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Summary 
In contrast to broadly expressed classical class I antigens of the major histocompatibility complex, 
structurally closely related TL antigens are expressed in a highly restricted fashion. Unlike classical 
class I antigens, TL antigens are not known to be targets of cytotoxic T cells or to mediate 
graft rejection. Whereas classical class I antigens function as antigen-presenting molecules to 
T cell receptors (TCR), the role of TL is yet to be defined. To elucidate the function of TL, 
we have derived transgenic mice expressing TL in most tissues including skin by introducing 
a "['L gene, T3 b of C57BL/6 mouse origin, driven by the H-2K b promoter. By grafting the skin 
of transgenic mice, we demonstrate that TL can serve as a transplantation antigen and mediate 
a TCR-ot/B + CD8 + cytotoxic T cell response. This T cell recognition of TL does not require 
antigen presentation by H-2 molecules. Furthermore, we show that C57BL/6 F1 mice develop 
CD8 § T cells that are cytotoxic for C57BL/6 TL + leukemia cells, providing further support 
for the concept that aberrantly expressed nonmutated proteins such as TL can be recognized 
as tumor antigens. 

H umans and mice have over a dozen class I genes belonging 
to the MHC, the majority of which are "nonclassical" 

class I or class "Ib" genes (1-3). In contrast to well studied 
"classical" class I or class "Ia" genes, the function of nonclas- 
sical class I genes remains largely unexamined. Certain non- 
classical class I genes have expression patterns similar to those 
of classical class I genes and have been shown to mediate graft 
rejection and CTL response, and even to present peptides to 
the TCR (4-7). It has been reported recently that Hmt, a 
member of nonclassical class I antigens, is specialized to present 
N-formyl peptides to TCR (8, 9) and that Qa-2, another 
nonclassical class I antigen, binds to a limited set of peptides 
(10). Some nonclassical MHC products have been speculated 
to present antigens to TCR-3'/8 (11-13). However, not all 
nonclassical class I genes are antigen-presenting molecules for 
TCR, e.g., a class I gene expressed in rat intestine functions 
as an Fc receptor of IgG (14). 

TL represents one of the earliest and best defined cell sur- 
face antigenic systems coded for by nonclassical class I genes 
in the MHC locus (15, 16). Principal characteristics of TL 
include expression restricted to thymocytes during T cell de- 
velopment in TL + mice (e.g., A-strain and BALB/c), no ex- 

pression in thymocytes of certain strains (TL- mice, e.g., 
C57BL/6 [B6] 1 and C3H/He [C3H]), anomalous TL ex- 
pression in T cell lymphomas arising in TL- mice, and a 
phenomenon termed antigenic modulation in which TL ex- 
pression is downregulated in the presence of TL antibody 
(15-17). Until recently, TL expression was thought to be 
restricted to normal and leukemic cells of T cell derivation, 
but two reports (18, 19) have now shown that TL is expressed 
in the intestinal epithelium, raising the possibility that TL 
may be a presenting element for y /8  T cells in the gut. In 
addition, our recent studies with TL transgenic mice showing 
arrest of T cell maturation suggest that TL plays a critical 
role in T cell development in the thymus (20, 21). 

TL antigens are glycoproteins with a molecular mass of 
approximately 45,000 that are associated with/~2-microglob- 
ulin (22, 23). Molecular analysis revealed that TL genes have 
an exon/intron structure very similar to that of classical class 

1Abbreviations used in this paper: B6, C57BL/6; cAb, conventional 
antibody; C3H, C3H/He. 
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I genes and share ~70% identity in the nucleotide sequence 
of the coding region and in the putative amino acid sequence 
(16, 24-27). Despite these structural similarities, there has 
been no evidence that TL antigens are histocompatibility an- 
tigens or that they can induce a CTL response (15, 28), and 
this has led to the speculation that TL antigens have a func- 
tion distinct from that of classical class I antigens. To explore 
the role of nonclassical class I antigens with limited tissue 
distribution, such as TL, we have taken advantage of the newly 
derived transgenic TL strains to ask whether TL antigens 
can serve as transplantation rejection antigens and elicit a TL- 
restricted CTL response. 

