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Most current tumor immunotherapy strategies leverage cytotoxic CD8+ T cells. Despite evidence 

for clinical potential of CD4+ tumor-infiltrating lymphocytes (TILs), their functional diversity 

limits our ability to harness their activity. Here, we use single-cell mRNA sequencing to analyze 

the response of tumor-specific CD4+ TILs and draining lymph node (dLN) T cells. Computational 

approaches to characterize subpopulations identify TIL transcriptomic patterns strikingly distinct 

from acute and chronic anti-viral responses and dominated by diversity among T-bet-expressing T 

helper type 1 (Th1)-like cells. In contrast, the dLN response includes T follicular helper (Tfh) cells 

but lacks Th1 cells. We identify a type I interferon-driven signature in Th1-like TILs and show that 

it is found in human cancers, in which it is negatively associated with response to checkpoint 

therapy. Our study provides a proof-of-concept methodology to characterize tumor-specific CD4+ 

T cell effector programs. Targeting these programs should help improve immunotherapy strategies.

In Brief

CD4+ T cells contribute to immune responses to tumors, but their functional diversity has 

hampered their utilization in clinical settings. Magen et al. use single-cell RNA sequencing to 

dissect the heterogeneity of CD4+ T cell responses to tumor antigens and reveal molecular 

divergences between anti-tumor and anti-viral responses.

Graphical Abstract
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INTRODUCTION

Immune responses have the potential to restrain cancer development, and most 

immunotherapy strategies aim to reinvigorate T cell function to unleash effective anti-tumor 

immune responses (Borst et al., 2018; Gajewski et al., 2013; Ribas and Wolchok, 2018; 

Rosenberg and Restifo, 2015; Wei et al., 2017). Cytotoxic CD8+ T lymphocytes are being 

exploited in clinical settings because of their ability to recognize tumor neo-antigens and kill 

cancer cells (Ott et al., 2017; Rosenberg and Restifo, 2015). However, effective anti-tumor 

immunity relies on a complex interplay between diverse lymphocyte subsets that remain 

poorly characterized. CD4+ T helper cells, which are essential for effective immune 

responses and control the balance between inflammation and immunosuppression 

(Bluestone et al., 2009; Borst et al., 2018; Sakaguchi et al., 2008; Zhu et al., 2010), have 

recently emerged as potential therapeutic targets (Aarntzen et al., 2013; Borst et al., 2018; 

Hunder et al., 2008; Malandro et al., 2016; Mumberg et al., 1999; Ott et al., 2017; Tran et 

al., 2014; Wei et al., 2017). CD4+ helper cells contribute to the priming of CD8+ T cells and 

to B cell functions in lymphoid organs (Ahrends et al., 2017; Borst et al., 2018; Crotty, 

2015). CD4+ T helper type 1 (Th1) cells secrete the cytokine interferon (IFN)-γ and affect 

tumor growth by targeting the tumor microenvironment (TME), antigen presentation through 

major histocompatibility complex (MHC) class I and MHC class II, and other immune cells 

(Alspach et al., 2019; Beatty and Paterson, 2001; Bos and Sherman, 2010; Kammertoens et 

al., 2017; Qin and Blankenstein, 2000; Tian et al., 2017). Conversely, T helper type 2 (Th2) 

cells can promote tumor progression, whereas regulatory T (Treg) cells mediate immune 

tolerance, suppressing the function of other immune cells and thus preventing ongoing anti-

tumor immunity (Chao and Savage, 2018; DeNardo et al., 2009; Tanaka and Sakaguchi, 

2017).

Despite the anti-tumor potential of CD4+ T cells, disentangling their functional diversity has 

been the limiting factor for pre-clinical and clinical progress. Although several studies have 

assessed the transcriptome of Treg cells or their tumor reactivity (Ahmadzadeh et al., 2019; 

Chao and Savage, 2018; De Simone et al., 2016; Malchow et al., 2013; Plitas et al., 2016; 

Zhang et al., 2018; Zheng et al., 2017a), the functional diversity of conventional (non-Treg) 

tumor-infiltrating lymphocytes (TILs) has remained poorly understood. Population studies 

have limited power at identifying new, and especially rare, functional cell states. 

Conventional single-cell approaches (e.g., flow or mass cytometry) overcome this obstacle 

but are necessarily restricted to hypothesis-based targets because of the number of 

parameters they can analyze. Furthermore, most previous studies, whether of human or 

experimental tumors, did not distinguish tumor antigen-specific from bystander CD4+ T 

cells, even though bystanders may form most conventional (non-Treg) T cells in the TME 

(Ahmadzadeh et al., 2019; Azizi et al., 2018; Duhen et al., 2018; Sade-Feldman et al., 2018; 

Simoni et al., 2018; Zhang et al., 2018; Zheng et al., 2017a) and in draining lymphoid organs 

where immune responses are typically initiated.

To address these challenges, we applied the resolution of single-cell RNA sequencing 

(scRNA-seq) to a tractable experimental system assessing tumor-specific responses both in 

the tumor and in the lymphoid organs, and we designed computational analyses to identify 

transcriptomic similarities. Our analyses dissect the complexity of the CD4+ T cell response 
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to tumor antigens and identify broad transcriptomic divergences between anti-tumor and 

both acute and chronic anti-viral responses. Emphasizing the power of this approach, 

transcriptomic patterns identified in the present study are also found in CD4+ T cells 

infiltrating human tumors and correlate with response to checkpoint therapy in human 

melanoma.

RESULTS

Tracking Tumor-Specific CD4+ T Cells

We set up a tractable experimental system to study tumor antigen-specific CD4+ T cells. We 

retrovirally expressed the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) in 

colon adenocarcinoma MC38 cells, using a vector expressing mouse Thy1.1 as a reporter 

(Figure S1A). Subcutaneous injection of the resulting MC38-GP cells produced tumors, 

allowing analysis of immune responses by day 15 after injection. We tracked GP-specific 

CD4+ T cells through their binding of tetramerized I-Ab MHC class II molecules associated 

with the GP-derived GP66 peptide (Matloubian et al., 1994). Such CD4+ cells were found in 

the tumor and draining lymph node (dLN) of MC38-GP tumor-bearing mice but in neither 

non-draining LN (nLN) from MC38-GP mice nor mice carrying control MC38 tumors 

(Figure S1B). TILs and dLN also included small numbers of CD8+ T cells specific for the 

GP-derived GP33 peptide complexed with H-2Db MHC class I molecules (Figure S1C). As 

expected, these cells expressed the transcription factor T-bet (Figure S1D).

To study the CD4+ T cell response to tumor antigens, we aimed to produce genome-wide 

single-cell mRNA expression profiles (scRNA-seq) in CD4+ TILs and CD4+ dLN cells. We 

sorted GP66-specific T cells from dLN cells, because these were the only dLN CD4+ T cells 

for which tumor specificity could be ascertained. Among TILs, we noted that ~87% of 

GP66-specific CD4+ T cells expressed programmed cell death 1 (PD-1), encoded by Pdcd1 
and a marker of antigenic stimulation (Agata et al., 1996), suggesting that it could serve as 

an indicator of tumor specificity (Figure S1E). Alternatively, we considered using CD39 to 

this end, because CD39 marks CD8+ TILs specific to tumor antigens (Duhen et al., 2018; 

Simoni et al., 2018). However, whereas CD39 expression was detected on most Foxp3+ 

(Treg) GP66-specific TILs, it was low or undetectable on their Foxp3−counterparts, most of 

which were PD-1hi (Figure S1F); this is consistent with previous reports that CD39 is 

preferentially expressed in Treg cells among CD4+ T cells (Bono et al., 2015). Thus, to 

obtain a broad representation of antigen-specific TILs, not limited to GP-specific cells, we 

used PD-1 expression as a surrogate for tumor antigen specificity and purified tumor 

CD4+CD44hiPD-1+ T cells (PD-1hi TIL) for scRNA-seq. We verified critical conclusions of 

the scRNA-seq analyses by flow cytometry, comparing GP66-specific and PD-1hi TILs.

