest mixture of fetuin and BSA at a ratio of 1:
20 (w/w) was mixed with 1 mg ZIC-HILIC in 500 μl of 80%ACN/
0.2% TFA. The obtained solution was shaken for 10 min, followed
by centrifugation at 10,000 g for 2 min. After removing the
supernatant, the precipitation was washed with 80% ACN/
0.2% TFA (250 μl × 3) to remove the non-glycosylated
peptides. Then, the precipitation was transferred into a
GELoader tip and eluted with 20 μl of 30% ACN/2% FA to
obtain the O-glycopeptides.

Enrichment of O-Glycopeptides From HKU1 S1
Five milligrams of HBS was suspended in ACN and packed into a
GELoader tip. The tip was activated with 50% ACN/0.1% TFA
(30 μl × 3) and equilibrated with 80% ACN/0.1% TFA (30 μl × 3)
successively. Then, 50 μg HKU1 S1 digests in 100 μl of 80% ACN/
0.1% TFA was loaded on the HBS. The materials were washed
with 80% ACN/0.1% TFA (30 μl × 3), and subsequently eluted
with 40 μl of 10% NH3·H2O. The eluent was collected and dried
for further liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis.

Mass Spectrometry Analysis
The enriched O-glycopeptides from bovine fetuin digests were
analyzed on a nano-ESI-Q-TOF mass spectrometer (Waters,
Manchester, United Kingdom) with collision-induced
dissociation (CID) in a positive mode. Full scan MS data were
obtained at m/z 600–1700.

The enriched bovine fetuin and HKU1 S1 O-glycopeptides
were separated and characterized using Q-Exactive Orbitrap
coupled with Accela 600 HPLC system (Thermo, CA,
United States), respectively. For the separation of peptides
with reverse-phase liquid chromatography, 0.1% FA (pH 2.59)

aqueous solution and ACN/0.1% FA were used as mobile phases
A and B, respectively. The analytical column with an inner
diameter of 75 μm was packed in-house with C18 AQ particles
(3 μm, 120 Å) to 12 cm length. The flow rate was set at 600 nl/
min. Gradient elution was performed with 2–8% B in 0.2 min,
8–50% B in 45 min, 50–90% B in 0.5 min, and 90% B in 5 min.
Full mass scans were carried out on the Orbitrap with acquisition
range fromm/z 500 to 1500 (R � 70,000 at m/z 400). The 20 most
intense ions from the full scan were selected for fragmentation via
higher-energy collisional dissociation (HCD) in the ion trap. The
dynamic exclusion function was set as follows: repeat count 1,
repeat duration 30 s, and exclusion duration of 60 s.

Data Analysis
All the RAW data files obtained from Orbitrap were searched
against the database, using Byonic software (version 3.6.0, Protein
Metrics, Inc.). Themass tolerance for precursors and fragment ions
was set at 10 and 20 ppm, respectively. The O-glycans database was
composed with 15 common O-glycans according to Zhao et al.
(2020): [HexNAc(1)Hex(1), HexNAc(1)Hex(1)Fuc(1),
HexNAc(2)Hex(1), HexNAc(1)Hex(1)NeuAc(1), HexNAc(2)
Hex(2), HexNAc(2)Hex(1)NeuAc(1), HexNAc(1)Hex(1)
NeuAc(2), HexNAc(2)Hex(2)NeuAc(1), HexNAc(3)Hex(1)
NeuAc(1), HexNAc(2)Hex(2)Fuc(1)NeuAc(1), HexNAc(2)
Hex(2)NeuAc(2), HexNAc(2)Hex(1)Fuc(1), HexNAc(1)Hex(2),
HexNAc(1) NeuAc(1), and HexNAc(1)Hex(2)NeuAc(1)]. The
fixed modification was carbamidomethyl (C), and variable
modifications included oxidation (M), acetyl (protein N-term),
and deamidation (N). Trypsin and chymotrypsin were set as the
specific proteolytic enzymes with up to two missed cleavages
allowed. Peptides with charge states of 2, 3, and 4 were chosen
for further fragmentation. The FDR were all set as <1%. Moreover,
the data were searched against reverse and contaminant sequences.

