
nanomaterials

Article

Directly Electrospun Carbon Nanofibers Incorporated
with Mn3O4 Nanoparticles as Bending-Resistant
Cathode for Flexible Al-Air Batteries

Ying Yu 1 , Yuxin Zuo 2,*, Ying Liu 2, Youjun Wu 1, Zhonghao Zhang 1, Qianqian Cao 1

and Chuncheng Zuo 1,3,*
1 College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314000, China;

yingyu@mail.zjxu.edu.cn (Y.Y.); wuyoujun@outlook.com (Y.W.); zhonghaozhang2019@hotmail.com (Z.Z.);
qqcao@mail.zjxu.edu.cn (Q.C.)

2 College of Design, Jiaxing University, Jiaxing 314000, China; liuying@mail.zjxu.edu.cn
3 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
* Correspondence: yuxinzuo@mail.zjxu.edu.cn (Y.Z.); zuocc@jlu.edu.cn (C.Z.)

Received: 3 January 2020; Accepted: 24 January 2020; Published: 27 January 2020
����������
�������

Abstract: Al-air batteries are regarded as potential power source for flexible and wearable devices.
However, the traditional cathodes of Al-air batteries are easy to be broken after continuous bending.
This is why few Al-air batteries have been tested under the state of dynamic bending so far. Herein,
carbon nanofibers incorporated with Mn3O4 catalyst have been prepared as bending-resistant
cathodes through direct electrospinning. The cathode assembled in Al-air battery showed excellent
electrochemical and mechanical stability. A high specific capacity of 1021 mAh/cm2 was achieved
after bending 1000 times, which is 81.7% of that in platform state. This work will facilitate the progress
of using Al-air battery in flexible electronics.
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1. Introduction

Flexible and wearable electronic devices have enjoyed rapid development in recent years [1–3].
The wearable devices may be placed on wrists as pulse sensors for health monitoring [4], or on legs as
muscle sensors [5] for rehabilitation exercises. The supplied power sources should remain stable during
the dynamic bending caused by muscle contractions. As the next-generation energy storage devices,
Al-air batteries are attracting great interest owing to their high theoretical electrochemical equivalent,
environmental friendliness and good safety [6–10] Air cathode is an essential and vulnerable part of the
Al-air battery. The traditional preparation of cathodes requires physical deposition of all ingredients
onto current collectors by drop-casting or spraying-coating [11–13]. However, this kind of cathodes
are easy to damage during the process of repeated bending, which would make them impractical for
flexible electronic devices.

To address this problem, electrospinning has been explored as a novel method to prepare flexible
cathodes [14–18]. Carbon nanofibers (CNFs) could be prepared through electrospinning followed
by heat treatment. Catalysts are added on the surface of CNFs by physical adsorption or chemical
growth [13,14,18–20]. Zhang et al. [6] presented a brief introduction to the recent development of
flexible air cathodes for metal-air batteries. Wang et al. [16]. fabricated cathodes by electrospinning
CNFs and employed iron carbide as catalyst for flexible Al−air batteries. Cao et al. [21] reported the
preparation of CNFs covered with Co9S8 nanoparticles as cathodes for Al-air batteries. However,
most studies mainly focused on the electrochemical performance of Al-air batteries under static state.
Zhong et al. [22] presented a flexible Zn-air battery and tested the electrochemical performance under
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dynamic stretching conditions. Han et al. [17] studied the discharge characteristics of Zn-air batteries
under static bending state with different bending angles. To the best of our knowledge, few studies
have focused on the electrochemical performance of Al-air batteries under dynamic bending state,
which is really important to their application in flexible and wearable devices.

In this work, we propose an innovate bending-resistant cathode for Al-air battery prepared by
direct electrospinning. Manganese materials are served as catalyst. Instead of the conventional chemical
post-treatment, wet-milling is introduced to solve the problem of insoluble manganese dioxide particles.
All cathode materials are mixed uniformly and electrospun all-in-one step. Flexible Al-air batteries are
assembled with the as-fabricated cathode. The as-fabricated cathodes possess the advantages of high
porosity and large specific surface area, which would contribute the oxygen diffusion from outside
and benefit the performance of batteries [15,23,24]. The electrochemical performance of the Al-air
battery has been studied under the static and dynamic bending states of platform. The results showed
that the Al-air batteries have perfect electrochemical performance and excellent mechanical flexibility.
The cathodes have good resistance to continuous bending. The current study is of great significance
for the applications of Al-air batteries in flexible and wearable electronic devices.