Materials and Methods 
Mice. The derivation of transgenic mouse strains with the 

H-2Kb/T3 b chimeric gene has been described previously (20). 
Briefly, the chimeric gene in which T3 b gene is driven by the 
H-2K b promoter was constructed as shown (see Fig. 1). By in- 
jecting DNA containing the chimeric gene into the pronuclei of 
fertilized eggs of C3H mice (TL-/TIa b, H-2k), two transgenic 
founder mice were produced, Tg.Con.3-1 and Tg.Con.3-2, con- 
taining 23 and 19 copies of the transgene per haploid, respectively. 
The ofspring of the founders were interbred to produce homozy- 
gous stocks, which were then maintained by brother-sister mating. 
The other transgenic mouse strains, Tg.H-2Kb-1 carrying H-2K b, 
and Tg.Tla~-3-1 and Tg.Tla~-3-2 carrying Tlaa-3, one of the three 
TL genes in A-strain mice, have been derived also on a C3H back- 
ground and described elsewhere (20, 21). B6, C3H, and (B6 x 
C3H)F1 mice were purchased from Japan SLC Inc. (I-'Iamamatsu, 
Japan). Other mice were from our breeding colony at Aichi Cancer 
Center Research Institute. 

Cells. The following TL + and TL- T cell lymphomas have 
been maintained either as in vivo passaged or in vitro cultured cell 
lines: ERLD (TL+), B6/LL o" 6 (TL+), B6RV2 (TL-), and 
B6RL cy 1L (TL-) of B6; ASL1 (TL § and RADA1 (TL § of 
A-strain; and BALBRVE (TL +) of BALB/c. These tumor lines are 
described in previous publications from our laboratories at Memorial 
Sloan-Kettering Cancer Center, and at Okayma University School 
of Medicine (15, 29). 

Antibodies. The following mAbs or conventional antibodies 
(cAbs) were kindly provided by various scientists or developed in 
our laboratories. To characterize effector cells, rat mAb to Lyt-2 
(57-3, obtained from Dr. N. Shinohara, Mitsubishi Kasei Institute 
for Life Science, Machida, Japan, [30]), rat mAb to L3T4 (GK1.5, 
obtained from Dr. N. Shinohara, Mitsubishi Kasei Institute for Life 
Science, Machida, Japan [31]), hamster mAb to TCR-3 (H57-597, 
a gift from Dr. R. T. Kubo, National Jewish Center for Immu- 
nology and Respiratory Medicine, Denver, CO [32]), hamster mAb 
to TCR-"//~ (3A10, a gift from D. S. Tonegawa, Massachusetts 
Institute of Technology, Cambridge, MA [33]) and hamster mAb 
to CD3 (145-2Cll, a gift from Dr. J. A. Bluestone, The Univer- 
sity of Chicago, Chicago, IL [34]) were used. To define the target 
recognition, rat mAb to TL (HD 168, 24), mouse mAb to TL.2 
(TT213, in this paper), cAb to TL.1.2.3 [(B6 X A-T/a b) anti-ASL1; 
15], cAb to TL.4 [(A X B6-T/a~)F1 anti-ERLD; 15], rat mAb to 
H-2 (HD464, in this paper), cAb to H-2 k [(B6 X DBA/2) anti- 
C3H mammary tumor, MM48], cAb to H-2 d (B6 anti-BALB/c), 
and mouse mAb to Qa-2 (TT59, 35) were used. 

RNA Blot Analysis. Total RNA prepared from tissues was frac- 
tionated in 2.2 M formaldehyde agarose gel and transferred to 
nitrocellulose filters. Blots were hybridized with c~-[32p]dCTP- 

labeled TL-specific probe, pTL1 (24). The same membrane was re- 
hybridized with 3-actin cDNA (36) to standardize the amount of 
transcripts. The intensity of bands was measured by densitometric 
analysis with a Fujix Bio-imaging Analysis System (Fuji Photo Film 
Co., Tokyo, Japan). 

Immunohistochemistry. 5-#m frozen sections of the skin were 
air dried, fixed with cold acetone, and stained with rat mAb by 
the avidin-biotinylated horseradish peroxidase complex (ABC) 
method (Vectastain; Vector Laboratories Inc., Burlingame, CA). 

