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Abstract Focal Adhesion Kinase (FAK) inhibitors are currently undergoing clinical testing in

combination with anti-PD-1 immune checkpoint inhibitors. However, which patients are most likely

to benefit from FAK inhibitors, and what the optimal FAK/immunotherapy combinations are, is

currently unknown. We identify that cancer cell expression of the T-cell co-stimulatory ligand CD80

sensitizes murine tumors to a FAK inhibitor and show that CD80 is expressed by human cancer cells

originating from both solid epithelial cancers and some hematological malignancies in which FAK

inhibitors have not been tested clinically. In the absence of CD80, we identify that targeting

alternative T-cell co-stimulatory receptors, in particular OX-40 and 4-1BB in combination with FAK,

can drive enhanced anti-tumor immunity and even complete regression of murine tumors. Our

findings provide rationale supporting the clinical development of FAK inhibitors in combination

with patient selection based on cancer cell CD80 expression, and alternatively with therapies

targeting T-cell co-stimulatory pathways.

Introduction
Focal Adhesion Kinase (FAK) is a non-receptor protein tyrosine kinase that plays a pleotropic role in

regulating cancer development and progression. Initially identified as a protein highly phosphory-

lated in response to integrin activation and primarily located at cell–extracellular matrix adhesion

sites termed focal adhesions, FAK is now known to regulate a number of cellular processes linked to

the malignant phenotype including migration, invasion, adhesion, polarity, proliferation, and survival

(McLean et al., 2005; Sulzmaier et al., 2014). Furthermore, FAK can also translocate to the nucleus

of cancer cells where it regulates inflammatory gene expression programs (Lim et al., 2012). This

includes chemokines and cytokines, which orchestrate the composition of tumor microenvironment

(TME), promoting immune evasion and resistance to immunotherapy at least in some scenarios

(Jiang et al., 2016; Serrels et al., 2015; Serrels et al., 2017). Thus, FAK has emerged as a poten-

tially promising target as a modulator of anti-cancer immunotherapy.

A number of small molecule FAK kinase inhibitors have now either completed, or are currently in,

Phase-I clinical trials and results thus far suggest that they are generally well tolerated (de Jonge

et al., 2019; Doi et al., 2019; Lee et al., 2015; Soria et al., 2012). Using panels of cancer cell lines,

several studies have attempted to identify biomarkers that predict sensitivity to FAK inhibition. Loss

of expression of the tumor suppressor protein Merlin (also known as Neurofibromin 2) and/or E-cad-

herin have both been suggested as potential markers of sensitivity to FAK inhibitors (Hirt et al.,

2018; Kato et al., 2017; Shah et al., 2014; Shapiro et al., 2014). However, a clinical trial
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(ClinicalTrials.gov NCT01870609) testing Merlin as a predictive marker for sensitivity to the FAK

inhibitor Defactinib did not prove successful. Therefore, biomarkers enabling identification of patient

populations most likely to benefit from FAK kinase inhibitors are much needed.

The discovery of a role for FAK in regulating the immuno-suppressive TME in mouse models of

skin squamous cell carcinoma (SCC) (Serrels et al., 2015) and pancreatic cancer (Jiang et al., 2016;

Stokes et al., 2011) has resulted in a shift in the clinical development of FAK kinase inhibitors, with

new focus towards immune oncology. There are now at least two clinical trials testing FAK kinase

inhibitors in combination with immune checkpoint inhibitors targeting anti-PD-1, across multiple

tumor types including pancreatic cancer, non-small cell lung cancer and mesothelioma (ClinicalTrials.

gov NCT02758587, NCT02546531). These trials stem from our previous work showing that FAK

knockout or the FAK kinase inhibitor VS-4718 can drive complete CD8 T-cell dependent regression

of established SCC tumors through shifting the balance of CD8 T-cells: Regulatory T-cells (Tregs) in

favor of tumor clearance (Serrels et al., 2015), and that of others showing that VS-4718 can drive

reprogramming of the immuno-suppressive pancreatic TME, including a reduction in Tregs, CD206+

macrophages, myeloid-derived suppressor cells (MDSCs), and stromal fibroblasts. This renders pan-

creatic tumors responsive to the combination of dual immune checkpoint therapy and chemotherapy

(anti-PD-1, anti-CTLA-4, and Gemcitabine) (Jiang et al., 2016).

Here, we show that expression of the T-cell co-stimulatory ligand CD80 on the surface of murine

cancer cells sensitizes tumors to the highly selective and potent FAK kinase inhibitor BI 853520

(Hirt et al., 2018). Extrapolating these findings to human cancer, we show that murine CD80+ SCC

cells that are highly responsive to BI 853520 co-express a number of genes associated with a cancer

stem phenotype that has previously been identified in human SCC tumors (Miao et al., 2019;

Oshimori et al., 2015) and that a substantial proportion of human cancer cell lines representing a

broad range of cancer types express the CD80 transcript, supporting the potential for patient strati-

fication based on cancer cell CD80 expression. Using murine CD80 negative SCC and pancreatic

cancer cell lines that exhibit little response to BI 853520, we show that the combination of BI 853520

together with agonistic antibodies targeting other T-cell co-stimulatory receptors, in particular OX40

and 4-1BB, results in enhanced anti-tumor immunity and even complete CD8 T-cell dependent

tumor regression leading to lasting immunological memory. Contributing to the enhanced anti-

tumor efficacy of these combinations, we identify a novel role for FAK in regulating the expression

of the immune checkpoint ligand PD-L2 on tumor-associated macrophages, monocytic-myeloid-

derived suppressor cells (M-MDSCs) and cancer cells, and in regulating expression of the immune

co-stimulatory receptor Inducible T-cell costimulator (ICOS) on effector CD8 T-cells. Therefore, FAK

inhibition promotes greater responsiveness to the anti-tumor effects of T-cell co-stimulation through

reprogramming multiple immune regulatory pathways, supporting further development of these

combinations for clinical testing.

Results

Spectrum of responses to BI 853520
We have previously shown using a murine model of skin SCC that depletion of FAK expression or

treatment with a small molecule FAK kinase inhibitor can result in immune-mediated tumor regres-

sion in syngeneic mice (Serrels et al., 2015). Using this same model system we first determined the

anti-tumor efficacy of a different FAK kinase inhibitor, that is BI 853520 (Hirt et al., 2018), by moni-

toring tumor growth following injection of FAK-deficient cells (FAK-/-) or FAK-deficient cells that re-

expressed wild-type FAK (FAK-wt) at comparable levels to endogenous. Daily treatment of SCC

FAK-wt tumors with 50 mg/kg BI 853520 resulted in complete tumor regression with similar kinetics

to that of SCC FAK-/-tumors (Figure 1A). Treatment of SCC FAK-/-tumors with BI 853520 had no

effect on tumor growth.

