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Abstract: The Loess Plateau has one of the most vulnerable ecological environments in the world,
but it also contains abundant oil and gas resources that are regularly exploited, which has resulted
in serious environmental problems. Therefore, it is important to analyze the polycyclic aromatic
hydrocarbons (PAHs) present in the topsoil of this region. The

∑
16PAHs concentrations between

1980–1999 and 2000–2019 ranged from 1134.20–15871.04 and 1010.67–18,068.80 µg kg−1, with average
values of 5021.30 and 5662.82 µg kg−1. All samples displayed heavy pollution levels according to
European soil quality standards. In addition, among the measured physicochemical properties, the
soil organic carbon (SOC) had the greatest influence on PAHs, while soil particle size distribution
had the smallest effect. Source apportionment indicated that the two main sources were petroleum
source (37.57%) and vehicular traffic source (25.88%). Lastly, an assessment of the carcinogenic risks
illustrated that more focus should be placed on the dermal pathway in which the human body is
exposed to soil PAHs. Overall, the carcinogenic risks in different populations did not exceed 10−4,
but there was still a potential carcinogenic risk in some age groups, especially in adult women.

Keywords: PAHs; distribution; sources; PMF; human health risk

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a major class of persistent organic pollutants (POPs)
that are primarily generated by human activities, including the incomplete combustion of fossil fuels
and biomass fuels, automobile exhaust, and oil spills [1–5]. They are widely distributed throughout
the atmosphere, soil, water, sediment, and other environmental media. Among these, soil is the most
important reservoir of PAHs, and is also a stable index used to reflect the status of environmental
pollution [6]. Among the hundreds of known PAHs, the United States Environmental Protection
Agency (USEPA) has identified sixteen as priority pollutants (16PAHs), seven of which are classified as
carcinogenic PAHs (7PAHs) [7,8]. Due to their toxicity, mutagenicity, and carcinogenicity, the origin,
distribution, and hazards of 16PAHs in soil must be analyzed [9–11].
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China is among the major energy consumers in the world, and petroleum plays an important role
in its energy production. The Loess Plateau has the largest loess coverage in the world. Because of its
special geographical location, this area contains large underground oil and gas resources, making it
one of the main energy bases in China [12]. The first oil well (Yanchang oil mine) on land in China was
exploited in 1907, and oil exploitation in this area has developed rapidly, from more than 1 million
tons at the end of the 20th century to 12.24 million tons in 2009 [13]. Although this has become a
pillar of local economic development, the oil resources have been massively overexploited, resulting in
severe environmental problems. Abnormal operation or maintenance will lead to the spillover and
emission of petroleum compounds during petroleum extraction, storage, and transportation. Once the
petroleum pollutants in the soil enter the food chain, they can pose serious health hazards to humans.

Therefore, to reveal the effects of petroleum exploitation activities on soil PAHs and to provide
additional data support for local pollution remediation, 0–10 cm topsoil samples around the oil fields
with varying initial exploration times (1980–1999 and 2000–2019) were sampled. The specific goals
were: (1) to ascertain the concentrations and compositions of individual and total PAHs, (2) to evaluate
the connection between PAHs and soil characteristics using principal component analysis, (3) to
pinpoint the origin of PAHs by positive matrix factorization, and (4) to assess the possible hazards of
PAHs to humans by analyzing the incremental lifetime cancer risk. The obtained results may provide
great reference values for environmental protection and human health.

2. Materials and Methods

2.1. Soil Sampling and Preparation

The sample collection was undertaken in July 2017 during various trips. The places for sampling
belonged to the regions of Yan’an, Yulin, and Qingyang producing oils (Figure 1). All soil samples
were taken near oil wells, but away from the apparent oil flows into the soil. A stainless-steel soil auger
was used to collect 5 different samples at a depth of 0–10 cm soil layer and a composite sample was
achieved by mixing the 5 samples. The above sampling process was repeated three times, that is, there
were three composite samples at each sample point. After being taken to the laboratory, grounding of
the samples was carried out followed by sieving with a sieve of stainless-steel with 60 mesh sieve and
storage at 4 ◦C prior to analysis.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 3 of 16 
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2.2. Analysis of Soil Physicochemical Properties

A dichromate-based oxidation method was used for measuring the soil organic carbon (SOC)
content of the samples. The pH was measured in a suspension (1:2.5, soil/water) using a pH meter
(Lei-ci PXSJ-216F, lei-ci, Shanghai, China). In the wet measurement mode, the soil texture was analyzed
by laser diffraction using a Mastersizer 2000 (MS-2000, Malvern Panalytical, Malvern, UK).