Skin Graft. Female C3H, (B6 x C3H)F1 and transgenic mice 
(6-10-wk-old) were used as recipients or donors. Full-thickness sec- 
tions of skin (1-cm disk) were obtained from the abdomen of donors 
and were grafted to the back of recipients. Plaster casts were re- 
moved on day 10 and grafts were observed daily for at least 100 d. 

CTL Assay. 4-8 wk after the rejection of grafted skin, spleen 
cells (3 x 107) from the mice were restimulated in vitro by cul- 
turing with 2 x 107 Tg.Con.3-1 spleen cells pretreated with 50 
#g/ml mitomycin C (Wako Pure Chemical Industries, Osaka, 
Japan). After 6 d in culture, effector cells were harvested to test 
for cell-mediated cytotoxicity. Target cells were blast cells or tumor 
cells. To generate blast cells, spleen cells were cultured for 3 d in 
the presence of Con A (Boehringer Mannheim GmbH, Mannheim, 
Germany) at a concentration of 5 #g/ml. Labeled target cells were 
prepared by incubating 107 blast or tumor cells with 3.7 MBq of 
Na2SlCrO4 (New England Nuclear, Boston, MA) in 0.2 ml of 
medium for 45 min, followed by washing three times with RPMI- 
1640. Target cells (2 x 104) were incubated with various numbers 
of effector cells. After incubation for 3 h, the supernatants were 
harvested using Supernatant Collection System (Skatron Inc., Lier, 
Norway) for measurement of 51Cr release. The percent specific 
lysis was calculated by the following equation: 100 x (a-b/c-b), 
where a is the radioactivity in the supernatant of target cells mixed 
with effector cells, b is the radioactivity in the supernatant of target 
cells incubated without effector cells, and c is the radioactivity in 
the supernatant after complete lysis of target cells with 2% of Triton 
X-100. 

Blocking Test of CTL Activity by Antibody. Serially diluted anti- 
bodies were added to the mixture of effector cells and labeled target 
cells in CTL assays to characterize the effector cells and target mol- 
ecules. 

Results 

TL Expression in the Skin of Transgenic Mice. Two trans- 
genic mouse strains, Tg.Con.3-1 and Tg.Con.3-2 expressing 
TL antigen with the tissue distribution of H-2K b antigen, 
have been derived by introducing a chimeric gene of T3 b 
with the H-2K b promoter into C3H (TL-)  mice (Fig. 1; ref- 
erence 20). The transcripts of the chimeric gene are present 
in almost all tissues. Serological analysis of lymph node lym- 
phocytes showed that the chimeric gene expresses all expected 
TL antigenic determinants (TL.1.2.4) but no H-2K b deter- 
minant. The skins of transgenic mice have the transcripts and 
they express TL antigens. The amount of transcripts in the 
skin of Tg.Con.3-1 and Tg.-Con.3-2 is equivalent to that in 
the lymph nodes of the corresponding strains and is extremely 
large, as much as 57 (Tg.Con.3-1) and 18 times (Tg.Con.3-2) 
that in the B6 TL + leukemia ERLD, and 18 (Tg.Con.3-1) 
and 6 times (Tg.Con.3-2) that in TL + normal thymus of 
Tla �9 mice (Fig. 2). The major transcripts in the skin are 2.1 
kb, which is the expected size when the chimeric gene is tran- 
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Figure 1. Construction of the H-2Kb/T3 b chimeric gene. The T3 ~ 
gene is isolated from ERLD, a TL § leukemia arising in a TL- B6 mouse. 
The H-2IC~ b chimeric gene (Construct 3) constitutes the 5' flanking 
region and exon 1 of H-2tCo (contained in the 4.7-kb EcoRI-SmaI frag- 
ment), and exon 2-6 and the 3' flanking region of T3 b (contained in the 
5.3-kb FspI-KpnI fragment). Exons represented by numbered open (T3 b) 
or filled (H-2tC ~ boxes encode leader (L), extracellular (~1, c~2, and ~x3), 
transmembrane (T), and cytoplasmic (C) domains of the proteins or the 
3' untranslated region. Restriction enzyme sites: (E) EcoRl; (F) FspI; (G) 
BgllI; (K) KpnI; (IV) NarI; (Sa) SalI; (Sin) SmaI. 

scribed from the initiation site of H - 2 I (  ~ through the 3' un- 
translated region of T3 b (37). Sequence analysis of cDNA 
generated from the mRNA of transgenic skin indicated that 
transcripts of the chimeric gene are properly processed and 
no unique junction peptides are created as a result of con- 
struction of the chimeric gene (data not shown). Thus, it 
is most likely that the cell surface product of the chimeric 
gene is T3b-TL antigen and that the entire leader peptide 
of H - 2 K  b origin is removed from the mature protein. Im- 
munostaining of transgenic mouse skin with TL antibody 
showed that TL antigen is expressed in epidermal keratino- 
cytes, hair follicles, and dermal cells (Fig. 3). 