Having established that treatment of SCC FAK-wt tumors with BI 853520 could recapitulate our

previously published observations with a different FAK inhibitor (Serrels et al., 2015), we next set

out to further investigate the generality of such therapeutic efficacy using a panel of six syngeneic

cancer cell lines derived from three commonly used mouse cancer models: (1) skin squamous cell

carcinomas induced using the DMBA/TPA two-stage chemical carcinogenesis protocol (SCC cell

lines) (Serrels et al., 2012), (2) a primary breast tumor arising on the MMTV-PyMT genetically
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Figure 1. Treatment of a range of tumor models with the FAK kinase inhibitor BI 853520 identifies a spectrum of responses. (A - G) Representative

graphs of tumor growth in immune-competent mice treated with either Vehicle or 50 mg/kg BI 853520. *=comparison of Vehicle to BI 853520,

+ = comparison of Vehicle to BI 853520 partial response in graph (D) n = 8–10 tumors per group. (H and I) Tumor growth of SCC7.1 and Met01 cells

treated with either Vehicle or BI 853520 and Isotype control antibody (IgG) or anti-CD8 T-cell depleting antibody. + = comparison of IgG Vehicle to IgG

BI 853520, *=comparison of anti-CD8 Vehicle to anti-CD8 BI 853520. * or + = p � 0.05, ** or ++ = p � 0.01, *** or +++ = p � 0.001, **** or ++++ = p

� 0.0001, two-way ANOVA with Tukey’s multiple comparison test. Data represented as mean + /- s.e.m. n = 6 tumors per group.
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engineered mouse (GEM) model of breast cancer (Met01 cell line) (Qian et al., 2011), and (3) Pan-

creatic Ductal Adenocarcinoma (PDAC) arising on the LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx1-Cre

(KPC) GEM model of pancreatic cancer (Hingorani et al., 2005) (Panc cell lines). FVB/N mice were

injected subcutaneously with SCC7.1 or SCC6.2 cells and treated daily with either Vehicle or 50 mg/

kg BI 853520. We observed complete regression of SCC7.1 tumors by day 27 (Figure 1B), while in

contrast a different SCC cell line, SCC6.2, tumors exhibited only a modest growth delay (Figure 1C).

Subcutaneous injection of Met01 cells into FVB/N mice followed by daily treatment with either Vehi-

cle or BI 853520 identified a heterogeneous response to BI 853520, with 3 out of 10 tumors showing

only a growth delay and 7 out of 10 tumors displaying stable disease for the duration of the study

(Figure 1D). Lastly, subcutaneous injection of Panc43, Panc47, or Panc117 cells into C57BL/6 mice

followed by daily treatment with either Vehicle or BI 853520 identified that Panc43 tumors exhibit

only a modest growth delay in response to FAK inhibition (Figure 1E), while Panc47 and Panc117

tumors exhibit no response (Figure 1F,G). Collectively, these results identify a spectrum of response

to treatment with BI 853520.

CD8 T-cells mediate tumor regression/stable disease after BI 853520
treatment
Next we used antibody-mediated CD8 T-cell depletion to determine whether SCC7.1 tumor regres-

sion and Met01 stable disease was CD8 T-cell dependent. In mice treated with a CD8 T-cell deplet-

ing antibody, SCC7.1 and Met01 tumors exhibited only a modest growth delay in response to

treatment with BI 853520 when compared to Vehicle treated controls, while in mice treated with an

isotype control antibody all SCC7.1 tumors underwent complete regression and all Met01 tumors

exhibited stable disease following treatment with BI 853520 (Figure 1H,I). Thus, FAK kinase inhibi-

tion acts via CD8 T-cell-mediated anti-tumor immunity to induce SCC7.1 tumor regression and

Met01 stable disease.

Expression of CD80 correlates with response to BI 853520
A number of FAK kinase inhibitors, including BI 853520, are now in early-phase (I/II) clinical trials as

experimental cancer therapies (de Jonge et al., 2019; Doi et al., 2019; Lee et al., 2015;

Soria et al., 2012; Hirt et al., 2018; Shapiro et al., 2014). However, we do not know which patients

are most likely to benefit from these inhibitors, and to-date there are no validated biomarkers.

Based on our findings in Figure 1, we hypothesized that either CD8 T-cell infiltration or expression

of immune regulatory molecules that can modulate CD8 T-cell function might underlie sensitivity to

FAK inhibition. To test this, we established subcutaneous tumors from each of the cell line models,

and 12 days after implantation used flow cytometry to profile the CD8 T-cell infiltrate. This identified

that SCC7.1 and Met01 tumors have a higher frequency of CD8 T-cell infiltration than SCC6.2,

Panc43 and Panc47 tumors (Figure 2—figure supplement 1A). However, Panc117 tumors also had

a higher frequency of CD8 T-cell infiltration when compared to SCC6.2, Panc43, and Panc47 tumors.

Therefore, CD8 T-cell infiltration alone does not accurately predict response to BI 853520.

CD8 T-cell function can be regulated in a number of ways, including by the modulation of

immune checkpoint pathways (Marin-Acevedo et al., 2018). We therefore sought to determine

whether differential expression of these pathways correlated with response to BI 853520. Initially, we

used flow cytometry to show that the immune checkpoint receptor Programmed Death Receptor 1

(PD-1) was expressed on activated (CD44+) CD8 T-cells in all tumor types (Figure 2—figure supple-

ment 1B). We next showed that none of the cell lines expressed PD-L1 or PD-L2 under basal culture

conditions (not shown). However, when the cell lines were stimulated with 10 ng/ml interferon-

gamma (IFNg ) for 24 hr all cell lines upregulated PD-L1 to a similar extent (Figure 2—figure supple-

ment 1C), implying that all were capable of engaging the PD-1-PD-L1 axis. None of the cell lines

upregulated the expression of PD-L2 in response to IFNg treatment (not shown). Therefore, we did

not identify any relationship between the PD-1-PD-L1 axis and response to BI 853520. PD-L1 and 2

belong to the family of B7 ligands that can engage coinhibitory and costimulatory receptors to regu-

late CD8 T-cell activity. We therefore profiled the expression of the B7 family of proteins across the

tumor cell lines. While many of these ligands were not expressed by any of the cell lines, CD80 (also

known as B7.1) was expressed exclusively by the SCC7.1 and Met01 cell lines that respond best to

FAK inhibition (Figure 2A,B), thus correlating with response to BI 853520.
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Figure 2. Expression of the immune costimulatory ligand CD80 renders tumors responsive to BI 853520. (A) Representative flow cytometry scatter plots

of CD80 expression on SCC7.1, Met01, SCC6.2, Panc43, Panc47, and Panc117 cells under normal culture conditions. (B) Quantification of the

percentage of live cells expressing CD80 in (A). Data represented as mean + /- s.e.m, n = 3. (C) Flow cytometry quantification of CD45+CTLA-4+ tumor

infiltrating immune cells represented as a percentage of live cells. Data represented as mean + /- s.e.m. p�0.001, two-tailed parametric unpaired t-test.

Figure 2 continued on next page
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BI 853520 alters the balance of CD80: CTLA-4
CD80 is a ligand for two receptors, CTLA-4 and CD28 (Linsley et al., 1991; Linsley et al., 1990).

CTLA-4 is a co-inhibitory receptor associated with suppression of anti-tumor immune responses and

has a higher affinity than CD28 for binding CD80 (van der Merwe et al., 1997). Through the process

of trans-endocytosis CTLA-4 can deplete CD80 from the surface of neighboring cells (Qureshi et al.,

2011), preventing CD80 - CD28 interaction and resulting T-cell co-stimulation. Regulatory T-cells,

which we have previously shown are depleted from the tumor environment in response to treatment

with a FAK inhibitor (Serrels et al., 2015), represent a major cellular source of CTLA-4 (Walker and

Sansom, 2015). We therefore postulated that treatment with BI 853520 may result in a reduction in

CTLA-4 expressing cells within the TME and a concomitant increase in CD80 availability. To test this,

FVB/N mice were injected subcutaneously with SCC7.1 cells and treated daily with either Vehicle or

50 mg/kg BI 853520. Mice were culled 12 days post-tumor cell implantation and tumors processed

for analysis by flow cytometry (Supplementary file 1). Treatment with BI 853520 resulted in a signifi-

cant decrease in CTLA-4+ immune cells (Figure 2C) and an increase in the frequency of CD45- cells

expressing CD80 on their cell surface (Figure 2D). Therefore, treatment with a FAK inhibitor shifts

the balance in favor of CD80 - CD28 interaction and T-cell co-stimulation.