RESULTS AND DISCUSSION

Optimization of HBS-Based Enrichment
Conditions for O-Glycopeptides
In the HILIC mode, the content of organic concentration
determines the elution strength of the solvent, which affects
solute retention on the stationary phase (Buszewski and Noga,
2012). Herein, the effect of different ACN contents (50–80%) on
the O-glycopeptide enrichment on HBS was investigated under
the same pH condition (containing 1% FA). As shown in
Figure 1A, the non-glycosylated peptides were reserved from
50 to 80% ACN fractions, and O-glycopeptides were reserved in
the elution fraction only. The result demonstrated that the
retention of peptides on HBS possesses notable characteristics
of HILIC, and O-glycopeptides can be retained strongly on HBS.

HBS with dual-functional characteristics displays
hydrophilicity and switchable surface charge at different pH
(Dong et al., 2017). To investigate the effect of pH on the
enrichment of O-glycopeptides, we evaluated acidic, neutral,
and basic ACN/H2O solutions. Compared with the acidic
condition (Figure 1A), the co-elution of O-glycopeptides and
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non-glycosylated peptides was observed in neutral 60% ACN
fraction (Figure 1B). When the solution was adjusted to a basic
condition with 10 mM NH4HCO3 (Figure 1C), the

O-glycopeptide with m/z 1300.2193 (3+) was almost
undetectable even after the elution of 10% NH3·H2O. We
collected the loading effluent and used the HBS materials to

FIGURE 1 | Effect of ACN content (A), solution pH (B, C), and types of acid additive (D–F) to the retention of peptides on HBS materials.
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enrich the O-glycopeptides again. The O-glycopeptides with m/z
1300.2193 (3+) and 1440.0979 (2+) can be observed after the
enrichment (Supplementary Figure S1). This finding
demonstrated that the basic condition is unsuitable for
O-glycopeptide enrichment with HBS materials because the
positively charged O-glycopeptides are captured by the
hydrophilic interaction of HBS materials under acidic
condition, whereas HBS materials and O-glycopeptides are
both negatively charged under basic condition, and
O-glycopeptides cannot be captured on HBS. Therefore, an
acidic solution is optimal for the O-glycopeptide enrichment
on HBS.

Given that the acidic solution is favorable to the enrichment of
O-glycopeptides on HBS, three types of acid additives (FA, HAc,
and TFA) with 0.1% v/v to the solution were evaluated and
compared. As shown in Figures 1D,E, non-glycosylated peptide
m/z 1213.5851 (1+) was co-enriched with O-glycopeptides in the
eluted solution, indicating that neither FA nor HAc is an optimal
additive for O-glycopeptide enrichment. When the solution was
added with TFA (Figure 1F), the non-glycosylated peptides
flowed out to the 80% ACN fraction completely. In addition,
O-glycopeptides occurred in the following fractions without any
co-enrichment of non-glycosylated peptides. Although 1% FA as
an acid additive facilitated the enrichment of O-glycopeptides
significantly (Figure 1A), the efficiency of the removal of non-
glycosylated peptides was greater with 0.1% TFA addition.
Consequently, 0.1% TFA was selected as the acid additive for
the following study.

Enrichment of O-Glycopeptides From
Bovine Fetuin Digests
Bovine fetuin, a glycoprotein containing sialylated N-linked and
O-linked glycans, was used to evaluate the specificity and
selectivity of HBS materials for O-glycopeptide enrichment.
Based on the above optimized conditions, a process for
O-glycopeptide enrichment was developed (Figure 2). The
bovine fetuin digests in 80% ACN/0.1% TFA were loaded onto

HBS, washed twice with 80% ACN/0.1% TFA to remove the non-
glycosylated peptides, and then eluted with 10% NH3·H2O. With
this optimized method, 32 O-glycopeptides were identified from
the bovine fetuin digests (Supplementary Figure S2A).
Supplementary Table S1 shows the details of these enriched
O-glycopeptides. Further investigation was carried out with the
digest mixture of bovine fetuin and BSA at different mass ratios to
evaluate the enrichment selectivity of HBS to O-glycopeptides.
No O-glycopeptide signal was observed from the desalted digest
mixture at a ratio of 1:20 (w/w) without any enrichment
(Supplementary Figure S2B). By comparison,
28 O-glycopeptides were identified after HBS enrichment from
the same ratio of the digest mixture (Figure 3A). Commercial
ZIC-HILIC was also used for the enrichment of O-glycopeptides,
and 13 O-glycopeptides were detected from the same ratio of 1:20
(w/w) after enrichment (Figure 3B). The high ratio of the digest
mixture was further investigated for the enrichment on HBS, and
at the mass ratio of 1:200 (w/w), the HBS materials still showed a
high selectivity, with 24 O-glycopeptides identified (Figure 3C).
These results demonstrated that HBS materials have outstanding
anti-interferential abilities, good selectivity, and specificity to
O-glycopeptides.