2.3. PAHs Extraction and Analysis

2.3.1. Reagents

Reagents mainly included anhydrous sodium sulfate (purchased from Chengdu Kelong Chemical
Reagent Factory, Chengdu, China) and dichloromethane at chromatographic-grade purity (provided
by Waters Company, Milford, MA, USA). The 16PAHs in a standard (made by AccuStandard Inc., New
Haven, CT, USA) were Naphthalene (NAP), Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene
(FLU), Phenanthrene (PHE), Anthracene (ANT), Fluoranthene (FLA), Pyrene (PYR), Benzo(a)anthracene
(BaA), Chrysene (CHR), Benzo(b)fluoranthene (BbF), Benzo(k)fluoranthene (BkF), Benzo(a)pyrene
(BaP), Indeno(1,2,3-c,d)pyrene (InP), Dibenzo(a, h)anthracene (DBA), and Benzo(g,h,i)perylene (BgP).
Extraction kits for QuEChERS were procured from Agilent Technologies Inc. (Santa Clara, CA, USA)
and had the following composition: 150 mg C18, 50 mg PSA, and 900 mg Na2SO4.

2.3.2. Extraction and Analysis of PAHs

The steps of analysis of PAHs mainly included dichloromethane extraction, QuEChERS
reagent purification, and organic filter membrane filtration. The detailed experimental methods
were described previously by Wang et al. [12]. Gas chromatography–tandem mass spectrometry
(GCMS-TQ8040, Shimadzu, Kyoto, Japan) in combination with the QuEChERS method was used to
determine 16PAHs. Chromatographic separation was actualized with a capillary column Rxi-5Sil
Ms (30 m × 0.25 mm × 0.25 µm). He (carrier gas) flow rate was 1.0 mL min−1 with temperature
programming as follows: increase to 50 ◦C with a 2 min waiting time followed by an increase at a rate
of 20 ◦C min−1 up to 250 ◦C with a 3 min waiting time, and a final increase to 300 ◦C at a heating rate
of 5 ◦C min−1 with a 5 min waiting time. Identification of PAHs was implemented by comparison of
retention time and ion characteristics with standards (Supplementary Table S1).

2.3.3. Detection of PAHs

The external standard method having seven points was used for 16PAHs described by a linear
equation having R2 > 0.996 (Supplementary Table S2). The limit of detection (LOD) was found
to be thrice to that of the standard deviation of the blank. The LOD of PAHs was in the range
of 0.02–0.80 µg kg−1. Any concentrations below the LOD were defined as non-detected (N.D.).
The 16PAHs had an average recovery of 65–119% with 0.5–9.5% being the range of relative standard
deviation (RSD). The recoveries and RSDs were found to be in accordance with the experimental
standard (Supplementary Table S3).

2.4. Data Analysis

2.4.1. Source Apportionment

PMF (Positive Matrix Factorization) is an analysis tool of the source apportionment of pollutants
recommended by USEPA [14]. The tool is applicable for different environmental media such as
soil/sediment, water, and air samples. The PMF model is aimed at calculating the lowest objective
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function Q for ‘m’ number of sources containing ‘n’ samples in terms of the residuals (eij) and
uncertainty (uij):

Q =
n∑

i=1

m∑
j=1

xi j −
∑p

k=1 gik fkj

ui j


2

(1)

where, for measurement of a source ‘j’ in sample ‘i’ in the presence of ‘p’ number of factors, uij is the
uncertainty estimate, the contribution of each factor towards the individual sample is gik, and the
profile of species in each source is given by fkj.