Tumor-Responsive CD4+ T Cells Are Highly Diverse

We captured GP66-specific dLN and PD-1hi TIL CD4+ cells using the 10x Chromium 

scRNA-seq technology (Zheng et al., 2017b); in addition, we captured GP66-specific spleen 

CD4+ T cells from LCMV (Armstrong [Arm] strain)-infected mice (Matloubian et al., 1994) 

as a technical and biological reference (Figure S1G, called Arm cells here). After excluding 

cells of low sequencing quality (low number of detected genes), potential doublets, and B 
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cell contaminants, we performed a first series of analyses on 566 dLN, 730 TIL, and 2,163 

Arm CD4+ T cells (Table S1).

We defined groups of cells sharing similar transcriptomic profiles using Phenograph 

clustering (Levine et al., 2015). Consistent with previous studies (Ciucci et al., 2019), Arm 

cells segregated into T follicular helper cells (Tfh cells, providing help to B cells) and Th1 

cells, among other subsets (Figure S2A). Tfh cells expressed Tcf7 (encoding the 

transcription factor Tcf1), Cxcr5, and Bcl6, whereas Th1 cells expressed Tbx21 (encoding 

the transcription factor T-bet), Ifng (IFNγ), and Cxcr6. Low-resolution clustering identified 

5 groups of TILs and dLN cells (Figure S2B). Group I had features of Th1 cells, whereas 

group II differed by lower expression of Tbx21 and Ifng and expressed the chemokine 

receptor Cxcr3 and the transcription factor Irf7. Group III expressed genes typical of Treg 

cells, including Foxp3 and Il2ra, encoding CD25 (IL-2Rα). Group IV expressed Ccr7, 

which preferentially marks memory cell precursors at the early phase of the immune 

response (Ciucci et al., 2019; Pepper and Jenkins, 2011), whereas group V expressed Tfh 

cell genes, including Bcl6 and Cxcr5.

To further dissect these populations, we developed a userindependent, data-driven approach 

to increase clustering resolution while controlling for false discovery. Applying such high-

resolution clustering separately to TILs and dLN cells, we identified 15 clusters (TIL 

clusters t1–7 and dLN clusters n1–8), refining the original five main groups (Figure 1A). 

Revealing unexpected diversity among Th1-like TILs, groups I and II resolved into 5 

subpopulations, including a distinct cluster (t5) expressing higher levels of Il7r (encoding 

IL-7Rα) and lower levels of Tbx21 and Ifng. Only cluster group III (Treg cells) included 

both TIL and dLN cells, which expressed variable levels of Tbx21. Groups IV and V, the 

bulk of dLN cells, resolved into 5 and 2 clusters, respectively. Consistent with these results, 

flow cytometric analysis showed that most dLN cells expressed low or undetectable amounts 

of T-bet, the product of Tbx21; in contrast, most TILs expressed T-bet, even if at various 

levels (Figures 1B and 1C).

To support these observations, we analyzed pooled TILs and dLN cells by t-Distributed 

Stochastic Neighbor Embedding (t-SNE), a dimensionality reduction approach that positions 

cells on a two-dimensional grid based on transcriptomic similarity (van der Maaten and 

Hinton, 2008). Although performed on the pooled populations, t-SNE recapitulated the 

minimal overlap between TIL and dLN transcriptomic patterns (Figure 1D, left), irrespective 

of parameter selection (Figure S2C) and even after controlling for potential confounders 

(Figures S2D and S2F–S2H; STAR Methods). Cluster groups I–V segregated from each 

other when projected on the t-SNE plot (Figure 1D, right). Overlay of gene expression 

confirmed co-localization of cells expressing cluster-characteristic genes (Figure 1E).

To verify the robustness of these observations, we analyzed an additional biological replicate 

consisting of 1,123 TILs, 675 dLN GP66-specific cells, and 2,580 Arm cells captured from a 

separate set of animals (Figure S2E; Table S1). Because batch-specific effects can confound 

co-clustering from distinct experiments, we separately clustered cells from each replicate. To 

compare these clusters, we evaluated the correlation between cluster-specific fold change 

vectors; these vectors, defined internally to each replicate, recorded the expression of each 
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gene in a cluster relative to all other clusters in that replicate. This strategy corrects for 

experiment-specific biases to allow effective comparison of cell subsets. We found 

significant inter-replicate matches for most clusters (Figure 1F), supporting the 

reproducibility of the underlying transcriptomic patterns. Thus, scRNA-seq analysis of 

tumor-specific CD4+ T cells identifies an unsuspected diversity of transcriptomic programs 

in the TME and dLN.

Correlation Analyses Mitigate Tissue-Context-Specific Factors

Comparison of TILs, dLN cells, and Arm cells showed little overlap, including between 

TILs and dLN cells (Figure S3A, left). Thus, we considered that the impact of tissue of 

origin could be the primary driver of clustering and mask commonalities in effector 

programs. Indeed, most TIL subpopulations had attributes of tissue residency, including low 

S1pr1 and Klf2 expression and high Cd69 expression, contrasting with Arm and most tumor 

dLN clusters (Figure 2) (Mackay and Kallies, 2017). Only group III Treg cells, and 

separately cells undergoing cell cycle, clustered together regardless of origin (Figure S3A, 

right). This prompted us to search for potential underlying similarities among these disparate 

transcriptomic patterns. We found that data integration approaches designed to uncover 

similarities across experimental conditions could not overcome the separation resulting from 

biological context (Figure S3B) and could miss functionally relevant differences (e.g., 

between Foxp3+ and Foxp3− TILs) (Figure S3C) (Butler et al., 2018). Thus, we considered 

the correlation analysis used earlier for cluster matching, where Pearson correlation 

coefficients quantify similarities between cluster-specific fold change vectors. This analysis 

distributed the 40 reproducible clusters (out of 47 from all experiments) into 6 meta-clusters 

(with manual curation attaching meta-cluster 1b to 1a), of which four meta-clusters (meta-

clusters 1, 3, 5, and 6) contained cells of more than one tissue context (Figure 3A; Table S1). 

Thus, the correlation analysis established relatedness among transcriptomic patterns 

identified by conventional clustering.

Characterizing Transcriptomic Similarities

We further characterized the meta-clusters by identifying their defining overexpressed genes. 

In addition to Foxp3 and Il2ra, genes driving meta-cluster 3 (Treg cell group III) included 

Ikzf2, Tnfrsf4, encoding Ox40, and Icos, the latter of which we verified by flow cytometry 

(Figures 2, 3A, S3D, and S3F). In contrast, Gzmb (encoding the cytotoxic molecule 

granzyme B) and Lag3 were overexpressed in TIL Treg cells relative to dLN Treg cells (and 

to Foxp3− TIL subsets) (Figures S3D–S3F). Thus, the similarity analysis both confirmed the 

shared Treg circuitry across TILs and dLN and identified TIL-specific Gzmb cytotoxic gene 

expression in TIL Treg cells.

Contrasting with the Treg clusters, the correlation analysis failed to detect similarities among 

three other groups characterized by heterogeneous Tbx21 levels and distributed into meta-

clusters 2 (TIL group II t3–4), 4 (Arm cells), and 6 (TIL group I t1–2) (Figure 3A). The two 

TIL meta-clusters showed multiple differences relative to Arm-responsive Th1 cells, 

including higher expression of Il12rb, Il7r, and Il10ra and distinct patterns of transcription 

factor, chemokine, and chemokine receptor expression (Figure 2). TIL group I t1–2 clusters 

(Th1 hereafter) specifically expressed Lag3 and killer cell lectin (Klr) genes (Figures 3B, 
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right, 3C, and S3G), characteristic of terminally differentiated effector cells (Joshi and 

Kaech, 2008), and differed from Arm Th1 by the expression of multiple activation 

molecules (Figure S3H). Accordingly, flow cytometry verified expression of CD94 and 

NKG2A (encoded by Klrd1 and Klrc1, respectively) in a subset of GP66-specific TILs, 

whereas no expression was detected among GP66-specific Arm or dLN cells (Figure 3D, 

top). TIL group II t3–4 cells differed from the other T-bet-expressing cells by high 

expression of multiple type I IFN-induced genes, including transcription factors Irf7 and Irf9 
(Figures 3B, left, 3C, and S3G). Accordingly, we designated group II t3–4 as IFN-stimulated 

cell (Isc) clusters. Consistent with the scRNA-seq analysis, flow cytometry detected IRF7 

protein expression among GP66-specific TILs, but not Arm-responding CD4+ T cells 

(Figure 3D, bottom); furthermore, flow cytometry distinguished the IRF7hi (Isc) from 

NKG2A+ (Th1) TIL subsets (Figure 3D). We noted that NKG2A+ cells had higher 

expression of T-bet protein than other Foxp3− TILs (Figure 3E). Thus, because T-bet 

normally represses genes induced by type I IFN (Iwata et al., 2017), we verified co-

expression of T-bet and IRF7 by intra-cellular staining and flow cytometry (Figure 3F). 