2. Materials and Methods

2.1. Materials

All materials in this study were of analytical grade and used as received without further treatment.
Polyacrylonitrile (PAN, Mw = 150000 g/mol) and N,N-dimethylformamide solution (DMF, AR, 99.5%)
were obtained from Macklin Biochemical Co., Ltd. (Shanghai, China). MnO2 particles were purchased
from Kejing Co., Ltd. (Shenyang, China). Zirconia balls were obtained from Nikkato Co., Ltd.
(Osaka, Japan).

2.2. Preparation of Air Cathmodes

MnO2 nanoparticles were prepared using a rotation/revolution mixer (NP-100, Thinky Co., Ltd.,
Tokyo, Japan) equipped with cooling unit. 7 mL DMF, 4 g MnO2 and 10 g zirconia balls with a diameter
of 0.1 mm were put into the vessel of mixer. MnO2 suspension was nanosized by 3-step wet-milling
with pulverizing conditions as illustrated in Figure 1a: the first step (pulverization process), 2000 rpm
for 2 min and chill for 5 min. This process was repeated for 5 times. The second step (dispersion
process), 500 rpm for 2 min after addition of 3 mL DMF. The third step (separation process), remove the
0.1 mm-diameter zirconia balls from the suspension. The precursor solution for electrospinning was
prepared by dissolving 1 g PAN in the above suspension. To obtain a homogeneously mixed solution
for electrospinning technique, magnetic stirring was applied for 6 h at 60 ◦C.
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(b) Sandwich structure of the Al-air battery.

Then, the precursor solution was electrospun via a single-capillary electrospinning apparatus.
The tip-collector distance, applied voltage and flow rate were fixed at 15 cm, 17 kV and 1.2 mL/h,
respectively. The electrospun fibers were collected on a rotating drum covered with nickel foam.
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The obtained fibers were dried in ambient air for 24 h and then hot-pressed with 200 Mpa at 230 ◦C
for 30 min. The films were carbonized at 900 ◦C for 1 h in argon atmosphere with a heating rate of
5 ◦C/min. The fabrication procedure of the cathodes is shown in Figure 1a.

2.3. Characterization

The morphological structure of the electrospun films was investigated through SEM (Su-8010,
Hitachi Co., Ltd., Tokyo, Japan). The crystalline structures of the samples were characterized using
an X-ray diffraction (XRD) instrument (Bruker D8 Advance, Bruker Corp., Billerica, MA, USA)
with a Cu kα radiation of 0.1541 nm as an X-ray source. Raman spectra were measured using
an Invia Raman Microscope (Invia Microscope Co., Ltd., Renishaw, U.K.). X-ray photoelectron spectra
(XPS) of the samples were conducted using ESCALAB 250Xi (Thermo Fisher Scientific, CA, USA)
instrument. Nitrogen adsorption–desorption analysis was carried out by using Smart Sorb 92/93
surface area analyzer.

Solid Al-air batteries were assembled with the sandwich type as schematically illustrated in
Figure 1b. The solid-state polymer alkaline gel electrolyte was prepared according to a previous
report [25]. A 4 × 3 cm aluminum foil was served as the metal anode. The constant current discharges
were carried out using a battery testing system (CT2001A, LAND Electronics Co., Ltd., Wuhan, China).
Electrochemical impedance spectroscopy (EIS) measurements were tested by an electrochemical
workstation (RST5000, Shiruisi Co., Ltd., Zhengzhou, China) with an AC amplitude of 10 mV and
frequency from 0.01 Hz to 100 kHz. The activity of the catalysts towards the oxygen reduction (ORR)
was evaluated by linear sweep voltammetry (LSV) from 1.0 to 0.2 V vs. RHE at a scan rate of 5 mV/s
and 1600 rpm in a O2-saturated 0.1 M KOH solution. The reference electrode and counter electrode
were Hg/HgO and platinum wire.