T L  Antigen as a Transplantation Antigen. To test whether 
TL expressed in the skin can serve as a transplantation rejec- 

Figure 2. Transcripts of the H-2IC~ b chimeric gene in the skin of 
transgenic mice. Total RNA from the skin of Tg.Con.3-1 (4/~g), Tg.Con.3-2 
(4 #g), C3H (40 #g), B6 (40/~g), and Tg.Tlaa-3-1 (40 #g) were analyzed 
with pTL1. Normal thymus of B6-TIa% a conventional TL § mouse strain 
(40 #g) and ERLD (40 #g) were included for comparison. The same blot 
was hybridized with a 3-actin probe to quantify the transcripts. 

tion antigen, skin graft experiments were carried out in var- 
ious combinations of transgenic and inbred mice (Table 1). 
Skin grafts from Tg.Con.3-1 and Tg.Con.3-2 were rejected 
efficiently by recipient C3H mice. Skin grafts of the higher 
expressor, Tg.Con.3-1, were rejected faster than Tg.Con.3-2 
grafts. Both transgenic strains accepted C3H skin, indicating 
no genetic drift between C3H and transgenic mice. Reciprocal 
grafts between the two transgenic strains were also compat- 
ible, thus removing the possibility that genes at chromosomal 
integration sites of the transgene are expressed in such a way 

Figure 3. TL antigen in the skin of transgenic mice detected by immunohistology with the ABC method. The panels are Tg.Con.3-1 skin stained 
with rat mAb to TL (HD168); C3H skin with HD168, and C3H skin with rat mAb to H-2 (HD464). The expression pattern of TL in the skin 
of transgenic mice is identical to that of H-2 in C3H mice. 
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Table 1. Transplantation of Tg.Con.3-1 and Tg.Con.3-2 Skins Expressing TL Antigen 

Number of grafts 

Donor Recipient Total Rejected Crisis Rejection time 

Tg.Con.3-1 C3H 52 51" 1' 
Tg.Con.3-1 9 0 0 
Tg.Con.3-2 10 0 0 
Tg.H-2Kb-1 10 6 2 

Tg.Tlaa-3-1 5 4 0 
Tg.Tla~-3-2 12 12 0 
(B6 x C3H)F1 29 22 1 

Tg.Con.3-2 C3H 10 10 0 
Tg.Con.3-1 5 0 0 
Tg.H-2Kb-1 9 3 6 

(B6 x C3H)F1 9 0 4 

Co-graftll: Tg.Con.3-1 10 10 0 

plus (B6 x C3H)F1 
Tg.Con.3-2 10 8 2 

C3H C3H 6 0 0 
Tg.Con.3-1 10 0 0 
Tg.Con.3-2 10 0 0 
Tg.Tla~-3-1 5 0 0 
(B6 x C3H)F1 5 0 0 

Tg .H-2KM C3H 10 10 0 
Tg.Con.3-1 5 5 0 
Tg.Tlaa-3-1 5 5 0 
(B6 x C3H)F1 5 0 0 

Tg.Tla~-3-1 C3H 10 0 0 
Tg.Con.3-1 5 0 0 
Tg.Tla~-3-1 5 0 0 
(B6 x C3H)F1 10 0 0 

d 
15.4 -+ 8.3 s 

27.3 _+ 24.9 
18.0 -+ 3.2 

13.1 -+ 1.4 
18.7 + 4.8 

23.6 -+ 18.6 

17.7 -+ 4.5 

16.3 _+ 2.8 

25.6 + 16.4 

12.9 -+ 0.9 
13.0 -+ 1.7 
14.6 _+ 5.3 

* Rejection was defined as a loss of >95% of the grafted tissue. 
* Graft showed transitory signs of rejection and became smaller. 
S Mean _+ SD.  