Consistent with high expression of the Ifng gene by Th1 TILs, NKG2A+ TILs produced 

IFNγ protein when stimulated, unlike NKG2A− TILs (Figure 3G). Th1 TILs did not express 

the natural killer (NK) T cell-specific transcription factor PLZF, indicating they were not 

NK T cells (Figure S3I).

Compared with Isc, Th1 clusters had higher expression of Bhlhe40, encoding a transcription 

factor controlling inflammatory Th1 fate determination (Figures 2 and S3G) (Sun et al., 

2001; Yu et al., 2018). A recent study of human colon cancer identified a CD4+ TIL Th1 

subset with elevated Bhlhe40 expression (Zhang et al., 2018). This subset is clonally 

expanded in tumors with microsatellite instability, suggesting specificity for tumor antigens. 

The mouse Th1 TILs identified in our study had higher expression of 40 genes from the 

human colon TIL Th1 signature, including Bhlhe40 and Lag3 (Table S2), with significant (p 

= 0.001) skewing toward this signature detected by gene set enrichment analysis (GSEA) 

(Subramanian et al., 2005). However, mouse Th1 TILs lacked expression of other 

components of the human signature, including Gzmb and Irf7, suggesting that the impact of 

Bhlhe40 expression on TIL transcriptomes is partly context specific.

Meta-cluster 6 unexpectedly associated Th1 TILs and a dLN Ccr7+ cluster (the group IV n5 

cluster) (Figure 3A), suggesting a potential link between TILs and dLN cells. The 

association was driven by transcriptional regulators Bhlhe40 and Id2 and tumor necrosis 

factor (TNF) superfamily members Tnfsf8 (encoding CD30L) and Tnfsf11 (RANKL) 

(Figures 2 and 4A). The potential connection between Ccr7+ dLN cells and Th1 TILs was 

specific to Ccr7+ cluster n5, which segregated from n6 and other dLN subsets (Tfh and Treg 

cells) based partly on higher expression of Cd200 (Figure 4B). Flow cytometry identified a 

corresponding CD200hi subset among Cxcr5lo Ccr7+, but not Cxcr5+ Ccr7− (Tfh), GP66-

specific cells (Figures 4C, S4A, and S4B). dLN Ccr7+ clusters n5–6 shared features with 

central memory precursor CD4+ T cells (Tcmp cells) identified in Arm infection (Ciucci et 

al., 2019) (Table S2). This includes expression of Tcf7, a transcription factor important to 

prevent T cell terminal differentiation and for CD8+ T cell responsiveness to PD-1 blockade 

(Brummelman et al., 2018; Gattinoni et al., 2009; Im et al., 2016; Jeannet et al., 2010; 

Kurtulus et al., 2019; Nish et al., 2017; Siddiqui et al., 2019; Zhou et al., 2010). However, 
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the correspondence between the MC38-GP dLN Ccr7+ clusters and the Arm Tcmp signature 

was only partial (Table S2).

Meta-cluster 1 consisted of Arm Tfh clusters and dLN group V Tfh clusters (Figure 3A). We 

verified that the abundance of dLN Tfh cells was similar in mice carrying MC38-GP and 

MC38 tumors (Figure S4C), indicating that this response is not a consequence of GP 

expression. Flow cytometric analysis confirmed key Tfh attributes in dLN and Arm cells, 

including Bcl6 expression (Figures 4C, 4D, and S4A), although dLN Tfh cells differed from 

Arm-responsive Tfh cells by lower expression of Icos and the upregulation of the 

transcription factor Maf (Figures 2, 4E, and S4D). Unexpectedly, meta-cluster 1 associated 

the dLN and Arm Tfh clusters with TIL group II cluster t5, characterized by Il7r expression 

(Figures 1A and 3A), based partly on slightly higher expression of Tcf7 (1.6-fold) relative to 

other TIL subpopulations (Figure 4F). Flow cytometric analysis confirmed the presence of 

GP66-specific IL-7R+ TILs (Figure 4G). In addition, the Tcf7int t5 cluster showed 

expression of the transcription factor Klf2 and its downstream target Sphingosine-1-

phosphate receptor 1 (S1pr1, Figures 2 and 4F). This indicated the retention of a cell-

trafficking transcriptional program (Carlson et al., 2006) and contrasted with the IFN-driven 

Isc TILs. Thus, we designated cluster t5 of group II TILs as putative non-resident cells 

(nRes hereafter).

To further delineate the relationships between cell clusters, we used reversed graph 

embedding (Trapnell et al., 2014), which has been used to estimate progression through 

transcriptomic states. This placed the dLN Tfh and TIL Th1 and Isc at the end of an inferred 

path (Figure 4H), nRes TILs in the middle of the continuum, and Ccr7+ dLN cells between 

Tfh and nRes. These analyses, combined with the similarities described by meta-clustering, 

support the notion that the tumor-responsive CD4+ T cell response may be characterized as a 

transcriptomic continuum; they confirm the transcriptomic distance between Th1 and Isc 

TILs, even though both subsets express T-bet, the Th1-defining factor.

TIL Subpopulation-Specific Dysfunction Gene Programs

We reasoned that expression of a dysfunction-exhaustion program (Thommen and 

Schumacher, 2018; Wherry and Kurachi, 2015) may account for the limited relatedness 

between Arm and TIL Th1 cells, because TILs processed for scRNA-seq analysis expressed 

the exhaustion marker PD-1 and multiple genes associated with T cell exhaustion 

dysfunction (Figure 5A). To address this issue, we used flow cytometry to directly compare 

GP66-specific TILs from MC38-GP tumors to GP66-specific CD4+ T harvested 21 days 

after inoculation with the clone 13 strain of LCMV (clone 13 hereafter). This strain 

establishes chronic infection in wild-type mice (Oldstone, 2002), resulting in typical 

dysfunctional CD4+ and CD8+ T cell responses (Crawford et al., 2014). Most clone 13-

responding CD8+ T cells expressed PD-1 and the surface receptor 2B4 (Figure S5A), 

characteristic of the dysfunction-exhaustion status of cells responding to persistent antigenic 

stimulation. Accordingly, PD-1 was expressed on most clone 13-responding spleen CD4+ T 

cells (Figure S5B), unlike among Arm-responding CD4+ T cells, in which PD-1 expression 

was specific to Cxcr5hi Tfh cells (Figure 4D). Expression of PD-1 in GP66-specific TILs 

was similar to that in clone 13-responding cells (Figure 5B) and higher than in dLN GP66-
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specific cells (of which only the Cxcr5+ subset was PD-1hi, Figure 4D). However, clone 13-

responding CD4+ T cells failed to express key members of the TIL Th1 (CD94 and NKG2A) 

and Isc (IRF7) signatures (Figure 5C). Of note, clone 13-responding cells expressed lower 

amounts of T-bet compared with Arm- or MC38-GP-specific cells (Figure S5C). We 

conclude from these observations that the Th1 and Isc signatures of GP66-specific TILs are 

distinct from the dysfunction state generated by persistent antigen exposure.