3. Results

3.1. Characterization of the Cathodes

PAN and MnO2 were co-electrospun to form nanofibers. After heat treatment, Mn3O4 were
obtained and encapsulated in CNFs. The direct contact between the active material and the current
collector was favorable for electron transport and the kinetics were improved [6]. The electrospun films
before heat treatment exhibited a smooth surface and nearly straight fiber morphology with uniform
diameters of ~400 nm as shown in Figure 2a. After heat treated (hot-pressed and carbonization),
the surface of the sample became a little rougher due to the decomposition of organic components of
PAN [26], but it retained well-defined fibrous morphology with a diameter of ~250 nm as shown in
Figure 2b.
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The crystal structure of Mn3O4 was confirmed by XRD patterns in Figure 2c. Peaks at 2θ = 41◦ and
2θ = 56◦ were ascribed to the residue presence of manganese oxide coming from the hot-press process.
A sharp peak at 2θ = 26.4 indicated a graphitic structure of CNF within the samples [27]. The other
characteristic diffraction peaks observed in the pattern of the nanofibers represent the reflections
of Mn3O4. Raman spectrum was recorded, and the corresponding result is shown in Figure 2d.
The Raman peaks centering around 1365 and 1584 cm−1 can be ascribed to the D and G bands of
carbon, respectively. The D band corresponds to the defects or disorder of carbon, while the G band is
indicative of ordered carbon [28,29]. The ratio of ID/IG is 0.85, indicating that there are few defects in
the crystalline structure [30]. The peak at 651 cm−1 is characteristic of the Mn-O vibrational mode,
proving that the Mn3O4 nanoparticles were successfully doped in the CNFs [31]. Element mappings
(Figure 2e–h) in a single nanofiber further show that most Mn and O are uniformly distributed in
the nanofibers.

XPS measurements were conducted to investigate the chemical composition as well as the bonding
state of the Mn3O4/CNFs. The overall XPS spectrum of the Mn3O4/CNFs composite reveals the
coexistence of the elements Mn, O and C clearly in Figure 3a. The narrow-scan XPS spectra of
Mn 2p, O 1s and C 1s after Gaussian fitting are shown in Figure 3b–d, respectively. Two obvious
peaks in Mn 2p spectra are located at 641.2 and 652 eV, which are attributed to the characteristic Mn
2p3/2 and Mn 2p1/2 spin-orbit states of Mn3O4. The splitting width of 11.7 eV is in good agreement
with those reported for Mn3O4 [32]. The O 1s XPS spectra exhibit two peaks at 529.8 and 531.5 eV,
corresponding to the Mn-O-Mn bond in the oxide and Mn-O-H hydroxide [33]. The C 1s has only
one intensive peak at 284.5 eV due to C-C sp2 bonding for all the materials [34]. The isotherms of
N2 adsorption-desorption for the Mn3O4/CNFs are shown in Figure 3e. The adsorption-desorption
isotherm curve of the composites can be classified as a type-IV curve with hysteresis loop of 0.3–1.0 p/p0,
suggesting the porous structure of the as-fabricated Mn3O4/CNFs. The Brunauer–Emmett-Teller (BET)
surface area is measured to be about 42.5 m2/g. The pore-size distribution (the inset of Figure 3e) of the
Mn3O4/CNFs centers at ~7.9 nm. The three-dimensional network structure of the as-fabricated air
cathode is shown in Figure 3f from a mesoscopic view.

Nanomaterials 2020, 10, 216 4 of 10 

 

 

Figure 2. SEM images of the electrospun fibers before (a) and after (b) heat treatment. (c) XRD patterns 
of the nanofibers on cathodes. (d) Raman spectra of Mn3O4/CNFs. (e-h) Element mappings of 
Mn3O4/CNFs. 