CD80/CD28 blockade impairs the anti-tumor efficacy of BI 853520
To determine whether the CD80 - CD28 pathway was actually involved in regulating response to BI

853520, mice were injected subcutaneously with SCC7.1 cells and treated daily with either Vehicle,

Vehicle + 100 mg anti-CD80 or 100 mg anti-CD28, 50 mg/kg BI 853520, or 50 mg/kg BI 853520 +

100 mg anti-CD80 or 100 mg anti-CD28. Both CD80 and CD28 blockade significantly impaired the

anti-tumor efficacy of BI 853520 (Figure 2E), implying an important role for CD80 in regulating

response to a FAK inhibitor.

Enforced expression of CD80 renders tumors responsive to FAK
inhibition
To further investigate the relationship between CD80 expression on cancer cells and sensitivity of

tumors to the BI 853520 FAK inhibitor, we next expressed CD80 into the BI 853520-resistant SCC6.2

cell line (Figure 1B). Using nanostring gene expression analysis we first confirmed that SCC6.2 cells

have a similar expression profile of Major Histocompatibility Complex (MHC) molecules to that of

CD80+ SCC7.1 cells that respond to BI 853520 (Figure 2F), ensuring that SCC6.2 cells express

MHC-I molecules required for CD8 T-cell recognition and effective anti-tumor immunity. We next

transfected SCC6.2 cells with either the mammalian expression vector pcDNA3, or pcDNA3-CD80

(Figure 2G), and injected the cells subcutaneously into FVB/N mice and monitored tumor growth in

response to either treatment with Vehicle or BI 853520 (Figure 2H). Expression of CD80 had no

impact on SCC6.2 tumor growth. However, SCC6.2 pcDNA3-CD80 tumors showed a significantly

improved response to BI 853520 in comparison to either Vehicle treated controls or SCC6.2 pcDNA3

tumors treated with BI 853520. Thus, CD80 expression sensitizes SCC6.2 tumors to BI 853520. Col-

lectively, these findings suggest that cancer cell expression of CD80, most likely in combination with

Figure 2 continued

(D) Flow cytometry quantification of CD45-CD80+ cells represented as a percentage of live cells. Data represented as mean + /- s.e.m. p�0.001, two-

tailed parametric unpaired t-test. (E) Left - Subcutaneous tumor growth of SCC7.1 cells treated with either Vehicle or 50 mg/kg BI 853520 ± 100 mg anti-

CD80 antibody. Right – subcutaneous tumor growth of SCC7.1 cells treated with either Vehicle or 50 mg/kg BI 853520 ± 100 mg anti-CD28 antibody.

Data represented as mean + /- s.e.m. Vehicle (blue) and BI 853520 (red) datasets are the same for both graphs. (F) Nanostring gene expression analysis

of Major Histocompatibility Complex (MHC) genes in SCC7.1 and SCC6.2 cells. (G) Comparison of CD80 surface expression between SCC7.1 cells and

SCC6.2 cells transfected with a pcDNA3-CD80 vector. Left - Flow cytometry analysis of the percentage of cells expressing CD80. Right - mean

fluorescent intensity (MFI) of CD80 cell surface expression. (H) Left - Subcutaneous tumor growth of SCC6.2 cells transfected with either pcDNA3 empty

vector or pcDNA3-CD80 vector and treated with either Vehicle or 50 mg/kg BI 853520. Right – Comparison of tumor volume on day 17 post-

implantation of tumor cells. Data represented as mean + /- s.e.m. p�0.01, one-way ANOVA with Dunnett’s multiple comparison. n = 8–10 tumors per

group.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Regulation of PD-L1/PD-1 axis does not correlate with response of tumors to BI 853520.
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MHC-I expression, has the potential to identify tumors with increased sensitivity to FAK kinase

inhibition.

CD80+ SCC cells co-express genes associated with a cancer stem cell
phenotype previously reported in murine and human SCC
CD80 is most notably expressed by antigen presenting cells. However, the prevalence of CD80

expression in human cancer cells has not been extensively characterized. Recent studies suggest

that CD80 expression is upregulated in human colonic epithelial cells isolated from preneoplastic

adenomas (Marchiori et al., 2019; Scarpa et al., 2015), while in skin SCC, a population of Cancer

Stem Cells (CSCs) that express CD80 have been reported in both murine and human tumors

(Miao et al., 2019). These murine skin CSCs are identified by expression of a number of genes

including Cd34, Itga6, high expression of integrins in general, and responsiveness to TGFb as indi-

cated by activation of downstream signaling including expression of Cdkn1a (Miao et al., 2019;

Oshimori et al., 2015; Schober and Fuchs, 2011). Furthermore, previous related studies have also

shown that CD34+ skin CSCs reside near the tumor vasculature at the tumor stromal interface and

express Vegfa (Beck et al., 2011). We therefore sought to determine whether the CD80+ SCC7.1

cells that respond to BI 853520 when grown as tumors had any resemblance to the CD80+ skin

CSCs that have been previously reported (Miao et al., 2019). Nanostring gene expression analysis

and flow cytometry identified that SCC7.1 cells express significantly more Cd34 and Itga6 (Integrin

alpha-6) than SCC6.2 cells (Figure 3A,B). Furthermore, SCC7.1 cells also expressed higher levels of

Itga2, Itgb1, Itgb2, Itgb4, Cdkn1a, and Vegfa when compared to SCC6.2 cells (Figure 3C–E). Thus,

SCC7.1 cells express a gene signature that overlaps with that of CD80+ CSCs previously identified in

murine and human SCCs.

CD80 is expressed by a broad range of human cancer cells
Attempts to more broadly define the extent of cancer cell CD80 expression using bulk tumor tran-

scriptomics data, for example using the Cancer Genome Atlas (TCGA), are confounded by the fact

that CD80 is also expressed by infiltrating antigen presenting cells. Therefore, we used publicly avail-

able transcriptomics data spanning a large number of human cancer cell lines available via the

Human Cancer Cell Line Encyclopedia (Ghandi et al., 2019). This identified that CD80 transcript is

present in a substantial proportion of cell lines from solid epithelial cancers, albeit a considerable

proportion were also negative for CD80 expression (Figure 4A). PTK2 (FAK gene) was highly

expressed in all cell lines originating from solid epithelial cancers (Figure 4B).

Interestingly, although perhaps not unexpected, this analysis also identified that hematological

malignancies including lymphomas generally expressed higher levels of CD80 when compared to

cell lines originating from solid epithelial cancers (Figure 4A). PTK2 was only expressed in a subset

of cell lines from hematological malignancies (Figure 4B). Plotting CD80 expression against PTK2

expression further confirmed these findings (Figure 4C). Given that hematological malignancies rep-

resent a broad group of cancers we also determined whether co-expression of high CD80 and high

PTK2 was restricted to particular hematological malignancies by subdividing this category based on

origin (Figure 4D,E). These analyses suggested that co-expression of high levels of CD80 and PTK2

transcript occurs preferentially in cancer cell lines originating from patients with Burkitt’s Lymphoma,

Hodgkin’s Lymphoma, Chronic Myeloid Leukemia, and Diffuse Large B-cell (DLBCL) Lymphoma. To

our knowledge FAK inhibitors have not been tested in patients diagnosed with these cancer types.