Nonetheless, since CD4+ TILs expressed exhaustion marks (Figure 5A), we assessed the 

impact of exhaustion on TIL subpopulations. We defined TIL Th1, Isc, nRes, and Treg gene 

signatures as the genes preferentially expressed in each subpopulation relative to all other 

TILs (Table S3). We found a significant overlap between the multiple viral-response 

exhaustion gene signatures (Molecular Signatures Database [MSigDB]) (Liberzon et al., 

2015) and the Th1 and Treg signatures (Table S4). Separate analysis of a previously reported 

gene signature characterizing CD4+ T cell dysfunction during chronic infection (Crawford et 

al., 2014) indicated a significant overlap with the Isc signature, but not with Th1 and Treg 

signatures (Figure S5D; Table S4). The latter result suggested heterogeneous expression of 

exhaustion genes among TIL subsets. We tested this possibility using a broader set of 

exhaustion genes shared across cancer and chronic infection (Chihara et al., 2018). Fifty-five 

genes from this set were also part of TIL Th1, Isc, or Treg signatures. However, the overlap 

was heterogeneous, identifying dysfunction programs specific to TIL subpopulations (Figure 

5D; Table S4). We did not detect overlap between any dysfunction-exhaustion signature and 

nRes TILs (Figure 5D; Table S4). This is in line with these cells’ residual expression of 

Tcf7, which in CD8+ T cells marks cells with conserved responsiveness to checkpoint 

blockade (Brummelman et al., 2018; Im et al., 2016; Siddiqui et al., 2019; Wu et al., 2016).

The Isc IFN Signature Correlates with Poor Clinical Prognosis in Human Tumors

Finally, we examined whether MC38-GP TIL transcriptomic patterns were observed in 

human tumors. We analyzed published CD4+ human liver cancer TIL (TILHLC) scRNA-seq 

data pooled across six treatment-naive patients (Zheng et al., 2017a). Highresolution 

clustering separated the TILHLC cells into 11 clusters, which could be combined into groups 

displaying features of Th1, Isc (of which 36% are PDCD1+), and Treg TILs and cells 

undergoing cell cycle (Figure 6A). Although pooled analysis of CD4+ PD-1+ TILs from 

MC38-GP tumors (TIL) with TILHLC only identified similarities between cells undergoing 

cell cycle (Figures S6A and S6B), cluster correlation analysis indicated significant 

similarities between Treg cells, cell cycle, and Isc clusters from TIL versus TILHLC (Figure 

6B, top). We focused on the Isc pattern, which differed the most from previously reported 

Th1 and Treg transcriptomic profiles. We found significant overlap of overexpression 

patterns between TIL Isc and their human counterpart, including type I IFN-induced genes 

and Irf7 (Ikushima et al., 2013) (Figure 6B, bottom; Table S5). Thus, the Isc signature 

identified among mouse CD4+ TILs is found in human tumors.

These finding were not unique to liver tumors, because analysis of CD4+CD3+ human 

melanoma TILs (TILMel) across 48 lesions (Sade-Feldman et al., 2018) identified a cluster 

enriched in Isc-characteristic genes (of which 27% are PDCD1+), among other populations 

(Figure S6C). To investigate the relationships between Isc transcriptomic program and 
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clinical prognosis, we evaluated the association between expression in TILMel of Isc 

signature genes (defined in MC38-GP TILs) and patient response to checkpoint therapy. 

Relative to responsive tumors, nonresponsive tumors had significantly higher fractions of 

cells expressing Isc signature genes (49 of 108 genes, adjusted p < 0.05), including Stat1, 

Irf7, and Irf9 (Figure 6C; Table S5). This indicated negative association between the Isc 

transcriptomic program and patient response to checkpoint therapy. Thus, the methods used 

in the present study identify transcriptomic programs shared by multiple tumor types and of 

potential prognostic significance.

DISCUSSION

In summary, using scRNA-seq and data-driven computational approaches, the present study 

identifies an unsuspected diversity among tumor-responding CD4+ T cells. Although recent 

scRNA-seq studies had shed light on the Treg component of CD4+ TILs (Ahmadzadeh et al., 

2019; Azizi et al., 2018; Zhang et al., 2018; Zheng et al., 2017a), our study assessed the 

transcriptomes of both regulatory and conventional components, in the tumor itself, and in 

draining lymphoid organs. We identified transcriptomic patterns among these cells and 

found a heterogeneous distribution of exhaustion gene signatures among TIL subtypes, 

highlighting the need for extensive analyses of cell-specific effects of treatments targeting 

exhaustion genes.

One key objective of our study was to compare the transcriptome of CD4+ T cells 

responding to tumors, whether in the tumor itself or in draining lymphoid organs, to that of 

cells responding to infection. To this end, we studied T cell responses to a viral antigen, 

LCMV GP, ectopically expressed in a mouse colon cancer cell line. This approach directly 

compares cells responding to the same antigen, expressed during viral infection or by tumor 

cells. In addition, because the Arm versus the clone 13 strains of LCMV, respectively, result 

in effective versus dysfunctional T cell responses, with chronic viral persistence after clone 

13 strain infection, we could compare antigen-specific responses in each context with those 

against tumor cells. We considered that the potentially greater GP immunogenicity 

compared with that of spontaneously occurring tumor neo-antigens would skew GP-specific 

TILs toward specific transcriptomic patterns. Consequently, we extended our key 

conclusions beyond the limited set of TILs responding to the ectopic GP antigen, identifying 

PD-1 as a reliable marker of antigen-responsive cells and showing a broad correspondence 

between expression of key signature markers between PD-1hi and GP-responsive TILs.

Even though most conventional (Foxp3−) tumor-responsive TILs express the Th1-defining 

transcriptional regulator T-bet, our study identified transcriptomic patterns with 

unexpectedly little similarity to prototypical virus-responsive Th1 cells. Thus, conventional 

helper effector definitions, derived from studies of responses to infection, are potentially 

inaccurate descriptors of responses to tumors. The Th1-like transcriptome with marks of 

type I IFN stimulation, a driver of inflammation and immunosuppression in cancer (Snell et 

al., 2017), highlights this conclusion: it was observed among TILs, but not LCMV-

responding cells, even though acute LCMV infection drives a strong type I IFN innate 

immune response (Cousens et al., 1999). The transcriptomic definition of signatures had 

important functional correlates, because the type I IFN response signature was associated 

Magen et al. Page 10

Cell Rep. Author manuscript; available in PMC 2019 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with lesser IFNγ production compared with cells expressing the Th1 signature. Future 

studies will determine whether any of these signatures, or those characteristic of tumor-

responsive cells in the draining lymphoid organs, are associated with provision of help to 

CD8+ T cells, which is essential for efficient anti-tumor responses (Ahrends et al., 2017; Bos 

and Sherman, 2010).

We considered the possibility that the distinct CD4+ T cell responses to tumors versus 

infection resulted from differences in the kinetics of antigen exposure: transient during acute 

viral infection versus persistent exposure to tumor antigens. Expression of dysfunction-

exhaustion genes, exemplified by PD-1, was a shared attribute of cells responding to tumor 

and chronic viral infection. However, the expression of type I IFN-responsive genes (Isc 

signature) was specific to tumor-responsive cells and not shared by anti-viral dysfunctional 

cells; the same was true of Klr-family receptors (Th1 signature). Our analyses point to the 

importance of these findings in the response to human cancer, because we could project the 

IFN-responsive transcriptomic pattern onto human tumors, overcoming potential sample 

disparity, and demonstrate its association with response to checkpoint therapy.

Investigating tumor-specific T cell responses in draining lymphoid organs revealed striking 

differences with TILs. The absence of Th1 cells from tumor dLN was unexpected and 

contrasted with infections, including with LCMV or with Leishmania major, a typical Th1-

driving parasite with kinetics of clinical progression similar to that of experimental tumors 

and in which Th1 dLN cells are important contributors to the response (Belkaid et al., 2000). 

In contrast, the tumor elicited strong, tumor-specific Foxp3-negative Tfh-like responses in 

dLN. Similar populations of Tfh-like cells have been observed in human tumors (Crotty, 

2019). Although Tfh differentiation may divert T cells from more efficient (e.g., IFNγ-

producing) anti-tumor differentiation, it provides support for the tantalizing possibility that 

tumor-elicited B cell responses could be exploited against cancer (Carmi et al., 2015). It is 

also possible that this subset includes a stem cell-like component similar to the Cxcr5+ 

CD8+ dLN T cells that serve as targets for immunotherapy targeting PD-1 signaling (Im et 

al., 2016) or cells with similar properties in the TME (Siddiqui et al., 2019).