The crystal structure of Mn3O4 was confirmed by XRD patterns in Figure 2c. Peaks at 2θ = 41° 
and 2θ = 56° were ascribed to the residue presence of manganese oxide coming from the hot-press 
process. A sharp peak at 2θ = 26.4 indicated a graphitic structure of CNF within the samples [27]. The 
other characteristic diffraction peaks observed in the pattern of the nanofibers represent the 
reflections of Mn3O4. Raman spectrum was recorded, and the corresponding result is shown in Figure 
2d. The Raman peaks centering around 1365 and 1584 cm−1 can be ascribed to the D and G bands of 
carbon, respectively. The D band corresponds to the defects or disorder of carbon, while the G band 
is indicative of ordered carbon [28,29]. The ratio of ID/IG is 0.85, indicating that there are few defects 
in the crystalline structure [30]. The peak at 651 cm−1 is characteristic of the Mn-O vibrational mode, 
proving that the Mn3O4 nanoparticles were successfully doped in the CNFs [31]. Element mappings 
(Figure 2e–h) in a single nanofiber further show that most Mn and O are uniformly distributed in the 
nanofibers. 

XPS measurements were conducted to investigate the chemical composition as well as the 
bonding state of the Mn3O4/CNFs. The overall XPS spectrum of the Mn3O4/CNFs composite reveals 
the coexistence of the elements Mn, O and C clearly in Figure 3a. The narrow-scan XPS spectra of Mn 
2p, O 1s and C 1s after Gaussian fitting are shown in Figure 3b–d, respectively. Two obvious peaks 
in Mn 2p spectra are located at 641.2 and 652 eV, which are attributed to the characteristic Mn 2p3/2 
and Mn 2p1/2 spin-orbit states of Mn3O4. The splitting width of 11.7 eV is in good agreement with 
those reported for Mn3O4 [32]. The O 1s XPS spectra exhibit two peaks at 529.8 and 531.5 eV, 
corresponding to the Mn-O-Mn bond in the oxide and Mn-O-H hydroxide [33]. The C 1s has only 
one intensive peak at 284.5 eV due to C-C sp2 bonding for all the materials [34]. The isotherms of N2 
adsorption-desorption for the Mn3O4/CNFs are shown in Figure 3e. The adsorption-desorption 
isotherm curve of the composites can be classified as a type-IV curve with hysteresis loop of 0.3–1.0 
p/p0, suggesting the porous structure of the as-fabricated Mn3O4/CNFs. The Brunauer–Emmett-Teller 
(BET) surface area is measured to be about 42.5 m2/g. The pore-size distribution (the inset of Figure 
3e) of the Mn3O4/CNFs centers at ~7.9 nm. The three-dimensional network structure of the as-
fabricated air cathode is shown in Figure 3f from a mesoscopic view.  

 
Figure 3. XPS spectra: (a) wide-scan and narrow-scan at (b) C 1s region, (c) Mn 2p region, and (d) O 
1s region for the as-prepared Mn3O4/CNFs. (e) N2 adsorption/desorption isotherm of the 
Mn3O4/CNFs sample and their pore size distribution curve (inserted). (f) SEM photographs of the 
Mn3O4/CNFs. 

 

Figure 3. XPS spectra: (a) wide-scan and narrow-scan at (b) C 1s region, (c) Mn 2p region, and (d) O 1s
region for the as-prepared Mn3O4/CNFs. (e) N2 adsorption/desorption isotherm of the Mn3O4/CNFs
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Nanomaterials 2020, 10, 216 5 of 10