Collectively, these results suggest that CD80-expressing cancer cells are present in some solid epi-

thelial cancers and some blood cancers, supporting the potential to select patients based on cancer

cell CD80 expression for treatment with a FAK inhibitor.

BI 853520 enhances the effects of T-cell costimulatory receptor
agonistic antibodies
Given that not all cancer cell lines expressed CD80, we next considered the concept of T-cell co-

stimulation in combination with FAK inhibition using a number of agonistic antibodies targeting

T-cell costimulatory receptors, including glucocorticoid-induced TNFR-related protein (GITR, also

known as Tumor necrosis factor receptor superfamily member 18 (TNFRSF18)), CD40 (also known as

Tumor necrosis factor receptor superfamily member 5 (TNFRSF5)), 4-1BB (also known as tumor
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Figure 3. CD80+ SCC cells express markers associated with Cancer Stem Cells. (A) Nanostring gene expression analysis using RNA isolated from

SCC7.1 and SCC6.2 cells. (B) Histograms - representative flow cytometry histograms of fluorescent intensity in SCC7.1 and SCC6.2 cells stained with a

combination of anti-CD34 APC and anti-integrin alpha-6 alexa488 conjugated antibodies. FMO control represented full stain minus the antibody of

interest. Graphs – flow cytometry quantification of the percentage of live cells expressing either CD34 or integrin alpha-6. (C – E) Nanostring gene

expression analysis using RNA isolated from SCC7.1 and SCC6.2 cells. Nanostring data normalised using nSolver software and represented as reporter

probe counts. Flow cytometry data represented as mean + /- s.e.m. ***p�0.001, **p�0.01, unpaired two-tailed t-test.

The online version of this article includes the following source data for figure 3:

Source data 1. Nanostring gene expression analysis of SCC7.1 and SCC6.2 cells.
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Figure 4. CD80 and PTK2 expression in human cancer cell lines. (A) Analysis of CD80 expression in RNAseq datasets derived from human cancer cell

lines. The number of cell lines from each tumor type is listed below along with the percentage positive for expression. (B) Analysis of PTK2 expression

in the same datasets from human cancer cell lines. (C) Scatter plot of CD80 expression against PTK2 expression in all cell lines. (D) Analysis of CD80

Figure 4 continued on next page
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necrosis factor receptor superfamily member 9 (TNFRSF9) and CD137), and OX40 (also known as

Tumor necrosis factor receptor superfamily member 4 (TNFRSF4) and CD134). To investigate the

potential anti-tumor efficacy of the FAK inhibitor in combination with these antibodies, SCC6.2 cells

were injected subcutaneously into FVB/N mice and mice treated with either Vehicle, Vehicle + 100

mg/mouse anti-GITR, Vehicle + 100 mg/mouse anti-CD40, Vehicle + 100 mg/mouse anti-4-1BB, Vehi-

cle + 100 mg/mouse anti-OX40, BI 853520 + 100 mg/mouse anti-GITR, BI 853520 + 100 mg/mouse

anti-CD40, BI 853520 + 100 mg/mouse anti-4-1BB or BI 853520 + 100 mg/mouse anti-OX40 (treat-

ment schedule shown in Figure 5A). Treatment of SCC6.2 tumors with Vehicle + anti-GITR agonistic

antibody resulted in a small growth delay when compared to control treated tumors, which was not

improved when the anti-GITR antibody was combined with BI 853520 (Figure 5B). Similar results

were observed using an anti-CD40 agonistic antibody alone or in combination with BI 853520

(Figure 5C). However, treatment of SCC6.2 tumors with Vehicle + anti-4-1BB agonistic antibody

resulted in 2 out of 8 tumors undergoing complete regression and the remaining six tumors exhibit-

ing a delay in growth when compared to control treated tumors. Combining anti-4-1BB with BI

853520 further improved this response, resulting in 4 out of 8 tumors undergoing complete regres-

sion, and the remaining four tumors exhibiting an improved growth delay when compared with Vehi-

cle + anti-4-1BB (Figure 5D). Treatment of SCC6.2 tumors with Vehicle + anti-OX40 agonistic

antibody resulted in 2 out of 8 tumors undergoing complete regression, and the remaining six exhib-

iting a growth delay when compared to control treated tumors. Combining anti-OX40 with BI

853520 resulted in complete regression of all tumors (Figure 5E). Thus, the FAK kinase inhibitor in

combination with activation of either OX40 or 4-1BB represents a potentially promising therapeutic

strategy. To determine whether the potent anti-tumor efficacy of BI 853520 + anti-OX40 was depen-

dent on CD8 T-cells, we depleted CD8 T-cells using an anti-CD8 antibody, and measured SCC6.2

tumor growth in FVB/N mice receiving either Vehicle or BI 853520 + anti-OX40 (Figure 5F). In mice

receiving anti-CD8 antibody the combination of BI 853520 + anti-OX40 resulted in a growth delay

when compared to mice treated with anti-CD8 antibody and Vehicle. However, only in mice receiv-

ing an isotype control antibody the combination of BI 853520 + anti-OX40 resulted in complete

regression of all tumors, implying that tumor regression was dependent on CD8 T-cells. An anti-

tumor CD8 T-cell response should also result in lasting immunological memory. We therefore aged

mice for two months following regression of SCC6.2 tumors in response to treatment with BI 853520

+ anti-OX40, and rechallenged these mice with a fresh preparation of SCC6.2 cells. All mice

remained tumor free during the two months following initial regression of SCC6.2 tumors and fol-

lowing rechallenge no tumor growth was observed (Figure 5G). In contrast, subcutaneous injection

of the same SCC6.2 cell preparation into FVB/N mice that had never previously been challenged

resulted in robust growth of all tumors. Therefore, SCC6.2 tumor regression in response to BI

853520 + anti-OX40 resulted in lasting immunological memory that renders mice resistant to further

tumor growth.

BI 853520 and anti-OX40 have overlapping and distinct activity
To define the mechanism underpinning the improved efficacy of BI 853520 in combination with anti-

OX40, we next profiled the tumor immune cell infiltrate in response to treatment with either Vehicle,

anti-OX40, BI 853520, or BI 853520 + anti-OX40. SCC6.2 cells were injected subcutaneously into

FVB/N mice and treatment administered as detailed in Figure 5A. Mice were culled 12 days post

tumor cell implantation and tumors processed for analysis using flow cytometry (Figure 6—figure

supplements 1 and 2; Supplementary files 1, 2, 3, and 4). Both anti-OX40 and BI 853520 treatment

resulted in a reduction in Tregs, as did the combination of BI 853520 + anti-OX40 (Figure 6A). In

tumors treated with anti-OX40 or anti-OX40 + BI 853520, this was accompanied by an increase in

the frequency of non-Treg CD4+ T-cells (Figure 6B). Treatment with anti-OX40 or BI 853520 + anti-

OX40 also resulted in an increase in effector CD8 T-cells (CD8eff) when compared to control treated

and BI 853520 treated tumors (Figure 6C), implying that anti-OX40 is required to drive increased