In conclusion, this study provides a high-resolution characterization of tumor-reactive CD4+ 

T cell responses in lymphoid organs and the TME. We identify previously unrecognized 

transcriptomic patterns among tumor-specific T cells and provide an extensive mapping of 

the CD4+ T cell immune response against cancer. We describe analytical approaches of 

broad applicability, including to clinical data, that combine high-resolution dissection of 

transcriptomic patterns and synthetic data integration to identify correspondences between 

apparently unrelated cell differentiation states.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests should be directed to and will be fulfilled by the Lead 

Contact, Remy Bosselut (remy.bosselut@ nih.gov).
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All unique/stable reagents generated in this study are available from the Lead Contact with a 

completed Materials Transfer Agreement

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—6–12 weeks C57BL/6 mice were purchased from Charles River laboratories and 

housed in specific pathogen-free facilities. ScRNaseq was performed on male mice for 

sequencing consistency; flow cytometry was performed indifferently on male and female 

mice, with no observable difference. Animal procedures were approved by the NCI Animal 

Care and Use Committee.

Cell Lines and Constructs—MC38 murine colon cancer cell lines (Corbett et al., 1975) 

were obtained from Jack Greiner’s lab and cultured in DMEM that contained 10% heat-

inactivated FCS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 0.292mg/ml L-

glutamine, 100 pg/ml streptomycin, 100 U/mL penicillin, 10mM HEPES. MC38-GP cells 

were generated as follows: LCMV-gp gene was amplified from pHCMV-LCMV-Arm53b 

(addgene#15796) and inserted into pMRX-IRES-Thy1.1 by BamH1 and Not1 (Saitoh, 2002; 

Sena-Esteves, 2004). Then pMRX-Thy1.1 contained LCMV-gp gene was transfected into 

Plat E cell to package retrovirus. MC38 cell line was transduced by above retrovirus 

collection and followed by single cell sorting in 96-well plate after 48hs. The monoclonal 

cell lines were identified by flow cytometry and western blot.

METHOD DETAILS

LCMV Infection Model and Tumor Model—2 × 105 pfu of LCMV Armstrong 

(Matloubian et al., 1994) were injected intra-peritoneal in 6–12 weeks old C57BL/6 mice. 

Mice were analyzed 7 days post infection. 2 × 106 pfu of LCMV Clone 13 were injected 

intra-venously in 6–12 weeks old C57BL/6 mice. Mice were analyzed 21 days post 

infection. MC38 and MC38-GP tumor cells (0.5 × 106) were subcutaneously injected into 

the flank of C57BL/6 mice.

Cell Preparation and Flow Cytometry—Lymph node and spleen were prepared and 

stained as previously described (Wang et al., 2008). For TIL preparation, tumors were 

dissected 14 to 18 days post-injection, washed in HBSS, cut into small pieces, and subjected 

to enzymatic digestion with 0.25mg/ml liberase (Roche) and 0.5mg/ml DNAase I (SIGMA) 

for 30 minutes at 37 degrees. The resulting material were passed through 70um filters and 

pelleted by centrifugation at 1500rpm. Cell pellets were resuspended in 44% Percoll (GE 

Healthcare) on an underlay of 67% Percoll, and centrifuged for 20min at 1600 rpm without 

brake. TILs were isolated from the 44%/67% Percoll interface. Following isolation, cells 

were blocked with anti-FcγRIII/FcγRII (unconjugated, 2.4G2) and subsequently stained for 

flow cytometry. Staining for AS15:I-Ab tetramer (Grover et al., 2012), GP66:I-Ab tetramer 

and Cxcr5 was performed at 37 degrees for 1 hour prior to staining for other cell surface 

markers. For intracellular staining, cell surface staining were preformed first, following 

fixation using the Foxp3-staining kit (eBioscience). For cytokine staining, cells were 

incubated in the presence of PMA (25ng/ml)/Ionomycin (1ug/ml) and Golgi stop for 3 

hours, followed by surface staining and intracellular staining. Flow cytometry data were 

acquired on LSR Fortessa cytometers (BD Biosciences) and analyzed with FlowJo 
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(TreeStar) software. Dead cells and doublets were excluded by LiveDead staining 

(Invitrogen) and forward scatter height by width gating. Purification of lymphocytes by cell 

sorting was performed on a FACS Aria or FACS Fusion (BD Biosciences).

Single-Cell RNA-Seq—For each of the two separate biological replicates, 3000–13000 T 

cells sorted from one Arm infected and 10 tumor-bearing mice were loaded on the 

Chromium platform (10X Genomics) and libraries were constructed with a Single Cell 3′ 
Reagent Kit V2 according to the manufacturer instruction. Libraries were sequenced on 

multiple runs of Illumina NextSeq using paired-end 26×98bp or 26×57bp to reach a 

sequencing saturation greater than 70% resulting in at least 49000 reads/cell. Cell recovery 

rate averaged 19%.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental Data—Flow cytometry was analyzed using FlowJo 10.5.0. GraphPad Prism 

(Version 7) was used for graphical representation and statistical analysis of cytometry data. 

Flow cytometry data are presented as mean ± SEM. Unpaired two-sided Student’s T–test 

was used throughout to measure statistical significance of protein expression by flow 

cytometry. Statistical significance annotation is denoted in figure legends.

scRNA-Seq Data Pre-processing—De-multiplexing, alignment to the mm10 

transcriptome and unique molecular identifier (UMI) calculation were performed using the 

10X Genomics Cellranger toolkit (v2.0.1, http://software.10xgenomics.com/single-cell/

overview/welcome). Pre-processing, dimensionality reduction and clustering analyses 

procedures were applied to each dataset (that is, specific tissue origin in each experiment) 

independently to account for dataset-specific technical variation such as sequencing depth 

and biological variation in population composition, as follows. We filtered out low quality 

cells with fewer than 500 detected genes (those with at least one mapped read in the cell). 

Potential doublets were defined as cells with number of detected genes or number of UMIs 

above the 98th quantile (top 2% owing to up to 2% estimated doublets rate in the 10X 

Chromium system). Potentially senescent cells (more than 10% of the reads in the cell 

mapped to 13 mitochondrial genes) were also excluded. Cell numbers pre- and post-filtering 

are found in Table S1. Library size (LSj, number of UMIs in cell j) normalization and natural 

log transformation were applied to each cell library, i.e., norm j
i = ln(10000 × (raw j

i /LS j) + 1), 

to quantify the expression of gene i in cell j, where raw j
i  is the number of reads for gene i in 

cell j.

Transcriptomic Effects of TCR Engagement as a Result of GP66-Tetramer-
Based Purification—GP66-tetramer binding results in potential cross-linking of and 

signaling by the TCR of GP66-specific T cells. To model the transcriptomic effect of TCR 

engagement as a result of GP66-tetramer-based purification, we sought to compare Arm-

specific CD4+ T cells obtained either after GP66-tetramer purification or without tetramer-

based purification. To enrich in such cells without tetramer staining, we noted that ~94% of 

GP66-specific CD4+ splenocytes from Arm-infected mice express little or no IL7R [IL-7 

receptor a chain] (Figure S2F). Thus, we considered that most CD44hiCD4+IL7R+ 
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splenocytes were not Arm-specific, and sorted CD44hi IL7R− (Arm IL7R−) T cells for 

scRNaseq; in addition to antigen-specific CD44hi GP66-tetramer purified (Arm GP66+) T 

cells (Figure S2G). Pooled clustering of the two samples revealed 2 (out of 6) clusters 

heavily dominated by tetramer-stained cells (Figure S2H, top), suggesting that the bias 

introduced by tetramer staining was limited to those clusters. As expected from GP66 

tetramer engagement with the TCR, GP66-specific clusters were characterized by genes 

involved in T cell receptor signaling and NFKB signaling (Table S6), while clusters 

containing cells from both samples displayed features of Tfh and Th1 cells (Figure S2H, 

bottom). We designated the GP66-characteristic genes as the TCR engagement GP66 

signature (Table S3) and regressed the activation scores of the signature from the expression 

matrix using a linear regression model fitted to each gene.

Dimensionality Reduction—Highly variable genes were defined as genes with greater 

than one standard deviation of the dispersion from the average expression of each gene. 