3.2. Electrochemical characterization of Al-Air batteries

Figure 4 shows the rate discharge performance of Al-air batteries at various current densities
(from 0.1 to 3.0 mA/cm2). The voltage plateaus are stable at 1.72 to 1.08 V with increasing current
densities, suggesting that the Al-air batteries exhibit a good stability over a wide range of discharge
currents. Discharge curves of Al-air battery at 2.0 mA/cm2 are given in Figure 4b. The specific capacity
is calculated as 1273 mAh/cm2, which is closed to the value (1287.3 mAh/cm2) reported in the previous
work of flexible Al-air battery [16].
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To further investigate the mechanical flexibility, the Al-air batteries are intentionally bended with
different angles as shown in Figure 5a. Figure 5b shows the rate discharge performance of the batteries
at different bending angles (platform, 60, 90, 120 and 150◦). The discharge voltage remains almost
unchanged at bending angles of 120 and 150◦. While the discharge voltage plateaus decrease obviously
at high current densities when decreasing the bending angle to 90 and 60◦, which is similar to the study
reviewed by Liu et al. [6]. For instance, the discharge voltage is 1.01 V at the state of 60◦ bending at
a current density of 3.0 mA/cm2. There is about 12% more decrease than that in platform state (1.15V).
In order to study the effects of bending angles on the discharge property, EIS measurements were
performed at different conditions. The Nyquist plots as shown in Figure 5c consist of two semicircles
in the high and low frequency regions, which can be fitted to the given equivalent circuit model.
The circuit consists of five elements: solution resistance (Rs), resistance at the electrode/electrolyte
interface (Rint), resistance of the charge transfers during the electrochemical process (Rct) and constant
phase elements associated with the capacitances arising at the electrode/electrolyte interface (Qint and
Qdl). The resistance components are summarized in Table 1. Remarkably lower resistance values are
seen for batteries at flat state compared with that of the batteries at different bending state. The low
value Rint for the flat state is associated with the fully contact between the electrolyte and electrode.
The intimate contact support providing a facile electron pathway, and leading to a faster reaction.
In contrast, the bending area of the battery in a bending state will bear a certain bending tension, which
will cause slight displacement at the electrode/electrolyte interface in other areas and increase the
contact resistance. Reducing the bending angle is equivalent to reducing the bending radius, which
would increase the bending tension and cause more displacement [35]. This explains why the contact
resistance increases as the bending angle decreases. As shown in Figure 5c, Al-air battery exhibits the
smallest resistance Rint and Rct at platform state, suggesting that the bending state relatively decreased
the conductivity of the batteries. A similar phenomenon was also found in the study of Peng [17] for
flexible Zn-air battery.
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Table 1. The resistance values of the equivalent circuit elements based on EIS measurements of
Al-air batteries.

Element Flat 150◦ 120◦ 90◦ 60◦

Rint (Ω) 0.56 0.62 0.75 0.87 0.98
Rct (Ω) 2.64 2.95 3.12 4.63 5.21

The impedance spectra of Al-air batteries as a function of time are plotted in Figure 6 at static
bending state. Take 120◦ bending as an example; the EIS behavior of the system can be characterized by
a high frequencies capacitive loop related to the charge transfer process owing to the dissolution of Al
anode and a second capacitive loop at low frequencies due to the growth of side reaction products [36].
The diameter of the capacitance loops is increased as a function of time. Al(OH)3 is the main side
reaction product during the electrochemical reaction. Since Al3+ ions are thermodynamically unstable,
Al(OH)3 are formed when Al comes into contact with alkaline electrolyte. The generated Al(OH)3 are
difficult to dissolve in the solid electrolyte and will accumulate at the interface between the electrolyte
and anode. For this reason, the charge transfers and inter resistance increase as a function of time.
The electrochemical performance of the solid Al-air batteries decreased as the reaction proceeds.
Effective control of Al corrosion in alkaline electrolyte is very important for flexible Al-air batteries.

Nanomaterials 2020, 10, 216 6 of 10 

 

 

 
Figure 5. (a) Al-air batteries at different bending angles. (b) Rate discharge profiles and (c) EIS plots 
for Al-air batteries at different bending angles. 

Table 1. The resistance values of the equivalent circuit elements based on EIS measurements of Al-air 
batteries. 