For each sample, the uncertainties were a combination of uncertainty in measurement and
detection limits of the method (MDL). For samples having a concentration equal to or below MDL,
the uncertainty Unc was taken as a fixed fraction of the MDL:

Unc =
5
6

MDL (2)

but for higher sample concentrations (>MDL), Unc was based on our provided fraction of the
concentration and MDL:

Unc =

√
(Error f raction)2 + (0.5×MDL)2 (3)

Starting from different points and choosing 3–5 variables, the PMF model was run after selecting a
random seed mode having 33 starting points chosen randomly. The number of factors corresponding to
PMF was determined after comparison of the values Q true and Q robust, where Q true is a measure of
closeness of the input data to the fit parameter and Q robust is achieved after excluding the outliers [15].
The Q robust value (2165.9) calculated by PMF was close to the Q true value (2167.2). Therefore, the
analytical results of PMF were reasonable. Hence, optimal solution based on four factors indicated
a strong relation between observed and predicted PAH concentrations (r2 > 0.90, p < 0.01). Three
different types of PAHs were identified by the PMF model: strong (FLU, ANT, FLA, PYR, and BaA),
weak (NAP, ACE, PHE, CHR, BbF, BkF, BaP, InP, DBA, and BgP), and bad species (ACY).

2.4.2. Health Risk Assessment

According to the appraisal of health risk, different PAHs have different toxicities [2]. In this work,
the direct exposure risk of PAHs towards cancer was investigated using the incremental lifetime cancer
risk (ILCR). This model based on ILCR was used in combination with a toxic equivalent method based
on toxicity equivalency factors (TEFs). High carcinogenicity of BaP influenced its choice as a reference
compound in the TEF method [16]. The ILCRs included ingestion, dermal contact, and inhalation [17].
They were calculated through the following formula:

CS =
∑

(PAHi × TEFi) (4)

ILCRingestion =
CS×

(
CSFingestion ×

3
√

BW
70

)
× IngR× EF× ED

BW ×AT × 106 (5)

ILCRdermal =
CS×

(
CSFdermal ×

3
√

BW
70

)
× SA×AF×ABS× EF× ED

BW ×AT × 106 (6)

ILCRinhalation =
CS×

(
CSFinhalation ×

3
√

BW
70

)
× InhR× EF× ED

BW ×AT × PEF
(7)

ILCRs =
∑(

ILCRingestion + ILCRdermal + ILCRinhalation
)

(8)
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where PAHi denotes the average soil concentration of a single PAH (mg kg−1), TEFi is the toxic
equivalency factor for an individual PAH in relation to BaP, and CS denotes the summation of converted
PAH concentrations based on TEFs. CSF denotes the carcinogenic slope factor (mg kg−1 day−1)−1, where
CSFingestion, CSFdermal, and CSFinhalation were assigned the values of 7.3, 25, and 3.85 (mg kg−1 day−1)−1,
respectively [18]. BW refers to the body weight (kg), EF refers to the exposure frequency (d year−1),
ED is the duration of exposure (year), and InhR and IngR denote the rate of inhalation (m3 d−1)
and the rate of soil ingestion (mg d−1), respectively. SA corresponds to the surface area of dermal
exposure (cm2 day−1), the dermal adherence factor is referred to AF (mg cm−2), AT denotes the
average life span (day), ABS is the dermal adsorption factor, and PEF corresponds to the particle
emission factor (m3 kg−1). People were divided in terms of age and gender in six groups, such as:
(1) adult male (18–70 years age), (2) adult female (18–70 years age), (3) adolescent male (11–17 years
age), (4) adolescent female (11–17 years age), (5) male child (2–10 years age), and (6) female child
(2–10 years age) [19]. The corresponding parameter values are given in Supplementary Table S4.

2.4.3. Statistical Analysis

SPSS 25.0 software (IBM Corporation, Armonk, NY, USA) was used for statistical treatment of
data. The sampling diagram was drawn by Arcgis 10.2 software (ESRI Inc., Redlands, California,
USA), whereas other figures were drawn by Origin 9.0 software (OriginLab, Northampton, MA,
USA). The inter relation among individual PAH and soil physicochemical properties was by Principal
Component Analysis (PCA) with Canoco 5.0. USEPA PMF 5.0 (ExoAnalytics Inc., Washington, DC,
USA) was used to identify and analyze PAH sources.