However, to account for heteroscedasticity, variable genes were identified separately in bins 

defined based on average expression. PCA analysis was performed on the normalized 

expression of the set of dataset-specific highly variable genes. We selected the top PCs based 

on gene permutation test (Buja and Eyuboglu, 1992). ‘Barnes-hut’ approximate version of t-

SNE (van der Maaten, 2014) (perplexity set to 30, 10k iterations) was applied on the top PCs 

to obtain a 2D projection of the data for visualization.

Gene Signature Activation Quantification—Gene signature activation was quantified 

relative to a technically similar background gene set as described in (Haber et al., 2017). 

Briefly, we identify the top 10 most similar (nearest neighbors) genes in terms of average 

expression and variance, then define the signature activation as the average expression of the 

signature genes minus the average expression of the background genes. The GP66 tetramer 

staining signature is defined above. Additionally, we defined lists of ribosomal, 

mitochondrial, and cell cycle genes (Kowalczyk et al., 2015) for confounder controls (Table 

S3).

High-Resolution Clustering—Phenograph clustering (Levine et al., 2015) using the top 

PCs (see dimensionality reduction) was performed independently on each dataset to allow 

full control of the clustering resolution based on dataset-specific coverage and heterogeneity 

features. The clustering resolution (number of clusters) is controlled by the K nearest 

neighbor (KNN) parameter. We designed a simulation analysis to estimate the optimal 

clustering resolution, i.e., at what resolution the clustering is superior in quality to clustering 

driven by technical biases inherent to scRNaseq, as follows. Here we define the clustering 

quality as the clustering modularity reported by Phenograph, which indicates intra-cluster 

compactness and inter-cluster separation. The simulations consist of repeating the clustering 

analysis on 100 shuffled expression matrices to estimate the ‘null’ distribution of the 

clustering quality, where the gene expression measurements are permuted within each cell to 

retain the cell-specific coverage biases. We repeated this process for varying value of the 

KNN parameter k to compare the clustering modularity of the original Ok to the shuffled Sk 

data. The final resolution was defined as the maximal resolution where (Ok /Sk)≥2. 

Following this strategy, k was set to 22, 27, 29, 22, 64 and 51, for dLN experiment 1 and 2, 
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TILs experiment 1 and 2 and Arm experiment 1 and 2, respectively. All clustering analysis 

was performed for each sample separately, except of the low-resolution clustering of TILs 

and dLN (Figure S2B), where dLN and TILs from experiment 1 were analyzed jointly via 

pooled clustering. Pooled clustering analysis (joint rather than separated by dataset) and 

visualization was performed using PCA on the aggregate list of highly variable genes 

defined on each dataset. Clustering was done with and without controlling for confounding 

factors (number of UMIs, number of detected genes and gene signatures activation of 

ribosomal, mitochondrial, cell cycle and GP66 staining signature). Clustering analysis of 

TILs, dLN, and Arm cells showed little overlap even after correcting for potential 

confounders.

After obtaining the initial clusters and identifying the overexpressed genes in each cluster, 

we apply two filters: (1) we exclude small clusters of B cells (CD79+ populations) from each 

dataset. (2) We identify PCs driven by B cell marker genes and remove the individual cells 

whose expression profile has high scores for those PCs (outliers). We then repeat the entire 

processing and clustering to prevent detecting highly variable genes and PCs driven by 

contaminations, which may in turn reduce the signal of other small populations of interest.

Differential Expression Analysis and Population Matching—Differential 

expression was performed using Limma (version 3.32.10). Cluster defining genes reported 

throughout passed FDR-corrected (Benjamini–Hochberg procedure) differential expression 

tests independently in the two replicates (Fold change > 1.25, Q-value < 0.1). Statistical 

significance is indicated in relevant figures and supplementary tables. We initially performed 

differential expression analysis between each cluster against the pool of all other clusters 

within a given dataset. Identified clusters were labeled as a known T cell subtype if the 

majority of the known subtype-defining genes were differentially overexpressed in that 

cluster. We then matched populations across experiments to assess the reproducibility of the 

populations and to uncover similarities across datasets that are masked due to overall tissue-

context-specific differences. To reduce the effects of tissue-context-specific effects on the 

similarity calculation, we used the fold change (FC) measure of each gene 

FCg
c = f oregroundg / backgroundg  (average of gene g in cluster c (foreground) relative to 

all other clusters (background) of the same dataset). Then we measured the Pearson 

correlation between the FC vectors of all pairs of clusters across datasets. Unlike common 

batch correction approaches which match the mean and variance of each gene across 

batches, the FC vectors describe the deviation intensity of each gene relative to the sample 

mean, without skewing those deviations to match across samples, thereby not removing 

biologically relevant factors. We compare this approach with an alternative approach that 

uses Euclidean distances between the average expression vectors, defined as average 

expression of all genes in a cluster and a recent data integration approach (Butler et al., 

2018) following tutorial specifications [https://satijalab.org/seurat/immune_alignment.html; 

version 2.0.1].

Robust Cluster Calling and Robust Population Comparisons—For each dataset, 

we defined ‘robust clusters’ as those that had highly similar match in the biological 

replicate. High similarity is defined as Pearson correlation coefficient greater than ~1.28 
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standard deviations from the mean for each dataset, corresponding to nominal p value of 0.1. 

Hierarchical clustering was performed on the identified robust clusters using the inter-cluster 

similarity matrix, where the similarity was defined as above using the Pearson correlation 

between the FC vectors. Using the vector of average expression vectors did not achieve 

similar result; specifically, using hierarchical clustering of the Euclidean distances between 

the clusters average expression vector retained the grouping of clusters based on origin 

tissue (Figure S3B). We then analyzed differential expression patterns for clusters belonging 

to each meta-cluster, excluding cell cycle clusters. For a given pair of clusters of interest, A 

and B in datasets X and Y respectively, we performed three differential expression analyses: 

(1) differential expression in A relative to other clusters in X, (2) differential expression in B 

relative to other clusters in Y, and (3) differential expression in A relative to B. In addition to 

average expression differences, we quantified the detection rate of gene X as proportion of 

cells where 1 or more reads was mapped to X and prioritized differentially expressed genes 

exhibiting also differential detection across conditions. This analysis was performed for the 

two replicates separately and the results interpreted jointly; a gene was deemed as 

overexpressed in cluster A in tissue X if it is overexpressed relative to other clusters in X as 

well as relative to B, in both replicates.

scRNaseq Contour Plots—Normalized scRNaseq expression measurements were 

visualized as contours, where zero (0) values were assigned random value drawn from a 

normal distribution centered around 0.

scRNaseq Violin Plots—Violin plots were used to visualize the scaled expression 

distribution per cluster or group of clusters, where scaled expression corresponds to Min-

Max scaling of the normalized UMIs to the range of [0,1], i.e., Xnorm = (X −Xmin /Xmax 

−Xmin), where Xmin and Xmax are the minimum and maximum value, respectively, of each 

gene.

Reversed Graph Embedding—Trajectory analysis of TIL populations (group I and II, 

excluding group III Tregs) was performed using Monocle (version 2.9.0, parameters 

max_components = 2, method = DDRTree).

Gene Signature Definition—For each TIL subpopulation (group I Th1, group II Isc, 

group II nRes and group III Treg) we selected overexpressed genes exhibiting differential 

detection (as defined above) relative to all other TILs across both experiments (Table S3).

Correspondence to Human Data—Human liver cancer TIL scRNaseq counts were 

downloaded from GEO [GSE98638]. Non-CD4+ T cells were filtered based on the 

classification in the original publication (Zheng et al., 2017a). Human gene symbols were 

translated to Mouse gene symbols using package biomaRt (version 2.37.8). Pre-processing, 

clustering, and population matching analysis were applied as described above. Human 

melanoma TILs data scRNaseq counts were downloaded from GEO [GSE120575]. We 

selected CD4+ T cells as cells with at least one mapped read to CD4 and [CD3D or CD3E or 

CD3G], following the authors definition (Sade-Feldman et al., 2018). 108 out of 136 Isc 

signature genes were mapped to human gene symbols. The detection rate of each Isc 

signature gene (as defined above) in each lesion were used to assess differential detection 
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across responders and non-responders. We used two-sided Wilcoxon test to quantify the 

significance of differential activation.

