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ABSTRACT Periwinkle is a temperate bacteriophage that was isolated on the host
Gordonia terrae 3612. The genome has a length of 55,657 bp and a GC content of 62.9%
and contains 109 protein-coding genes and no tRNA genes. An 8-kb region after the struc-
tural protein genes encodes eight membrane proteins, a tyrosine integrase, and an immu-
nity repressor.

Actinobacteriophages are extremely abundant and diverse viruses that infect bacte-
ria within the phylum Actinobacteria (1–4). By studying bacteriophages through

programs such as the Science Education Alliance-Phage Hunters Advancing Genomics
and Evolutionary Science (SEA-PHAGES) Program, we advance our understanding of phage
and bacterial diversity, evolution, and virus-host interactions (3–6). Periwinkle was isolated
from a composted manure sample collected in Orono, Maine (44.915628N, 68.69072W),
using Gordonia terrae 3612 (7). Soil extracts were prepared in peptone-yeast extract-calcium
(PYCa) medium, filtered on 0.22-mm filters, inoculated with G. terrae, and incubated at 30°C
for 48 h. Dilutions of the enriched extract were plated onto PYCa agar in soft agar contain-
ing G. terrae, and plaques were purified by five rounds of plaque assays (7). Periwinkle
formed 3-mm turbid plaques on a lawn of G. terrae (7). Periwinkle has a Siphoviridae particle
morphology, as determined by negative staining transmission electron microscopy. The par-
ticle has a 65-nm (standard error [SE], 60.8 nm) icosahedral head and a 335-nm (SE, 68.2
nm) flexible, noncontractile tail (n = 5).

A phenol-chloroform extraction method was used to extract DNA from a high-titer
lysate before it was prepared for sequencing using the NEBNext Ultra II library prepara-
tion kit (New England BioLabs, Ipswich, MA) (8). Sequencing on an Illumina MiSeq plat-
form yielded 168,288 single-end 150-bp reads. Newbler v2.9 and Consed v29 (9) were
used for de novo assembly and checks for completeness, yielding a 55,657-bp genome
with a GC content of 58.1%. Genome ends are defined by single-stranded 10-bp 39
extensions (CTCGGGGCAT). Periwinkle shares .35% gene content with members of
cluster DN in the Phamerator Actino_Draft database and was assigned to subcluster
DN1 (4, 10, 11).

The genome of Periwinkle was autoannotated using GLIMMER v3.02 and GeneMark
v2.5 within DNA Master v5.23.6 (http://cobamide2.bio.pitt.edu) and PECAAN (https://
blog.kbrinsgd.org/) before manual refining of translational starts based on inclusion of cod-
ing potential predicted by GeneMark.hmm and conservation across homologs according
to BLAST and Starterator (http://phages.wustl.edu/starterator) (12–14). Putative gene
functions were predicted using BLAST, TMHMM, and HHpred, and gene maps were pre-
pared using the Phamerator database Actino_Draft (10, 15, 16). No tRNA genes were
identified by ARAGORN v1.2.38 and tRNAscan-SE (17, 18). Periwinkle contains 109 protein-
coding genes. The left arm of the genome contains mainly forward-transcribed assembly
and structural genes (gp1 to gp36) (Fig. 1). All cluster DN phages contain at least one
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reverse-transcribed gene between the tail assembly chaperones and the tape measure pro-
tein, and Periwinkle contains three such genes (gp17 to gp19), including two orphams, i.e.,
gene phamilies with one member in the Actinobacteriophage Database (4, 11). The right
arm contains forward-transcribed genes (gp59 to gp109), including five DNA-binding
proteins (gp59, gp64, gp73, gp77, and gp108), an antirepressor (gp67), and a WhiB family
transcription factor (gp76); gp57 and gp58 encode a tyrosine integrase and an immunity
repressor, respectively, indicating that Periwinkle is likely a temperate phage (1).

The integrase and immunity repressor genes are located in an 8-kb region following
the minor tail protein genes (gp35 and gp36) that contains forward- and reverse-tran-
scribed genes (gp37 to gp58) that are likely expressed during lysogeny (19). Included
are two DNA-binding proteins (gp42 and gp47), an acetyltransferase (gp37), and seven
membrane proteins (gp40, gp41, gp44 to gp46, and gp48) that could contribute to
superinfection immunity (19).

Data availability. Periwinkle is available in GenBank with the accession number
ON456334 and the Sequence Read Archive (SRA) accession number SRR18715698.
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FIG 1 Genome map of Gordonia phage Periwinkle. The genome coordinates are represented by the ruler, in units of kilobase pairs. Forward and reverse genes
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Genes with transmembrane domains are labeled MB. An electron micrograph of Periwinkle is shown in the inset, with a scale bar of 100 nm.
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