3. Results and Discussion

3.1. Concentrations and Compositions of PAHs

The concentration profiles of PAHs around oil wells of different initial production time are
shown in Table 1. The

∑
16PAHs concentrations between 1980–1999 and 2000–2019 ranged from

1134.20–15,871.04 and 1010.67–18,068.80 µg kg−1, with a mean of 5021.30 and 5662.82 µg kg−1,
respectively. The summation of seven carcinogenic PAHs (

∑
7PAHs) concentrations in the corresponding

time ranged from 370.96–4214.10 and 223.96–4642.40, with an average of 1658.93 and 1877.19 µg kg−1,
respectively. According to the structural characteristics, 16PAHs can be divided into two types:
LMWPAHs (2–3 rings) and HMWPAHs (≥4 rings). The LMWPAHs concentrations between
1980–1999 and 2000–2019 varied from 449.01–10,008.86 µg kg−1 (mean 2775.74 µg kg−1) and
307.07–11,805.44 µg kg−1 (mean 2890.40 µg kg−1), respectively. While HMWPAHs concentrations in
the corresponding time varied from 527.78–5862.18 (mean 2245.56 µg kg−1) and 544.86–6263.36 µg kg−1

(mean 2772.41 µg kg−1), respectively. In general, the concentration of HMWPAHs is generally higher
than those in LMWPAHs because of the more significant degradation profile of LMWPAHs [20].
Moreover, the relatively high resistance of HMWPAHs to degradation contributes to their accumulation
in soil [21]. It is evident from Table 1 that the pollution of soil PAHs in 2000–2019 is more serious than
that in 1980–1999. One reason is that the utilization rate of oil wells is low in the first two decades
(some oil wells have been abandoned), and the pollution degree of soil PAHs has been alleviated after a
long period of natural degradation and remediation. The other reason is that the utilization rate and oil
recovery rate of newer oil wells are relatively high, so the leakage of oil and the emission of exhaust gas
from oil production vehicles will aggravate the pollution of soil PAHs in the process of oil exploitation.

The soil PAHs pollution was separated into four grades with reference to the soil quality standard
proposed by Maliszewska-Kordybach [22]. The total concentration of 16PAHs below 200 µg kg−1

indicates non-polluted, with lightly polluted being indicated by a concentration of 200–600 µg kg−1,
and a concentration of 600–1000 µg kg−1 representing moderately polluted. When the concentration
exceeds 1000 µg kg−1, the area is heavily polluted. Compared to the above classification standards,
all sites were heavily contaminated (Figure 2).
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According to the number of aromatic rings, the 16PAHs were classified into three different groups,
one with 2–3 rings, another with 4 rings, and last one with 5–6 rings [23]. The compositions of soil PAHs
around oil wells with different production times are shown in Figure 3. In 1980–1999, the proportion
of PAHs having 2–3 rings, 4 rings, and 5–6 rings in this region was 28.71−63.06% (mean 47.80%),
30.67–49.48% (mean 40.35%), and 4.24–21.81% (mean 11.86%), respectively. Similar results were found
in 2000–2019, the highest ratio value of soil PAHs was found in 2–3 rings (26.20–65.33%, mean 43.97%),
followed by 4 rings (17.67–54.38%, mean 39.57%), and 5–6 rings (4.72–51.95%, mean 16.47%). It can be
found that the proportion of LMWPAHs is large, which are mainly related to combustion products of
pyrogenic processes at low temperatures [24]. However, HMWPAHs are more likely to accumulate in
soil because of their low volatility, and their sources are different from those of LMWPAHs. Generally,
LMWPAHs are produced by substances like petroleum and its derivatives, while HMWPAHs mainly
come from the combustion of coal, organic compounds, and higher plants [25]. The specific sources of
PAHs will be discussed below.

Table 1. Concentration profiles of PAHs in soil samples (µg kg−1).

Compounds 1980–1999 2000–2019

Mean Median Range Mean Median Range

NAP 125.06 105.08 64.46–196.55 106.54 93.35 66.13–173.61
ACY N.D. N.D. N.D. N.D. N.D. N.D.
ACE 92.76 67.08 N.D.–157.98 117.35 129.18 N.D.–148.78
FLU 447.80 160.88 78.05–1665.20 471.17 178.38 44.48–2383.70
PHE 1857.66 770.92 200.39–6836.28 2027.13 1709.03 127.81–8052.24
ANT 361.96 56.82 N.D.–1317.29 247.27 123.33 N.D.–1238.50
FLA 167.70 101.15 48.14–517.14 301.39 291.39 23.09–867.22
PYR 274.51 146.45 82.95–872.94 366.73 358.11 34.62–818.16
BaA 58.72 35.56 N.D.–136.92 82.11 73.25 4.20–185.51
CHR 1287.65 493.29 296.07–3340.34 1357.79 1226.35 116.65–3796.53
BbF 189.04 150.16 48.07–449.25 244.37 185.32 27.08–572.11
BkF 18.04 18.55 N.D.–21.09 35.50 28.15 N.D.–67.05
BaP 100.91 82.55 N.D.–214.56 96.00 73.11 N.D.–225.40
InP 44.69 56.53 N.D.–71.32 74.97 58.65 N.D.–151.52