Correspondence with External Gene Signatures—Gene set enrichment analysis of 

immunologic gene signatures was performed using MSigDB (Liberzon et al., 2015) [C7: 

immunologic signatures database with clusterProfiler package (version 3.4.3). All other gene 

signatures were downloaded from the original publication’s supplementary materials. 

Correspondence to Tcmp signature was performed by differential expression of dLN Ccr7+ 

clusters n5–6 relative to other dLN and TIL (n1, n7–8, t1–7) rather than dLN subpopulations 

alone to satisfy the background conditions used in the original publication. The 

heterogeneity of the IL-27 co-inhibitory gene signature (Chihara et al., 2018) was evaluated 

by analyzing differential gene expression across Th1, Isc, and Treg TIL, indicating which 

genes are preferentially expressed in one subpopulation versus the others.

DATA AND CODE AVAILABILITY

The accession number for the sequencing data (scRNAseq) reported in this paper is 

GEO:GSE124691.

The computational pipeline is available on https://github.com/asmagen/RobustSingleCell. 

The code is archived by Zenodo and can be cited via https://doi.org/10.5281/zenodo.

3239269.

The pipeline requires access to Slurm high-performance computing core for efficient 

simulation analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell RNA-seq analyzes antigen-specific tumor-infiltrating lymphocytes 

(TILs)

• CD4+ TIL responses are highly heterogenous and distinct from anti-viral 

responses

• Th1-like TILs show evidence of type I interferon-driven signaling

• Interferon signature is negatively associated with human tumor response to 

therapy
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Figure 1. Characterization of CD4+ TIL, dLN, and Arm Transcriptomes by scRNA-Seq
(A–D) TILs and dLN cells from wild-type (WT) mice at day 14 after MC38-GP injection 

analyzed by scRNA-seq and flow cytometry.

(A) Heatmap shows row-standardized expression of selected genes across TIL and dLN 

clusters. Bar plot indicates the percentage of cells in each cluster relative to the total TIL or 

dLN cell number.

(B) Flow cytometry contour plots of Foxp3 versus T-bet in CD44hi GP66+ dLN cells (left) 

and in CD44hiCD4+ splenocytes from tumor-free control mice (right).

(C) Flow cytometry contour plots of Foxp3 versus T-bet in PD-1+ and GP66+ TILs (left) and 

in CD44hi CD4+ splenocytes from tumor-free control mice (right).

(B and C) Data representative from 18 tumor-bearing mice analyzed in four separate 

experiments.

(D) t-SNE display of TILs and dLN cells, shaded gray by tissue origin (left) or color coded 

by main group (right, as defined in A).

(E) t-SNE (TIL and dLN cell positioning as shown in B) display of normalized expression 

levels of selected genes.
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(F) Heatmap shows Pearson correlation between cluster fold change vectors (as defined in 

the text) across the two replicate experiments for TILs (left) and dLN cells (right).

See also Figures S1 and S2 and Tables S1 and S6.
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Figure 2. Transcriptomic Patterns of TILs, dLN Cells, and Arm Cells
TILs, dLN cells, and Arm cells from replicate experiments I and II analyzed by scRNA-seq. 

Heatmap shows row-standardized expression of selected genes across clusters. Group II 

(purple) t5 separated into a distinct component from t3–4 (as defined in the text). Of note, 

high-level expression of T-bet and other genes in Arm cells (included in this dataset), 

reduces the Z score (row normalized) expression value for such genes in TILs or dLN cells, 

accounting for their apparent lower relative expression compared with that in Figures 1A 

and S2B.
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See also Figure S2 and Table S2.
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Figure 3. Th1-like Transcriptomic Patterns
(A) Heatmap defines meta-clusters based on Pearson correlation among TIL, dLN, and Arm 

cluster fold change vectors (as defined in the text) (left). Tables show tissue origin and cell-

type color code per cluster (right).

(B and C) Comparison of TIL Th1 and Isc (clusters t1–2 and t3–4, respectively, as shown in 

Figure 1A), as well as Arm Th1 (as shown in Figures 2 and S2A).

(B) Contour plots of Th1 (orange) and Isc (blue) TIL distribution according to scRNA-seq-

detected normalized expression of Irf7 versus Ifit3b (left) and Klrc1 versus Lag3 (right).
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(C) Heatmap shows row-standardized expression of differentially expressed genes across 

TIL group II Isc, TIL group I Th1, and Arm Th1.

(D) (Left) Flow cytometry contour plots of NKG2A versus CD94 (top) or IRF7 (bottom) in 

Foxp3−GP66+ dLN, TIL, and Arm cells. (Right) Percentage of NKG2A+CD94+ cells (top) 

and IRF7hi NKG2A− cells (bottom) among Foxp3−GP66+ CD4+ T cells; each symbol 

represents an individual mouse.

(E) Overlaid protein expression of T-bet in NKG2A+ and NKG2A− Foxp3−GP66+ TILs 

(left). The graph on the right summarizes quantification (mean fluorescence intensity, MFI) 

of T-bet in each subset, expressed relative to naive CD4+ splenocytes from tumor-free 

control mice. Each symbol represents an individual mouse; lines indicate pairing.

(F) Flow cytometry contour plots of T-bet versus IRF7 in Foxp3−GP66+ dLN, TILs, and 

Arm cells; data from naive CD4+ splenocytes from tumor-free control mice is shown as a 

control (right plot).

(D–F) Each plot is representative from 10 tumor-bearing and 9 Arm-infected mice, analyzed 

in two separate experiments. Each symbol on summary graphs represents one mouse.

(G) (Left) Overlaid protein expression of IFNγ in NKG2A+ versus NKG2A− TILs and Arm 

cells. Data are shown for Foxp3−GP66+ cells (plain lines); expression on Foxp3+ cells is 

shown as a negative control (shaded gray). (Right) Graph shows the percentage of IFNγ+ 

cells out of NKG2A+ or NKG2A− Foxp3− TILs or of GP66+ Arm CD4+ T cells and 

summarizes a single experiment with 5 tumor-bearing and 3 Arm-infected mice. Data are 

representative of two such experiments, with 15 tumor-bearing and 5 Arm-infected mice. 

Each symbol on summary graphs represents one mouse.

Two-tailed unpaired (D and G) or paired (E) t test; *p < 0.05, **p < 0.01, and ****p < 

0.0001.

See also Figure S3 and Table S2.
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Figure 4. Transcriptomic Continuum between TIL and dLN Tumor-Reactive Cells
(A) Violin plots of differentially expressed genes across TIL group I Th1 and dLN group IV 

Ccr7+ (clusters t1–2 and n5, respectively, as shown in Figure 1A), as well as all other TIL 

and dLN populations. Unpaired t-test; ***p < 0.001.

(B) Heatmap shows row-standardized expression of differentially expressed genes across 

dLN Ccr7+ clusters (group IV n5–6) and other dLN clusters (Treg and Tfh clusters n1 and 

n7–8, respectively).
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(C) Flow cytometry contour plots of Cxcr5 versus Ccr7 in Foxp3− dLN cells (top). Overlaid 

protein expression of Bcl6 and CD200 in Ccr7+ and Cxcr5+ dLN cells and naive CD4+ 

splenocytes from tumor-free control mice (bottom). Data are representative of 17 mice 

analyzed in three experiments.

(D) Flow cytometry contour plots of Cxcr5 versus PD-1 in dLN and Arm cells. Data are 

representative of 10 mice analyzed in two experiments.

(E) Contour plot of dLN (red, clusters n7–8) and Arm (blue) Tfh cell distribution according 

to scRNA-seq-detected normalized expression of Icos versus Maf (top).Overlaid protein 

expression of ICOS in dLN and Arm PD-1+Cxcr5+ (Tfh) cells and naive CD4+ splenocytes 

from tumor-free control mice (bottom).

(F) Heatmap shows row-standardized expression of differentially expressed genes across 

TIL Isc and nRes clusters (as defined in the text, group II t3–4 and t5,respectively) and all 

other TIL clusters (Th1 and Treg clusters t1–2 and t6–7, respectively).

(G) Percentage of IL7R+Foxp3− cells out of total PD-1+ or GP66+ TILs. Nine mice analyzed 

in two experiments.