II (B6 x C3H)F1 mice were engrafted simultaneously with both Tg.Con.3-1 and Tg.Con.3-2 skins on the right and left side of their back. The 
F1 mice rejected not only Tg.Con.3-1 but also Tg.Con.3-2 grafts. 

that their products become transplantation antigens. Tg.H- 
2Kb-1 mice, C3H having H-2IC ~ as a transgene, also rejected 
Tg.Con.3-1 and Tg.Con.3-2 skin grafts, indicating that the 
leader sequence of the H-2IC ~ gene constituting a part of  the 
chimeric gene cannot be the major antigen for rejection. C3H 
mice did not reject skin grafts from Tg.Tla~-3-1, a transgenic 
mouse strain carrying the Tla~-3 gene from A-strain, which 
like an A-strain mouse expresses high levels of  TL antigen 
in the thymus, but not in the skin. From these results, we 
concluded that TL  expressed in the skin functions as a trans- 
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plantation rejection antigen similar to classical class I antigens. 
Furthermore, Tg.Con.3-1 grafts were rejected by Tg.Tla~-3-1 
and the related Tg.Tla~-3-2 strains. Tlaa-3 encodes for a pro- 
tein that, in comparison with the T3 b product, has different 
amino acid residues at 33 sites (16). These "allogeneic" differ- 
ences in TL  antigens apparently contribute to the rejection 
of Tg.Con.3-1 skin grafts by Tg.Tla~-3-1 and Tg.Tlaa-3-2, 
again similar to classical class I antigens. 

Generation of CTL against TL Antigen. We next analyzed 
the T cell response in C3H mice that had rejected Tg.Con.3-1 
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Figure 4. Generation of CTL 
against TL antigen in C3H mice. 
The effector cells were prepared 
from C3H mice that had rejected 
To.Con.3-1 skin grafts. Target cells 
were TL + blast cells of To.Con.- 
3-1 (O) and Tg.Con.3-2 (O), and 
TL- blast cells of Tg.H-2Kb-1 
([3) and C3H (A). 
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Figure 7. No H-2-restriction 
of CTL activity. The CTL gener- 
ated in C3H mice shows the 
activity against TL + T cell lym- 
phomas of various H-2 haplo- 
types. ASL1 (O) and RADA1 (0) 
of A-strain (H-2"), ERLD ([~) 
and B6R.L CY 6 ( I )  of B6 (H- 
2b), and BALBRVE (V) of 
BALB/c (1-1-2 a) origin are TL § 
whereas B6KV2 (A) and B6RL 
Cr 1L (A) of B6 origin are TL-. 
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Figure 5. Antibody blocking 
for characterization of the effector 
cells. The cytotoxic activity of 
effector cells generated in C3H 

Er.- -- ' ' ' 'cy" mice by grafting Tg.Con.3-1 skin 
was tested in the presence of mAb 
to Lyt-2 (O), L3T4 (O), TCR- 
a/fl ([]), TCR-y/b ( I ) ,  CD3 
(A), or none (| The target cells 
were Con A blast cells of 
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Figure 6. Antibody blocking 
for determination of the target 
molecule. The target cells were 
Con A blast of To.Con.3-1 
(TL +, H-2 k) and the effector 
cells were generated in C3H 
(H-2 k) mice. CTL responses were 
carried out in the presence of an- 
tibody to TL or H-2, mAb to TL 
(HD168) (O), mAb to TL.2 
(TT213) (O), cAb to TL.1.2.3 
(V3), cab to TL.4 (I) ,  mAb to 
H-2 (HD464) (A), cAb to H-2 k 
(~D), cAb to H-2d ((D), mAb to 
Qa-2 (TT59) (A), or none (| 
The E/T cell ratio was 50:1. 

skin grafts. CTL from these mice lysed TL § blast target 
cells generated by Con A stimulation, but failed to lyse T L -  
blast cells (Fig. 4). The CTL response was characterized by 
blocking tests with various antibodies (Fig. 5), and also by 
flow cytometric analysis (data not shown). The results demon- 
strated that the CTL are C D 4 - / C D 8  +/CD3 +/TCRc~I$ + / 
TCR3"6-,  having the conventional CTL phenotype. The 
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target molecule for TL-specific CTL was determined by 
blocking tests with various TL and H-2 antibodies. As shown 
in Fig. 6, none of  the H-2 antibodies blocked cytotoxicity, 
whereas TL antibodies having serological specificities for 
different TL determinants blocked cytotoxicity. Thus, the rec- 
ognition of TL by CTL does not require antigen presenta- 
tion by H-2 molecules. This lack of  H-2 involvement is fur- 
ther supported by the finding that TL-reactive CTL generated 
in C3H mice lyse TL + lymphomas of  various H-2 haplo- 
types but not T L -  lymphomas (Fig. 7). 