Validation of the Enrichment Method
In addition to selectivity, the reproducibility, recovery, limit of
detection (LOD), and adsorption capacity are important
parameters required to assess the developed enrichment
method. The reproducibility of the optimized method was
evaluated with bovine fetuin. The number of enriched
O-glycopeptides was 31, 32, and 32 for three replicates. The
recovery was measured by using the stable-isotope dimethyl
labeling method (Boersema et al., 2009), and the recovery of
typical two O-glycopeptides from bovine fetuin was over 93.9%
(Supplementary Table S2), higher than that of ZIC-HLIC 84.3%
(Supplementary Table S3). Given the lack of a standard
O-glycopeptide, a standard sialylated glycopeptide (m/z
1433.2025) was used to test the LOD (S/N � 3), which
reached 6.88 fmol/μl (Supplementary Figure S3). In addition,

FIGURE 2 | Schematic illustration for the O-glycopeptide enrichment with the dual-functional histidine-bonded silica materials.
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FIGURE 3 |Mass spectra of digest mixture after enrichment with HBS or ZIC-HILIC materials. (A) Bovine fetuin and BSA at a mass ratio of 1:20 enriched with HBS.
(B) Bovine fetuin and BSA at a mass ratio of 1:20 enriched with ZIC-HILIC. (C) Bovine fetuin and BSA at a mass ratio of 1:200 enriched with HBS. Glycopeptides are
marked with their glycan structures: , GalNAc; , GlcNAc; , galactose; and , N-acetylneuraminic acid (Neu5Ac). The detailed information about the peptide
sequences and glycosylation is shown in Supplementary Table S1.
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the adsorption capacity of HBS for bovine fetuin was 201.6 mg/g
(Supplementary Figure S4). Thus, the optimized method in this
study can be applied for the O-glycopeptide enrichment in
complex samples.

Comprehensive O-Glycosylation Analysis of
HKU1 S Protein
Novel Strategy for Deciphering the O-Glycosylation of
HKU1 S
Inspired by the O-glycopeptide enrichment efficiency on HBS,
we developed a novel strategy for deciphering the
O-glycosylation of HKU1 S. As shown in Figure 4, the
recombinant HKU1 S1 was digested by trypsin,
chymotrypsin, and PNGase F successively for digestion into a
peptide sample and removal of N-linked glycans. The
O-glycopeptides can be captured by the dual-functional HBS
materials in the acidic condition and then released in the basic
condition. The enriched O-glycopeptides were analyzed by LC-
MS/MS. Searching the acquired data against the Byonic
provided the identification information for further analysis.
The efficiency of PNGase F to remove N-glycans was
validated with bovine fetuin digests, and the result is shown
in Supplementary Figure S5. The N-glycopeptides were
successfully removed after PNGase F digestion. The detailed
information of the typical N-glycopeptides and de-Nglycan
peptides of bovine fetuin is shown in Supplementary Table
S4. HCD and electron transfer dissociation are supplementary
fragmentation types of O-glycosylation characterization in MS/
MS (Yang et al., 2019; Riley et al., 2020). However, given the
instrument limitation, we only used HCD to fragment the

O-linked glycopeptides in this study. The stepped collision
energy for HCD 20–30%, was set for sufficient
fragmentation, and the MS/MS spectra were validated manually.

O-Glycosylation Site Identification and Distribution on
HKU1 S
Based on the developed novel strategy, the study for the
O-glycosylation of HKU1 S1 was carried out, and
46 O-glycosylation sites were identified (Figure 5A). Among
the identified O-glycosylation sites, 18 were unambiguously
identified. Supplementary Figure S6 shows the corresponding
LC-MS/MS b and y product ion fragments. All the
O-glycosylation sites of HKU1 S1 were reported for the first
time in this study. Compared with the 25 reported total
O-glycosylation sites on SARS-CoV-2 S protein (Bagdonaite
et al., 2021), the number of O-glycosylation sites on HKU1 S1
was higher. Furthermore, the distribution of O-glycosylation sites
on two functional domains, namely, NTD and CTD, was
investigated. CTD was reported as the receptor binding
domain (RBD) of HKU1. A total of 14 and 22 O-glycosylation
sites were distributed on NTD and RBD, respectively. These
results showed that the O-glycosylation sites were not evenly
but region-specifically distributed on HKU1 S1.