(H) Trajectory analysis of PD-1+ TILs and GP66+ dLN cells, indicating individual cells’ 

assignment into a transcriptional continuum trajectory. nRes cluster (t5) is color coded 

orange in contrast to annotations in other figures.

See also Figure S4 and Table S2.
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Figure 5. Dysfunction Transcriptomes of Th1, Isc, and Treg TILs
(A) Heatmap shows row-standardized expression of selected exhaustion genes across TIL, 

dLN, and Arm clusters from replicate experiments I and II.

(B) Overlaid protein expression of PD-1 in GP66+ clone 13 (red trace) and GP66+ TILs 

(left) or dLN cells (right) (cyan trace). Gray-shaded histograms show PD-1 expression on 

CD44+CD4+ splenocytes from tumor-free control mice.

(C) Flow cytometry contour plots of NKG2A versus CD94 (top) or IRF7 (bottom) in TILs 

and clone 13 Foxp3−GP66+ T cells. Graphs on the right summarize data from two 

experiments; each symbol represents one mouse. Two-tailed unpaired t test; ***p < 0.001 

and ****p < 0.0001.

(B and C) Data are from 10 mice of each condition, analyzed on two separate experiments.

(D) Analysis of interleukin-27 (IL-27) signature genes overlapping with TIL subpopulation-

characteristic genes. Heatmaps show Pearson correlation (left) and row-standardized 

expression of overlapping genes across TIL Th1, Treg, Isc, and nRes cells (clusters t1–2, t6–

7, t3–4, and t5, respectively, as shown in Figure 1A) (right).

See also Figure S5 and Tables S3 and S4.
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Figure 6. Correspondence to Human Data and Dysfunction Gene Signatures
(A) Analysis of human liver cancer TILHLC. Heatmap shows row-standardized expression of 

selected genes across TILHLC clusters.

(B) Heatmap defines meta-clusters based on Pearson correlation between TILHLC and 

MC38-GP TIL clusters (top). Overlap of genes characteristic of human liver TIL Isc cluster 

with mouse TIL Isc gene signature (bottom).

(C) Analysis of human melanoma TILMel. Boxplots show the percentage of cells expressing 

selected IFN signaling-characteristic genes in CD4+CD3+ cells across responding and non-

responding lesions. Unpaired Wilcoxon test; *p < 0.05, **p < 0.01, and ***p < 0.001.

See also Figure S6 and Table S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-B220-V500 (Clone RA3–6B2) BD Pharmigen Cat# 561227; RRID:AB_10562193

Anti-Cxcr5-PE-eFluor 610 (Clone SPRCL5) Thermofisher Cat# 61–7185–82; 
RRID:AB_2574660

Anti-CD4-BUV737 BD Pharmigen Cat# 564298, RRID:AB_2732918

Anti-TCRb-BV711 BD Pharmigen Cat# 563135; RRID:AB_2629564

Anti-Thy1.1-FITC Thermofisher Cat# 11–0900–81; RRID:AB_465151

Anti-CD44-AF700 Thermofisher Cat# 56–0441–82; RRID:AB_494011

Anti-PD-1-PECy7 Thermofisher Cat# 25–9985–82; 
RRID:AB_10853805

Anti-CD8b-BUV395 BD Pharmigen Cat# 563786; RRID:AB_2732919

Anti-CD45.2- BV786 BD Pharmigen Cat# 563686; RRID:AB_2738375

Siglec F-BV510 BD Pharmigen Cat# 740158; RRID:AB_2739911

NK1.1-BV510 BD Pharmigen Cat# 563096; RRID:AB_2738002

CD11b-BV510 BD Pharmigen Cat# 562950; RRID:AB_2737913

CD11c-BV510 BD Pharmigen Cat# 562949; RRID:AB_2732056)

IL7R-APC Thermofisher Cat# 17–1271–82; RRID:AB_469435

Ccr7-PE Thermofisher Cat# 12–1979–42; 
RRID:AB_10670625

Ccr7-PE-Cy7 Thermofisher Cat# 25–1971–82; RRID:AB_469652

Bcl6-BV421 BD Pharmigen Cat# 563363; RRID:AB_2738159

Lag3-APC-ef780 Thermofisher Cat# 47–2231–82; 
RRID:AB_2637323

Foxp3-ef450 Thermofisher Cat# 48–5773–82; 
RRID:AB_1518812

Foxp3-AF488 Thermofisher Cat# 53–5773–82; RRID:AB_763537

Granzyme B-PE Innovative Research Cat# MHGB04; RRID:AB_10372671

Tbet-PE-Cy7 Thermofisher Cat# 25–5825–82; 
RRID:AB_11042699

CD200-APC-R700 BD Pharmigen Cat# 565546; RRID:AB_2739288

CD39-super bright 600 Thermofisher Cat# 63–0391–82; 
RRID:AB_2717037

IRF7-PE Thermofisher Cat# 12–5829–82; 
RRID:AB_2572629

CD278-BV421 BioLegend Cat# 313523; RRID:AB_2562538

PD-1-PE-Cy7 Thermofisher Cat# 25–9985–82; 
RRID:AB_10853805

PD-1-BU395 BD Pharmigen Cat# 744549; RRID:AB_2742320

TIM3-PE BioLegend Cat# 119704; RRID:AB_345378

CD94-FITC Thermofisher Cat# 11–0941–82; RRID:AB_465161

NKG2A/NKG2C/NKG2E-Percp-ef710 Thermofisher Cat# 46–5896–82; 
RRID:AB_10853352
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REAGENT or RESOURCE SOURCE IDENTIFIER

IFNγ-FITC BioLegend Cat# 505806; RRID:AB_315400

Bacterial and Virus Strains

LCMV Armstrong McGavern Lab

LCMV Clone 13 McGavern Lab

Biological Samples

MC38 tumor samples This paper

MC38-GP tumor samples This paper

Chemicals, Peptides, and Recombinant Proteins

I-Ab LCMV GP66–77 (DIYKGVYQKSV) tetramer-PE NIH tetramer facility

H-2Db LCMV GP33–42 (KAVYNFATM) tetramer- APC NIH tetramer facility

PMA Sigma-Aldrich Cat# P8139

Ionomycin Sigma-Aldrich Cat# I 0634–1mg

DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) Life Technologies Cat# D1306

Protein Transport Inhibitor BD Pharmigen Cat# 554724

I-Ab Toxoplasma gondii AS15 (KAVYNFATM) tetramer-ef450 NIH tetramer facility

Critical Commercial Assays

eBioscience Transcription Staining Buffer Set Invitrogen Cat# 00–5523–00

Fixable Viability Dye UV Invitrogen Cat# 65–0868–18

Deposited Data

scRNaseq: single cell expression profiles of CD4+ T cells This paper GSE124691

scRNaseq of Human liver cancer TILs Zheng et al., 2017a GSE98638

scRNaseq of Human melanoma TILs Sade-Feldman et al., 
2018

GSE120575

Experimental Models: Cell Lines

MC38-GP murine colon cancer cell lines This paper

MC38 murine colon cancer cell lines Jack Greiner’s lab

Experimental Models: Organisms/Strains

C57BL/6Ncr (CD45.2) Charles River Charles River 556

Oligonucleotides

LCMV-GP-F: 5′ GGATCC ATGGGTCAGATTGTGACAATGTTTG 3′ This paper

LCMV-GP-R: 5′ 
GCGGCCGCTCAGCGTCTTTTCCAGACGGTTTTTAC 3′

This paper

Recombinant DNA

pMRX Saitoh, 2002

pHCMV-LCMV-Arm53b Sena-Esteves, 2004 Addgene 15796

Software and Algorithms

RobustSingleCell This paper https://github.com/asmagen/
RobustSingleCell

Flowjo 10.0 Flowjo https://www.flowjo.com

10X Genomics Cellranger toolkit v2.0.1 10X Genomics http://software.10xgenomics.com/
single-cell/overview/welcome
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REAGENT or RESOURCE SOURCE IDENTIFIER

Prism 7 Graphpad https://www.graphpad.com/scientific-
software/prism/

R R https://www.r-project.org

Seurat cell alignment v2.0.1 Butler et al., 2018 https://satijalab.org/seurat/
immune_alignment.html
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