Recognition of  T3b-TL Antigen by B6F~ Mice, A single 
gene, T3 b, encodes TL in B6 mice (24). The anomalous ex- 
pression of  TL in B6 lymphomas results from the transcrip- 
tional activation of T3 b, which is silent in normal B6 T cells 
(15, 24). T3 b isolated from a TL + B6 lymphoma, ERLD, 
contains no mutations in its coding region and is identical 
to T3 b derived from normal B6 mice. TL antigens can elicit 
a high level of humoral immunity in T L -  mice (38), and 
for this reason, TL antigens anomalously expressed in T cell 
lymphomas of T L -  mice have long been regarded as tumor- 
specific antigens (15). However, this idea has been called into 
question with recent reports demonstrating TL expression 
in the intestinal epithelium of T L -  strains, such as B6 mice, 
as well as in TL + strains (18, 19). We have confirmed this 
observation and have shown that TL transcripts and TL prod- 
ucts are present in the intestine of B6, C3H, AKR,  BALB/c, 
(B6 x C3H)F, ,  and also TL transgenic Tg.Tla~-3-1 and 
Tg.Tlaa-3-2 mice (Obata, Y., T. Takahashi, E. Stockert, and 
L.J .  Old, unpublished observations). To test the significance 
of these findings in relation to TL as a tumor antigen, the 
ability of T L -  mice to mount  a CTL response to the T3 b- 
TL product was examined by grafting the skin of transgenic 
mice on (B6 x C3H)Ft mice (Table 1). Tg.Con.3-1 grafts 
were rejected by F1 recipients, whereas Tg.Con.3-2 grafts 
were not, although a crisis was observed in half of the trans- 
plants. To resolve this difference, (B6 x C3H)F,  mice were 
simultaneously engrafted with both Tg.Con.3-1 and Tg.Con.3- 
2 skins. In this experiment, not only Tg.Con.3-1 but also 
Tg.Con.3-2 grafts were rejected. The results clearly show that 
T L -  mice can recognize the T3b-TL antigen as a transplan- 
tation antigen. The results also indicate that TL expression 
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Figure 8. Generation of CTL 
against TL antigen in (B6 x 
C3H)F1 mice. The effector cells 
were from (B6 x C3H)F1 mice 
that had rejected Tg.Con.3-1 skin 
grafts. Target cells are TL + blast 
cells of Tg.Con.3-1 (O) and 
Tg.Con.3-2 (0), TL § T cell 
lymphomas of B6 origin, ERLD 
([]) and B6RL & 6 (n), and 
TL- B6 T cell lymphomas, 
B6RV2 (A) and B6RL O" 1L (A). 

5'0 25 12.5 613 3'.1 No CTL activity is detected 
Effector to target cell ratio against TL - blast cells of Tg.H- 

2Kb-1 or C3H (data not shown). 
The CTL are T C R - o t / B  + CD8 + cells and are independent of H-2 restric- 
tion, similar to TL-specific CTL induced in C3H mice. 

above a certain level is required to mediate graft rejection. 
Mice grafted with Tg.Con.3-1 or Tg.Con.3-2 skin produced 
TL antibody (data not shown), and antigenic modulation, 
e.g., the reversible downregulation of TL antigen induced 
by TL antibody (17), may be the reason for the failure to 
reject grafts expressing lower levels of TL. CTL induced in 
(B6 x C3H)FI mice lysed not only TL § Con A blast cells 
but also TL + B6 lymphomas, including ERLD (Fig. 8). No 
obvious histological abnormalities were observed in the in- 
testine of immunized (B6 x C3H)F1 mice having TL- 
specific CTL. Thus, despite TL expression in intestinal epi- 
thelial cells, TL can be recognized as a transplantation rejec- 
tion antigen in TL- mice, supporting the original notion 
that anomalously expressed TL behaves like a tumor-specific 
antigen in TL-  mice. It was further established that once 
CTL are induced by immunization with a critical level of 
TL, even cells expressing smaller amounts of TL become 
targets for rejection. 