DBA 42.28 42.28 N.D.–55.69 65.33 67.69 N.D.–102.03
BgP 180.53 185.63 N.D.–294.00 227.11 217.56 65.30–433.26∑

16PAHs 5021.30 1968.79 1134.20–15,871.04 5662.82 5418.25 1010.67–18,068.80∑
7PAHs 1658.93 753.88 370.96–4214.10 1877.19 1950.37 223.96–4642.40∑

LMWPAHs 2775.74 1112.14 449.01–10,008.86 2890.40 2430.40 307.07–11,805.44∑
HMWPAHs 2245.56 1114.75 527.78–5862.18 2772.41 2614.66 544.86–6263.36∑

16PAHs—summation of concentrations of sixteen PAHs.
∑

7PAHs—summation of concentrations of seven
carcinogenic PAHs including BaA, CHR, BbF, BkF, BaP, DBA, and InP.

∑
LMWPAHs—the concentration sum of

low molecular weight PAHs (2–3 rings).
∑

HMWPAHs—the total concentrations of high molecular weight PAHs
(≥4 rings). All the other abbreviations used are explained in Supplementary Table S1. N.D.—Not Detected.
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3.2. Relationships between PAHs and Environmental Factors

As shown in Figure 4, PCA provided a single two-dimensional model, which would explain 72.53%
of the variance in the data. It can be found that there is a high correlation between individual PAHs.
Reflection of calculated Pearson correlation coefficients for the individual PAHs showed interrelation
of most variables at level 0.01 (Supplementary Table S5).

Commonly, soil properties such as pH, SOC, and texture, are important factors affecting the
concentrations of PAHs [26]. In our study, the vector magnitude of environmental factors indicated
that SOC was the most significant factor. The soils with high SOC had a strong adsorption ability to
PAHs, which affected the distribution and migration of PAHs in the environment. Poor correlation
existed between pH and PAHs, indicating that pH was a non-critical parameter affecting PAHs. For soil
particle size distribution, we found that the influence of sand, silt, and clay on the distribution of PAHs
was basically the same. The difference was that most individual PAHs showed positive correlations
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with soil clay, whereas negative correlations with soil sand, suggesting that PAHs were more likely to
accumulate in fine soil particles. The reason is that small particles revealed stronger affinities of PAHs
than larger particles due to the higher surface area of smaller particles.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 9 of 16 
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3.3. Source Analysis of PAHs

As this study was carried out using samples from locations around oil wells, we can relate the
main sources of 16PAHs with oil exploitation and human-related activities. But, it is also required to
take into account other sources. For further identification of PAHs sources, modeling of the data was
carried out by PMF [27]. Figure 5a presents the average contributions of PAHs species towards four
PMF factors.

A major portion (37.57%) of the total measured PAHs was due to the factor 1, which was loaded
predominately by NAP and ACE. Among all the different PAHs, NAP was the heaviest and was
usually used as an indicator for the leakage of petroleum substances [28–30], whereas ACE was mainly
from the combustion of petroleum-based fuel at lower temperatures. Earlier investigations have
indicated that origins of LMWPAHs are petroleum products related to petrogenic sources [6,31,32].
Therefore, factor 1 was marked as related to petroleum sources. ANT, PHE, and FLU, which are
believed to be the tracers of wood/grass burning, dominated factor 2, which accounted for 18.75% of
the total PAHs [33–37]. Hence, factor 2 was identified as originating from burning of biomass. Factor 3
explained 17.80% of the total PAHs and heavily loaded on BaA, followed by ACE, ANT, PYR, NAP,
InP, and BaP. Among them, BaA was not only the characteristic indicator of natural gas, but also the
product of coal combustion [38,39]. Other PAHs were related to the release from burning of coal and
coke combustion [40,41]. Thus, factor 3 was related to the combustion of coal/coke. Factor 4 explained
25.88% variance of the data and was high loaded predominately by molecular weight PAHs with
a high loading on InP and BaP and moderately by BgP and DBA. InP and BgP were characteristic
indicators of diesel and gasoline combustion, respectively [42]. Meanwhile, particulate matters of
gasoline vehicle exhaust showed high emissions of InP and DBA [43,44]. Consequently, factor 4 was
related to the source of vehicular traffic.