Figure 4 continued

expression in human cancer cell lines from different types of hematological malignancies. (E) Analysis of PTK2 expression in human cancer cell lines

from different hematological malignancies.
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Figure 5. BI 853520 improves the response of SCC6.2 tumors to 4-1BB and OX40 agonistic antibodies. (A) Dosing schedule. (B – E) Left - Subcutaneous

growth of SCC6.2 tumors treated with either Vehicle or 50 mg/kg BI 853520 in combination with either 100 mg GITR, CD40, 4-1BB, or OX40 agonistic

antibodies. Right - Comparison of tumor volume on day 24 post-implantation of tumor cells. Graph represents individual tumor measurements together

with the mean + /- s.e.m. (F) Subcutaneous growth of SCC6.2 tumors treated with either Vehicle or BI 853520 + OX40 in combination with either isotype

Figure 5 continued on next page
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CD8eff T-cell numbers in SCC6.2 tumors. However, this did not explain why BI 853520 enhanced the

anti-tumor immune response when used in combination with anti-OX40. We found no statistically

significant difference in the frequency of CD8 T-cells co-expressing either PD-1 and LAG-3 or PD-1

and Tim-3 (Figure 6—figure supplement 3), although there was a trend towards increased PD-

1+Tim-3+ CD8 T-cells in both OX40 and OX-40 + BI 853520 treated tumors. OX40 treatment has

been reported to increase expression of ICOS on both CD4 and CD8 T-cells, and modulating this

pathway can impact the therapeutic response to anti-OX40 antibodies in mouse models of cancer

(Metzger et al., 2016). Treatment of SCC6.2 tumors with anti-OX40 resulted in an increase in ICOS

expression on both non-Treg CD4 T-cells and CD8eff T-cells, and this was further increased, espe-

cially on CD8eff T-cells, when anti-OX40 was used in combination with BI 853520 (Figure 6D; Fig-

ure 6—figure supplement 4). Interestingly, increased expression of ICOS on CD8eff T-cells was also

observed in response to BI 853520 treatment in SCC7.1 tumors that express the co-stimulatory mol-

ecule CD80 (Figure 6—figure supplement 5), suggesting that FAK inhibition may more broadly reg-

ulate expression of ICOS on CD8 T-cells when a T-cell co-stimulatory signal is present.

Further immune profiling did not find significant differences in the frequency of macrophages,

granulocytic myeloid-derived suppressor cells (G-MDSC), monocytic myeloid-derived suppressor

cells (M-MDSC), or cancer cells (Figure 6E; Figure 6—figure supplement 6). However, we did

observe a significant increase in CD11b+dendritic cells (DCs) in response to OX40, which was

restored to control levels when OX40 was combined with BI 853520 (Figure 6—figure supplement

6D). Furthermore, we found that macrophage expression of the immune checkpoint ligand PD-L1

and was not altered (Figure 6F), but that BI 853520 either alone or in combination with OX40

resulted in a decrease in PD-L2 expression by macrophages (Figure 6G). Comparison of PD-L2

expression on cancer cells, G-MDSCs, M-MDSCs, macrophages, and CD11b+ DCs revealed that

macrophages and DCs express the highest levels of PD-L2 from this range of cell types (Figure 6H).

BI 853520 treatment either alone or in combination with anti-OX40 also resulted in a reduction in

PD-L2+ cancer cells and M-MDSCs (Figure 6I). Therefore, BI 853520 treatment generally depletes

the availability of PD-L2 within the tumor microenvironment, likely impacting on decrease of PD-L2-

PD-1 signaling and ultimately escape of CD8 T-cells from exhaustion. To ascertain whether treatment

with a FAK inhibitor could directly regulate expression of PD-L2 on macrophages, in vitro bone mar-

row-derived macrophages were treated with 100 nM BI 853520 and stimulated with 10 ng/ml inter-

leukin-4 (IL-4) (Figure 6—figure supplement 7). BI 853520 treatment resulted in a small decrease in

PD-L2 expression following stimulation with IL-4, however this did not appear to fully account for the

substantial reduction observed in vivo (Figure 6G) suggesting that FAK-dependent regulation of

PD-L2 expression in the TME may be more complex.

PD-L2 and ICOS contribute to the efficacy of BI 853520 + anti-OX40/4–
1 BB
To investigate whether regulation of PD-L2 by BI 853520 might contribute to enhanced efficacy

when used in combination with either anti-OX40 or anti-4-1BB, SCC6.2 tumors were implanted into

FVB/N mice and treated with either anti-OX40, anti-OX40 + anti-PD-L2, anti-41BB, or anti-4-1BB +

anti-PD-L2 (Figure 6J,K). By day 21, 5 out of 10 tumors treated with anti-OX40 + anti-PD-L2 had

undergone complete regression, while in contrast all tumors treated with anti-OX40 alone were still

present, albeit small. Anti-PD-L2 in combination with anti-4-1BB resulted in a small decrease in the

mean tumor volume at day 21 when compared to anti-4-1BB alone. However, this was not statisti-

cally significant. Therefore, regulation of PD-L2 likely contributes more towards the anti-tumor effi-

cacy of BI 853520 when used in combination with anti-OX40.

Similar experiments were performed to investigate the role of ICOS in the anti-tumor response to

either BI 853520 + anti-OX40 or BI 853520 + anti-4-1BB. Signaling through ICOS has been reported

to enhance the anti-tumor efficacy of OX40 (Metzger et al., 2016). We therefore used an ICOS-

Figure 5 continued

control or anti-CD8 T-cell depleting antibodies. (G) Subcutaneous growth of SCC6.2 tumors implanted into either naı̈ve FVB mice (Control) or FVB mice

from E in which treatment with BI 853520 + OX40 resulted in complete tumor regression and no tumor regrowth over a 2 month period off treatment

(Rechallenge). (B – E) ns = not significant, *=p � 0.05, ****=p � 0.0001, unpaired t-test comparing immunotherapy to immunotherapy + BI 853520. Data

represented as mean + /- s.e.m. n = 8–10 tumors per group.
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Figure 6. OX40 and BI 853520 display overlapping and distinct immune modulatory activity. (A–C) Flow cytometry quantification of tumor infiltrating

Tregs, CD4 (non-Treg) T-cells, and CD8eff T-cells. (D) Left – Flow cytometry quantification of the percentage of CD8eff T-cells expressing ICOS. Right -

Flow cytometry quantification of the median fluorescent intensity (MFI) of ICOS expression on CD8eff T-cells. (E) Flow cytometry quantification of tumor

infiltrating macrophages as a percentage of live cells. (F) Left - Flow cytometry quantification of the percentage of macrophages expressing PD-L1.

Figure 6 continued on next page
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ligand (ICOSL) blocking antibody to inhibit ICOS signaling. Blocking ICOSL had a significant impact

on the anti-tumor efficacy of both BI 853520 + anti-OX40 and BI 853520 + anti-4-1BB (Figure 6L,M),

suggesting that enhanced T-cell expression of ICOS may be an important mechanism through which

a FAK inhibitor can potentiate the anti-tumor activity of anti-OX40 and anti-4-1BB targeted

therapies.

BI 853520 renders Panc47 tumors responsive to immune costimulatory
antibodies
SCC6.2 cancer cells were generated using the DMBA/TPA chemical carcinogenesis protocol that

results in a large number of somatic mutations (Nassar et al., 2015), and therefore likely increased

immunogenicity. Hence, one would predict that these will respond better to immunotherapy than

poorly immunogenic tumor models such as those derived from the KPC GEM model of pancreatic

cancer. We therefore tested the same combinations of BI 853520 + /- immune costimulatory anti-

bodies to determine whether a FAK inhibitor combined with T-cell co-stimulation could also influ-

ence a more poorly immunogenic tumor model. Panc47 cells were injected subcutaneously into

C57BL/6 mice and mice treated with either Vehicle or BI 853520 + /- immune costimulatory antibod-

ies (treatment schedule shown in Figure 5A). Anti-GITR alone had no effect on the growth of

Panc47 tumors, while in combination with BI 853520 we observed a small growth delay (Figure 7A).