O-Glycosylation Analysis of HKU1 S1
The O-glycosylation site ratio of HKU1 S1, exposure degree of
O-glycosylation on the HKU1 S1 outer surface, and exposure
ratio on RBD were investigated. We calculated the
O-glycosylation site ratio of HKU1 S1 by dividing the total
number of amino acids by the number of O-glycosylation
sites. The calculated O-glycosylation site ratio was 6.2% (46/

FIGURE 4 | Schematic workflow for deciphering the O-glycosylation of HKU1 S1 with the dual-functional hydrophilic interaction chromatography materials. The
PDB code is 5I08 for the structure of HKU1 S1.
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FIGURE 5 |Comprehensive O-glycosylation analysis of HKU1 S1 protein. (A) Schematic representation of O-glycosylation sites (OGSs) identified on HKU1 S1. The
ambiguous identified OGSs are labeled with potential S/T with the possible number of OGSs in bracket. N-terminal domain (NTD) is labeled in orange, and the receptor-
binding domain (RBD) is labeled in lime green. Detailed information about the peptide sequences and glycosylation is shown in Supplementary Table S5. (B) The
normalized O-glycosylation abundance on unambiguous OGSs mapped on HKU1 S1 (PBD code: 5I08). The normalized O-glycosylation abundance was
calculated by dividing the O-glycosylation abundance on each O-glycosylation site by the total O-glycosylation abundance of HKU1 S1. Five orders of magnitudes were
selected to label the normalized sialylated O-glycosylation abundance with yellow (E-05), bright orange (E-04), orange (E-03), deep salmon (E-02), and red (E-01),
respectively. (C) The distribution of site-specific O-linked glycans on the individual O-glycosylation site.
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747), whereas the N-glycosylation site ratio was 3.8% (29/747).
Based on the protein surface accessibility and secondary structure
predictions (http://www.cbs.dtu.dk/services/NetSurfP-1.1/),
20 O-glycosylation sites were predicted to be exposed on the
HKU1 S1 outer surface (Supplementary Table S6), among which
10 were unambiguously exposed. The exposure degree of
O-glycosylation sites on HKU1 S1 was 55.6% (10/18), which
was slightly higher than that of SARS-CoV-2 S (52.4%,
Bagdonaite et al., 2021). Particularly, the exposure ratio of
O-glycosylation sites on RBD of HKU1 was 60% (6/10).

Mapping of Relative Normalized Abundances of
O-Glycosylation on the 3D Model of HKU1 S1
To further explore the specific-site O-glycosylation on different
sites, we investigated the relative normalized abundance of
O-glycosylation on HKU1 S1 with visual models (PDB ID:
5I08). The normalized O-glycosylation abundance was
calculated by dividing the O-glycosylation abundance on each
O-glycosylation site by the total O-glycosylation abundance of
HKU1 S1. We defined five magnitudes to represent different
normalized O-glycosylation abundances as denoted in the keys
(Figure 5B). As shown in Figure 5B, the RBD on the “head” of
the subunit exhibited abundant O-glycosylation, especially the
binding domain with receptor, but less exposed O-glycosylation
on NTD.

Heat Map of the Total Relative Normalized Abundance
of O-Glycosylation on HKU1 S1
In addition to the identification of O-glycosylation sites on the
HKU1 S1 protein, the O-linked glycans were recognized. After
searching the database with the 15 most common O-linked
glycans, the distribution and normalized abundance of site-
specific O-linked glycans of HKU1 S1 were mapped
(Figure 5C). HexNAc(2)Hex(2), HexNAc(1)Hex(2),
HexNAc(1)Hex(1)NeuAc(1), and HexNAc(1)Hex(1)NeuAc(2)
were the top four most abundant O-linked glycans.
Furthermore, the RBD displayed more O-glycosylation
abundance on certain sites, such as S459, S578, and S584. K80
is the key residue for the HKU1 S protein to bind to 9-O-
acetylated sialic acids from host cells (Hulswit et al., 2019).
We identified that T82 or T83, which is adjacent to K80, is
O-glycosylated. This may suggest hints between O-glycosylation
and receptor binding. Overall, abundant O-glycosylation occurs
on HKU1 S1, which also exhibits the micro- and macro-
heterogeneity of O-glycosylation.

CONCLUSION

In summary, a comprehensive study of O-glycosylation of the
HKU1 S protein S1 subunit was carried out, and
46 O-glycosylation sites were identified, among which 18 were
unambiguously identified. All of the O-glycosylation sites were
reported for the first time in this study. The novel O-glycosylation
information will give insights to the microstructure of the
HKU1 S protein, thus facilitating the development of a
potential HKU1 vaccine.
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