The PMF results showed the following order for relative contributions to the total soil PAHs
burden: petroleum source (37.57%) > vehicular traffic source (25.88%) > biomass combustion source
(18.75%) > coal/coke combustion source (17.80%) (Figure 5b). The rationalization proposal is to pay
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attention to the leakage and sprinkling of petroleum in the process of petroleum exploitation. Moreover,
car drivers are advised to replace gasoline and diesel with cleaner fuels, or to use electric vehicles,
which can reduce the burden of PAHs in the soil environment.
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Figure 5. Results of the Positive Matrix Factorization (PMF) model: (a) Source profiles of each PMF
factor and (b) percentage source contributions of each factor to total PAHs. All the PAHs abbreviations
used are explained in Supplementary Table S1.

3.4. Assessment of Health Risk

The results of lifetime cancer risk levels are given in Table 2. Normally, values of ILCRs indicate
the magnitude of risk with negligible risks, potential health risks, and higher risks being denoted by
the values of 10−6, between 10−6 to 10−4, and greater than 10−4, respectively [45]. In the current study,
it is clear that all soil samples had the same level of cancer risk (10−12–10−10) through inhalation in all
soil samples, indicating that there is no cancer risk during different periods. By contrast, the levels of
carcinogenic risk to the human body are large through ingestion and dermal contact pathways.
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Table 2. The ILCRs of people for different exposure pathways.

Exposure Pathway 1980–1999 2000–2019
ILCRingestion ILCRdermal ILCRinhalation ILCRs ILCRingestion ILCRdermal ILCRinhalation ILCRs

Child

Male
Min 2.91 × 10−7 3.63 × 10−7 6.15 × 10−12 6.54 × 10−7 1.33 × 10−7 1.66 × 10−7 2.82 × 10−12 3.00 × 10−7

Max 1.74 × 10−6 2.17 × 10−6 3.67 × 10−11 3.91 × 10−6 2.15 × 10−6 2.68 × 10−6 4.55 × 10−11 4.83 × 10−6

Mean 8.54 × 10−7 1.06 × 10−6 1.81 × 10−11 1.92 × 10−6 9.91 × 10−7 1.24 × 10−6 2.09 × 10−11 2.23 × 10−6

Female
Min 2.99 × 10−7 3.73 × 10−7 6.33 × 10−12 6.72 × 10−7 1.37 × 10−7 1.71 × 10−7 2.90 × 10−12 3.08 × 10−7

Max 1.79 × 10−6 2.23 × 10−6 3.78 × 10−11 4.02 × 10−6 2.21 × 10−6 2.76 × 10−6 4.67 × 10−11 4.97 × 10−6

Mean 8.78 × 10−7 1.09 × 10−6 1.86 × 10−11 1.97 × 10−6 1.02 × 10−6 1.27 × 10−6 2.15 × 10−11 2.29 × 10−6

Adolescent

Male
Min 1.74 × 10−7 4.33 × 10−7 1.19 × 10−11 6.06 × 10−7 7.95 × 10−8 1.98 × 10−7 5.46 × 10−12 2.78 × 10−7

Max 1.04 × 10−6 2.58 × 10−6 7.11 × 10−11 3.62 × 10−6 1.28 × 10−6 3.20 × 10−6 8.80 × 10−11 4.48 × 10−6

Mean 5.09 × 10−7 1.27 × 10−6 3.50 × 10−11 1.78 × 10−6 5.91 × 10−7 1.47 × 10−6 4.05 × 10−11 2.06 × 10−6

Female
Min 1.79 × 10−7 4.47 × 10−7 1.23 × 10−11 6.27 × 10−7 8.22 × 10−8 2.05 × 10−7 5.64 × 10−12 2.87 × 10−7

Max 1.07 × 10−6 2.67 × 10−6 7.35 × 10−11 3.74 × 10−6 1.33 × 10−6 3.30 × 10−6 9.10 × 10−11 4.63 × 10−6