In contrast, treatment with an anti-CD40 agonistic antibody resulted in a significant delay in the

growth of Panc47 tumors, and this was not further enhanced when used in combination with BI

853520 (Figure 7B). Treatment of Panc47 tumors with an anti-4-1BB agonistic antibody had no

effect on tumor growth, but a significant growth delay was observed when used in combination with

BI 853520 (Figure 7C). Treatment with an anti-OX40 agonistic antibody had no effect on Panc47

tumor growth, but when used in combination with BI 853520 caused a significant growth delay

(Figure 7D). Therefore, a FAK kinase inhibitor can render Panc47 tumors sensitive to anti-4-1BB and

anti-OX40 immunotherapies, further supporting the development of these combinations as potential

cancer therapies.

In contrast to the response of SCC6.2 tumors to the combination of BI 853520 + anti-OX40 or BI

853520 + anti-4-1BB, we did not observe regression of Panc47 tumors when using either of these

combinations. A FAK inhibitor, VS-4718, was previously found to sensitize pancreatic tumors to

immune checkpoint therapy, specifically anti-PD-1 and anti-CTLA-4, when used in combination with

the chemotherapy Gemcitabine (Jiang et al., 2016). We therefore tested Gemcitabine alone and in

combination with either BI 853520, anti-OX40, or BI 853520 + anti-OX40. Panc47 cells were injected

Figure 6 continued

Right - mean fluorescent intensity of PD-L1 expression on macrophages. (G) Left - Flow cytometry quantification of the percentage of macrophages

expressing PD-L2. Right - mean fluorescent intensity of PD-L2 expression on macrophages. (H) Representative histogram of PD-L2 fluorescent intensity

in cancer cells, G-MDSCs, M-MDSCs, Macrophages, and CD11b+Dendritic cells from a control sample stained with all antibodies. FMO is a fully stained

samples except for PD-L2. (I) Flow cytometry quantification of the percentage of M-MDSCs, G-MDSCs, cancer cells, and dendritic cells positive for

expression of PD-L2. (J) Comparison of subcutaneous tumor volume 21 days post-implantation of SCC6.2 cells. Tumors treated with either anti-OX40 or

anti-OX40 + anti-PD-L2. (K) Comparison of subcutaneous tumor volume 21 days post-implantation of SCC6.2 cells. Tumors treated with either anti-4-

1BB or anti-4-1BB + anti-PD-L2. (L) Comparison of subcutaneous tumor volume 21 days post-implantation of SCC6.2 cells. Tumors treated with either

anti-OX40 or anti-OX40 + anti-ICOSL. (M) Comparison of subcutaneous tumor volume 21 days post-implantation of SCC6.2 cells. Tumors treated with

either anti-4-1BB or anti-4-1BB + anti-ICOSL. (A - I) Data represented as mean + /- s.e.m. *=p � 0.05, **=p � 0.01, ***=p � 0.001, ****=p � 0.0001,

ordinary one-way ANOVA with Tukey’s multiple comparison. n = 4–8 tumors per treatment condition. (J - M) Data represented as individual tumor

measurements together with the mean + /- s.e.m. ***=p � 0.001, unpaired nonparametric Mann-Whitney test. Dosing schedule identical to Figure 5A.

n = 10 tumors per group.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Flow cytometry T-cell gating strategy.

Figure supplement 2. Flow cytometry myeloid cell gating strategy.

Figure supplement 3. Expression of markers associated with T-cell exhaustion of CD8eff T-cells in SCC6.2 tumors treated with either Vehicle, OX40, BI

853520 or OX40 + BI 853520.

Figure supplement 4. OX40 and OX40 + BI 853520 treatment enhances ICOS expression on CD4 non-Treg cells in SCC6.2 tumors.

Figure supplement 5. BI 853520 treatment enhances ICOS expression on CD8eff T-cells in SCC7.1 tumors.

Figure supplement 6. Frequency of immune cell populations in SCC6.2 tumors treated with either Vehicle, OX40, BI 853520 or OX40 + BI 853520.

Figure supplement 7. BI 853520 partially inhibits macrophage expression of PD-L2 following stimulation with IL4.
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Figure 7. BI 853520 renders Panc47 tumors responsive to 4-1BB and OX40 agonistic antibodies. (A – D) Left - Subcutaneous growth of Panc47 tumors

treated with either Vehicle or 50 mg/kg BI 853520 in combination with either 100 mg GITR, CD40, 4-1BB, or OX40 agonistic antibodies. Right -

Comparison of tumor volume on day 25/28 post-implantation of tumor cells. Graph represents individual tumor measurements together with the mean

+ /- s.e.m. Dosing schedule identical to Figure 5A. (E) Left - Subcutaneous growth of Panc47 tumors treated with either Vehicle, Vehicle + 100 mg/kg

Gemcitabine (GEM), 50 mg/kg BI 853520 + GEM, OX40 + GEM, or BI 853520 + OX40 + GEM. Right - Comparison of tumor volume on day 28 post-

Figure 7 continued on next page
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subcutaneously into C57BL/6 mice and tumor growth monitored in response to therapy (Figure 7E).

Gemcitabine treatment of Panc47 tumors resulted in a significant growth delay that was not further

enhanced by combination with either BI 853520 or anti-OX40. However, the triple combination of

Gemcitabine + BI 853520 + anti-OX40 did improve response when compared to Gemcitabine alone,

Gemcitabine + BI 853520, or Gemcitabine + OX40, and tumors were also smaller than correspond-

ing measurements for BI 853520 + anti-OX40 (Figure 7D). Therefore, Gemcitabine exhibits anti-

tumor efficacy that can add to that of BI 853520 + anti-OX40.

Discussion
We show that treatment with a FAK inhibitor can induce potent anti-tumor immune responses in

murine models of cancer when used in combination with either endogenous or exogenous signals

that promote activation of T-cell co-stimulatory pathways. In particular, we identify CD80, 4-1BB,

and OX40 as promising candidate pathways for co-targeting with a FAK inhibitor and show that

these combinations can unlock anti-tumor immune responses capable of driving complete regression

of at least some mouse tumor models. We provide novel mechanistic insight into the complex

immune modulation that occurs in response to a FAK inhibitor, identifying not only changes in

immune cell recruitment to tumors, but also in the expression of molecular pathways including PD-

L2 and ICOS that fine tune the efficacy of the anti-tumor T-cell response. These data identify new

strategies for the development of FAK inhibitors and enhance our understanding of how FAK regu-

lates the immuno-suppressive tumor environment that can modulate response to immunotherapy.