Discussion 

In this study, we show that TL can mediate a transplanta- 
tion rejection response and elicit CTL that are TL specific 
and independent of antigen presentation by classical class I 
molecules. With regard to classical class I antigens, the mech- 
anisms for allo-recognition have been extensively studied and 
two distinct models have been proposed: (a) CTL recognizes 
allele-specific polymorphic residues on the MHC molecules 
(39-41); and (b) CTL recognizes endogenous peptides pre- 
sented by altogeneic MHC molecules (42-45). Similar models 
can be proposed for TL recognition: CTL may recognize TL 
antigen per se or TL + X, where X are peptides presented 
by TL molecules. Structural comparisons reveal that TL mol- 
ecules can form peptide-binding clefts similar to classical class 
I antigens (46, 47), and that these peptide-binding regions 
of TL, in contrast to classical class I antigens, have a very 
limited polymorphism, suggesting that TL binds only a 

limited repertoire of peptides. In this respect, Qa-2 has been 
reported to bind to a relatively small number of peptides as 
compared with H-2 (10). It will be important to isolate and 
identify the peptides eluted from TL molecules expressed on 
normal and leukemic TL + cells in order to elucidate the 
function of TL as an antigen-presenting molecule and to de- 
termine the target specificity of TL-specific CTL. 

Since the initial description of TL 30 years ago (38), 
numerous attempts have been made to induce CTL against 
TL, but without success. Our ability to generate TL-specific 
CTL in this study is most likely due to immunization with 
skin grafts from transgenic mice expressing abnormally high 
levels of TL. In support of this idea, we have found that im- 
munization with spleen cells from TL transgenic mice was 
far less efficient in CTL induction than immunization with 
skin grafts. Even after hyperimmunization with spleen cells 
from Tg.Con.3-1, (B6 x C3H)F1 mice generated CTL with 
only low CTL activity ('~10% specific lysis of Tg.Con.3-1 
blast cells). Because the skin consists of several different cell 
types with antigen-presenting characteristics, i.e., keratino- 
cytes, Langerhans cells, and others, we are now attempting 
to identify which cells are responsible for TL-specific CTL 
induction and what costimulatory molecules may be involved. 

The fact that TL can elicit humoral and cellular recogni- 
tion in TL- mice such as B6 and B6Ft, despite TL expres- 
sion in intestinal epithelium, indicates that intestinal TL ex- 
pression does not induce a state of systemic tolerance to TL. 
This is in contrast to TL + mice, where TL expression in the 
thymus induces a tolerant state that precludes formation of 
TL-specific antibodies or CTL. No obvious histological ab- 
normalities have been observed in the intestine of immunized 
(B6 x C3H)F1 mice with TL-specific CTL, suggesting 
(among other possibilities) that intestinal TL is inaccessible 
to cellular immune attack or that intestinal TL expression 
is downregulated via TL antibody-mediated antigenic modu- 
lation. In a typical graft-vs.-host reaction involving classical 
class I MHC mismatches, mice generally suffer from diar- 
rhea and the small intestine shows pathological findings such 
as crypt hyperplasia (48, 49), reduction in the ratio of villus 
length to crypt length (48, 50), and lymphocytic infiltration 
of the epithelium (49). 

Antigenic modulation has long been considered the reason 
that TL- mice with high levels of TL antibody are not 
resistant to challenge with syngeneic TL + leukemias (17). 
However, we have recently observed that (B6 x C3H)Ft 
mice immunized with Tg.Con.3-1 skin showed heightened 
resistance to a challenge with a TL + leukemia, but not a 
TL- leukemia. The poor capacity of lymphoid cells (in con- 
trast to skin cells) to generate TL-specific CTL may account 
for the failure of past efforts to induce tumor resistance in 
TL-immunized mice. Understanding why skin-presented an- 
tigens are so effective in eliciting CTL to self-antigens like 
TL may provide new approaches to generating antitumor im- 
munity. 
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