Mean 5.26 × 10−7 1.31 × 10−6 3.61 × 10−11 1.84 × 10−6 6.11 × 10−7 1.52 × 10−6 4.19 × 10−11 2.13 × 10−6

Adult

Male
Min 3.16 × 10−7 5.61 × 10−7 2.14 × 10−11 8.77 × 10−7 1.45 × 10−7 2.57 × 10−7 9.81 × 10−12 4.02 × 10−7

Max 1.89 × 10−6 3.35 × 10−6 1.28 × 10−10 5.24 × 10−6 2.33 × 10−6 4.14 × 10−6 1.58 × 10−10 6.48 × 10−6

Mean 9.26 × 10−7 1.65 × 10−6 6.29 × 10−11 2.57 × 10−6 1.07 × 10−6 1.91 × 10−6 7.29 × 10−11 2.98 × 10−6

Female
Min 3.43 × 10−7 6.10 × 10−7 2.33 × 10−11 9.53 × 10−7 1.57 × 10−7 2.79 × 10−7 1.07 × 10−11 4.37 × 10−7

Max 2.05 × 10−6 3.64 × 10−6 1.39 × 10−10 5.69 × 10−6 2.54 × 10−6 4.50 × 10−6 1.72 × 10−10 7.04 × 10−6

Mean 1.01 × 10−6 1.79 × 10−6 6.84 × 10−11 2.80 × 10−6 1.17 × 10−6 2.08 × 10−6 7.93 × 10−11 3.24 × 10−6
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For the ingestion pathway, the average ILCRingestion (1980–1999) for male and female were estimated
to be 8.54 × 10−7, 5.09 × 10−7, and 9.26 × 10−7, and 8.78 × 10−7, 5.26 × 10−7, and 1.01 × 10−6, for children,
adolescents, adults respectively, suggesting that adults were most sensitive to PAHs contamination.
In addition, adults have the highest risk (mean value: 1.65 × 10−6–1.79 × 10−6) of exposure to soil
PAHs through the dermal pathway, followed by adolescents (mean value: 1.27 × 10−6–1.31 × 10−6)
and children (mean value: 1.06 × 10−6–1.09 × 10−6). Accurately, the carcinogenic risk of male and
female in children and adolescents were basically the same, while in adults, the carcinogenic risk in
women was higher than that in men. The higher inhalation rate with larger dermal exposure area
along with exposure duration for adults increases carcinogenic risk. Moreover, the weight difference
between men and women is responsible for higher carcinogenic risk in women. These results indicated
that the dermal exposure of the human body towards soil PAHs is the most important in this region,
causing great concern to us. In 2000–2019, the toxin effect of PAHs from soil to all the groups through
direct ingestion, dermal contact, and inhalation was basically the same as that in 1980–1999. However,
the mean value of ILCRs in 2000–2019 is higher than that in 1980–1999 owing to the rapid demand
for petroleum during the recent two decades, resulting in the soil being seriously polluted. So,
administrators in petroleum production areas on the Loess Plateau need to take some steps to reduce
the risks posed by PAHs.

4. Conclusions

Understanding the distribution, origins, and potential health hazards of 16PAHs in soil around oil
wells on the Loess Plateau is critical to appropriately manage PAHs in the soil matrice. The pollution
of soil PAHs in 2000–2019 is more serious than that in 1980–1999. Among the measured PAHs, the
ratio of soil PAHs decreased in the following order with respect to the number of rings: 2–3 > 4 > 5–6.
SOC was the most significant factor, followed by pH and soil particle size distribution. Four different
sources were identified by PMF. Source apportionment revealed that origins of PAHs were mainly
from petroleum and vehicular traffic. Biomass and coal/coke combustion also contribute to the PAHs
recorded in this area. The ILCRs results indicated that the exposure pathway of dermal contact was
more noteworthy than that of ingestion and inhalation. Moreover, the health risk of adults is higher
than that of adolescents and children.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/4/1390/s1,
Table S1: Retention time and ion characteristics of the selected PAHs in the MRM mode; Table S2: Equations of
calibration curve of 16PAHs; Table S3: Performance and validation of the analytical method (n = 6); Table S4:
Parameters used in the incremental lifetime cancer risk assessment; Table S5: Correlation analysis between PAHs
and environmental factors.
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