A number of Phase-I clinical trials have now been completed testing FAK inhibitors in patients

with a broad range of solid tumor types (Sulzmaier et al., 2014; de Jonge et al., 2019; Doi et al.,

2019; Lee et al., 2015; Soria et al., 2012). Alongside this, there have been a number of studies

aimed at defining potential strategies for identification of patients most likely to benefit from a FAK

inhibitor. Both Merlin and E-cadherin have been proposed as potential biomarkers in this context

(Hirt et al., 2018; Kato et al., 2017; Shah et al., 2014; Shapiro et al., 2014). However, a Phase-II

clinical trial in which patients with Mesothelioma were treated with the FAK inhibitor Defactinib and

tested for Merlin expression was terminated early due to lack of improved efficacy as a maintenance

therapy for Merlin-low tumors (ClinicalTrials.gov NCT01870609). To date, the relationship between

E-cadherin status and sensitivity to FAK kinase inhibition has not been reported in the clinic. Our

data provide a mechanistic justification supporting an alternative strategy for patient stratification

based on cancer cell CD80 expression. CD80 has been linked to promoting anti-tumor immune

responses in multiple mouse models of cancer (Marchiori et al., 2019; Scarpa et al., 2015;

Baskar et al., 1993; Chen et al., 1992; Ganesan et al., 2007; Haile et al., 2011; Hodge et al.,

1994; Liu et al., 2001; Townsend and Allison, 1993), and exogenous administration of recombinant

CD80 protein can promote anti-tumor immunity (Horn et al., 2018). However, CD80 is a ligand for

two receptors with opposing functions in regulating T-cell responses, namely CTLA-4 and CD28

(Linsley et al., 1991; Linsley et al., 1990). CTLA-4, which functions to suppress T-cell responses, has

a higher avidity for CD80 (van der Merwe et al., 1997) and depletes CD80 availability by the pro-

cess of trans-endocytosis (Qureshi et al., 2011), thereby impacting on CD80 - CD28 interaction and

T-cell activation. We show that a FAK inhibitor can shift this balance in favor of CD80 - CD28 interac-

tion, promoting an anti-tumor immune response that is dependent on both CD80 and CD28. The

clinical translation of these findings will require an improved understanding of cancer cell CD80

expression in human malignancies. CD80 expressing cancer cells have been identified in human skin

SCC (Miao et al., 2019) and pre-neoplastic colon lesions (Marchiori et al., 2019; Scarpa et al.,

2015), and our analysis of human cancer cell line transcriptomics data further suggests that cancer

cell CD80 expression is present in a broad range of solid epithelial cancers. However, further investi-

gation will be required in order to fully understand the extent of CD80 protein expression in human

malignancies. In addition to solid cancers, we also identified a number of hematological

Figure 7 continued
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malignancies that co-express high levels of CD80 and PTK2, highlighting potential opportunities for

the development of FAK inhibitors for the treatment of some blood cancers. To our knowledge, FAK

kinase inhibitors have never been clinically tested in these tumor types.

Following the success of immune checkpoint inhibitors there has been growing interest in target-

ing T-cell co-stimulatory pathways as potential cancer therapies. Agonistic antibodies and/or RNA

aptamers targeting receptors including 4-1BB, OX40, CD40, GITR, ICOS and CD28 are in pre-clinical

development, and have shown anti-tumor activity in mouse models of cancer (Sanmamed et al.,

2015). Humanized antibodies for several of these receptors have now progressed to clinical testing,

with some results suggesting limited anti-tumor efficacy as a monotherapy. For example, a Phase-I

clinical trial of the anti-4-1BB antibody PF-05082566 in patients with advanced solid tumors reported

an objective response rate of 3.8% (Segal et al., 2018), while MOXR0916 (anti-OX40) achieved sta-

ble disease in some patients (Aaron Hansen et al., 2016). These and other antibodies are now

being tested in combination with various other immune and non-immune targeted therapies

(Sanmamed et al., 2015; Linch et al., 2015). Our data suggest that a FAK inhibitor represents a

promising candidate for combination with either anti-OX40 or anti-4-1BB antibodies. We propose

that it is the complex reprogramming of multiple immune regulatory mechanisms in response to

FAK inhibition that complements the immune stimulatory effects of these antibodies in order to fine

tune the efficacy of the anti-tumor response. In support of this, we found a novel role for FAK in reg-

ulating expression of the immune checkpoint ligand PD-L2 and showed that this may contribute to

the improved efficacy of the FAK/anti-OX40 combination. Concurrent administration of anti-PD-1

has previously been reported to suppress the therapeutic effect of anti-OX40 (Messenheimer et al.,

2017; Shrimali et al., 2017). Our findings suggest that these previous observations are likely due to

blockade of PD-L1 - PD-1 signaling which is not regulated by FAK. We also identified a novel role

for FAK in regulating the expression of ICOS, primarily on CD8eff T-cells, and showed that blocking

ICOS ligand could impair the anti-tumor efficacy of both FAK/anti-OX40 and FAK/anti-4-1BB combi-

nations. The ICOS pathway has previously been implicated in regulating the therapeutic response to

anti-OX40, but not 4-1BB, leading to the conclusion that ICOS signaling on CD4 T-cells was impor-

tant for anti-OX40 activity (Metzger et al., 2016). Our findings suggest that at least in some circum-

stances ICOS may also play an important role in regulating CD8 T-cell responses. These disparities

may represent differences in the cancer models used, or may perhaps be explained by our observa-

tion that anti-OX40 alone only results in a relatively small upregulation of ICOS on CD8eff T-cells,

while anti-OX40 in combination with a FAK inhibitor results in a much greater upregulation of ICOS

expression. While much of the research into ICOS function has focused on its role in CD4 T-cells,

there is evidence supporting a role for ICOS in CD8 T-cell effector function. Ectopic expression of

ICOS ligand can result in CD8 T-cell co-stimulation and tumor regression in the absence of CD4

T-cells (Wallin et al., 2001). ICOS-deficient patients have a reduced number of CD8 memory T-cells

and impaired CD8 T-cell interferon-g production (Takahashi et al., 2009). Therefore, FAK-depen-

dent induction of ICOS expression on CD8eff T-cells may represent an important and novel mecha-

nism contributing to the efficacy of FAK/immunotherapy combinations that warrants further

investigation.

Here, we have assessed individual co-stimulatory antibodies in combination with a FAK inhibitor.

However, simultaneous administration of multiple co-stimulatory antibodies in combination with a

FAK inhibitor may further improve efficacy. Pre-clinical studies have shown that anti-4-1BB when

used in combination with anti-OX40 is more effective at boosting CD8 T-cell expansion, effector

function, and anti-tumor immunity (Adler and Vella, 2013; Lee et al., 2004; Morales-

Kastresana et al., 2013). Indeed, this combination is reported to have synergistic effects that not

only enhance CD8 T-cell clonal expansion, but also endow CD8 T-cells with supereffector function

(Lee et al., 2007). Our data strongly support further investigation of such combinations in conjunc-

tion with a FAK inhibitor with a view to clinical translation.
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Materials and methods

Materials
BI 853520 was provided by Boehringer Ingelheim GmbH. pcDNA3 construct encoding the ORF for

murine CD80 was synthesized by GeneArt (Invitrogen). All flow cytometry antibodies used are listed

in Supplementary files 1, 2 and 3.

Cell lines
A selection of murine tumor derived cell lines were used in this study, namely, Squamous Cell Carci-

noma cell lines (SCC7.1 and SCC6.2), an MMTV-PyMT mammary tumor cell line (Met01), and LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre derived pancreatic cancer cell lines (Panc43, Panc47,

Panc117). Cells were pathogen tested in September 2016 using the ImpactIII test (Idex Bioresearch)

and were negative for all pathogens. Cell lines are routinely tested for mycoplasma every 2–3

months in-house and have never been found to be mycoplasma positive. Cell lines are cultured for

no more than 3 months following freeze thawing. SCC cell lines were generated and cultured as pre-

viously described (Serrels et al., 2015; Serrels et al., 2012). SCC6.2 cells stably expressing

pcDNA3-CD80 were generated by transfection using Lipofectamine 2000 (Invitrogen) and selection

with 0.6 mg/ml geneticin. Met01 and Panc cell lines were cultured in DMEM supplemented with

4500 mg/L glucose, L-glutamine, sodium pyruvate, sodium bicarbonate, and 10% FBS.

Subcutaneous tumor growth
All animal work were carried out in compliance with UK Home Office guidelines. 1 � 106 (SCC FAK-

wt, SCC FAK-/-, and Met01) or 5 � 105 (SCC7.1, SCC6.2, Panc43, Panc47, and Panc117) cells were

injected subcutaneously into each flank of either FVB/N (SCC and Met01 cell lines) or C57BL/6 mice

(Panc cell lines), and tumor growth measured twice weekly using calipers. Animals were euthanized

when tumors reached maximum allowed size, or more commonly when signs of ulceration, bleeding,

or exudation were evident. For studies involving treatment with BI 853520, drug was prepared in

0.5% carboxymethyl cellulose (Vehicle) (Sigma-Aldrich), and mice were treated at 50 mg/kg QD by

oral gavage daily, starting on the day of tumor cell implantation. Isotype control, anti-GITR (clone

DTA-1), anti-CD40 (clone FGK4.5), anti-4-1BB (clone LOB12.3), anti-OX40 (clone OX-86), anti-CD28

(clone 37.51), anti-ICOSL (clone HK5.3), anti-CD80 (clone 16-10A1), and anti-PD-L2 (clone TY25) anti-

bodies were dosed twice weekly by intraperitoneal injection at a concentration of 100 mg/mouse

diluted in PBS (BioXcell). Animals were visually monitored for signs of toxicity and weighed prior to

each dose of BI 853520 or antibody. No signs of toxicity or weight loss were observed. Group sizes

ranged from 3 to 5 mice, each bearing two tumors, and tumor volume was calculated in Excel

(Microsoft) using the formula V = ½(length x width2). Statistics and graphs were calculated using

Prism (GraphPad).

Tumor growth following Re-Challenge
SCC6.2 cells were injected into both flanks of FVB/N mice and treatment administered as above.

Following tumor regression, mice were maintained without treatment for 2 months prior to rechal-

lenge with 5 � 105 SCC6.2 cells per flank. Tumor growth was measured twice-weekly as described

above. At the time of rechallenge, an age-matched control cohort of mice that had not previously

been challenged with tumor cells were injected on both flanks using the same cell preparation and

tumor growth monitored as above. Tumor volume was calculated as described above.

CD8+ T cell depletion
Anti-mouse CD8 depleting antibody (clone 53–6.7) and isotype control were purchased from Bio-

Xcell. As described previously (Serrels et al., 2015), mice were treated with 150 mg of antibody

administered by intraperitoneal injection for three consecutive days, followed by a rest period of 3

days. Following this, SCC or Met01 cells were injected subcutaneously into both flanks and T-cell

depletion maintained by further administration of 150 mg depleting antibody at 3 day intervals for

the remainder of the experiment. Tumor growth was measured twice-weekly as described above.
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FACS analysis
Tumors established following subcutaneous injection of cells into mice were removed at day 12 into

DMEM (Sigma-Aldrich). Tumor tissue was mashed using a scalpel and re-suspended in DMEM

(Sigma-Aldrich) supplemented with 2 mg/ml collagenase D (Roche) and 40 units/ml DNase1 (Roche).

Samples were incubated for 30 min at 37˚C, 5% CO2 on an orbital shaker set at 120 rpm, and then

pelleted by centrifugation at 1300 rpm for 5 min at 4˚C. Samples were re-suspended in 5 ml of red

blood cell lysis buffer (Pharm Lysis Buffer, Becton Dickinson) for 10 min at 37˚C, pelleted by centrifu-

gation at 1300 rpm for 5 min at 4˚C, re-suspended in PBS and mashed through a 70 mm cell strainer

using the plunger from a 5 ml syringe. The cell strainer was further washed with PBS. The resulting

single cell suspension was pelleted by centrifugation at 1300 rpm for 5 min at 4˚C and re-suspended

in PBS. This step was repeated twice. The resulting cell pellet was re-suspended in PBS containing

Zombie NIR viability dye [1:1000 dilution (BioLegend)] and incubated at 4˚C for 30 min then pelleted

by centrifugation at 1300 rpm for 5 min at 4˚C. Cells were resuspended in FACS buffer (PBS + 1%

FBS + 0.1% sodium azide) and pelleted by centrifugation at 1300 rpm for 5 min at 4˚C. This step was

repeated twice. Cell pellets were resuspended in 100 ml of Fc block [1:200 dilution of Fc antibody

(eBioscience) in FACS buffer] and incubated for 15 min. 100 ml of antibody mixture [diluted in FACS

buffer (antibody details listed in supplementary files 1, 2 and 3)] was added to each well and the

samples incubated for 30 min in the dark. The cells were then pelleted by centrifugation at 1300

rpm for 5 min at 4˚C and washed twice with FACS buffer as above. Finally, cells were re-suspended

in FACS buffer and analyzed using a BD Fortessa. Data analysis was performed using FlowJo soft-

ware. Statistics and graphs were calculated using Prism (GraphPad). For flow cytometry analysis of

cell lines, growth medium was removed and cells washed twice in PBS. Adhered cells were dissoci-

ated from tissue culture flasks by incubating them in enzyme free cell dissociation solution (Millipore)

for 10 min at 37˚C, 5% CO2, and then scraping with a cell scraper. Cells were pelleted by centrifuga-

tion at 1300 rpm for 5 min at 4˚C and washed with PBS. This step was repeated twice. Cells were

then resuspended in viability dye and stained as above.

Nanostring analyses
RNA extracts were obtained using a RNeasy kit (Qiagen), following manufacturer’s instructions. 100

ng of RNA was analyzed using a mouse nanostring PanCancer Immune Profiling panel as per the

manufacturer’s instructions. Hybridization was performed for 18 hr at 65˚C and samples processed

using the nanostring prep station set on high sensitivity. Images were analyzed at maximum (555

fields of view). Data were normalized using nSolver 4.0 software.

Analysis of CD80 expression in human cancer cell line data
The expression of CD80 and FAK were assessed across the panels of cell lines from the Cancer Cell

Line Encyclopedia (Barretina et al., 2012) using data downloaded from The Broad Institute portal

(https://portals.broadinstitute.org/ccle).

Generation of bone marrow-derived macrophages (BMDMs)
Bilateral tibias and femurs dissected from FVB/N mice were flushed with 5 ml of DMEM medium sup-

plemented with 10% FBS and 1% Penicillin/Streptomycin into a 50 ml tube, washed in medium once

and filtered through a 70 mm cell strainer. Cells were seeded at 1 � 106 per well in a 6-well plate

and cultured in 2 ml of DMEM with 10% FBS and 25 ng/ml recombinant mouse M-CSF for 7 days.

BMDMs generated this way were then washed with PBS followed by replacement with fresh media

containing recombinant mouse IL-4 (10 ng/ml) and/or BI 853520 (100nM). BMDMs were cultured for

a further 48 hr, washed with PBS and harvested using non-enzymatic dissociation buffer, stained

with fluorescent conjugated antibodies and analyzed by Flow cytometry as described above.
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