Element Flat 150° 120° 90° 60° 
Rint (Ω) 0.56 0.62 0.75 0.87 0.98 
Rct (Ω) 2.64 2.95 3.12 4.63 5.21 

The impedance spectra of Al-air batteries as a function of time are plotted in Figure 6 at static 
bending state. Take 120° bending as an example; the EIS behavior of the system can be characterized 
by a high frequencies capacitive loop related to the charge transfer process owing to the dissolution 
of Al anode and a second capacitive loop at low frequencies due to the growth of side reaction 
products [36]. The diameter of the capacitance loops is increased as a function of time. Al(OH)3 is the 
main side reaction product during the electrochemical reaction. Since Al3+ ions are 
thermodynamically unstable, Al(OH)3 are formed when Al comes into contact with alkaline 
electrolyte. The generated Al(OH)3 are difficult to dissolve in the solid electrolyte and will accumulate 
at the interface between the electrolyte and anode. For this reason, the charge transfers and inter 
resistance increase as a function of time. The electrochemical performance of the solid Al-air batteries 
decreased as the reaction proceeds. Effective control of Al corrosion in alkaline electrolyte is very 
important for flexible Al-air batteries.  

 
Figure 6. Impedance spectra presented in Nyquist plots of Al-air batteries as a function of time. 

Figure 7a shows the discharge curves of the Al-air batteries under continuously dynamic 
bending (90 and 120°) state. The batteries complete a bending in the span of 10 s. The voltage plateaus 
decreased obviously at 90° bending, and this might be attributed to the loose contact between the 
electrodes and electrolyte. As can be seen from the inset in Figure 7a, the variation of the voltage 

Figure 6. Impedance spectra presented in Nyquist plots of Al-air batteries as a function of time.



Nanomaterials 2020, 10, 216 7 of 10

Figure 7a shows the discharge curves of the Al-air batteries under continuously dynamic bending
(90 and 120◦) state. The batteries complete a bending in the span of 10 s. The voltage plateaus decreased
obviously at 90◦ bending, and this might be attributed to the loose contact between the electrodes and
electrolyte. As can be seen from the inset in Figure 7a, the variation of the voltage during the bending
is closely related to the bending frequency. The peak and valley values of the voltage appeared when
the batteries were at the state of platform and 120◦ bending; we thought that there may be a slight
separation between the electrodes and electrolyte. Figure 7b demonstrates the continuous discharge
of the Al-air battery at 2 mA/cm2 under 120◦ dynamic bending state. The discharging time is 5.29 h,
and the corresponding specific capacities is 1021 mAh/cm2, which is 81.7% of that under platform state.
After continuous bending for 1000 times, the air cathode is not broken in a macroscopic view as shown
in Figure 7c. We observed the bending area of the air cathode with SEM in Figure 7d, and no cracks
are detected in the three-dimensional network structure. It proves that the cathode is resistant to the
repeated bending.
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In order to evaluate the behavior of the catalysts in ORR before and after bending for 1000 times,
the electrochemical performance of the air cathodes towards the ORR are investigated by half-cell
testing at a rotation rate of 1600 rpm. As can be seen from Figure 8a and Table 2, the electrode before
bending exhibits high electrocatalytic activity toward ORR with a comparable onset potential of 0.92 V
to that of commercial 20% Pt/C (0.95 V), along with a higher limiting current density of 5.52 mA/cm2

than that of Pt/C (4.49 mA/cm2), indicating the promising ORR properties. By contrast, the sample after
bending for 1000 times exhibits the lower activity with the ORR onset potential of 0.83 V, while the low
activity of the cathode could be attributed to the hydroxide precipitate. The hydroxide precipitate
is formed during the electrochemical reaction and is difficult to dissolve in the solid electrolyte.
The hydroxide precipitate decreases the specific surface areas and reduces the active sites’ exposure [37].
The galvanodynamic discharge curves and the corresponding power densities of the Al-air battery are
further studied after 120◦ bending for 1000 times as shown in Figure 8b. The maximum power density
of the battery is 56.5 mW/cm2 after bending for 1000 times, slightly lower than that without bending
test (75.5 mW/cm2). The excellent performance could be attributed to the interconnected open-pore
microstructure of cathode and the encapsulated catalyst; the free space between constituent fibers can
attenuate the bending stress effectively without damaging the fibers [38].
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Table 2. ORR activities and kinetics for different catalysts.

Catalyst Onset Potential
(V vs. RHE)

Limiting Current
Density @1600 rpm

(mA/cm2)

Electron Transfer
Number (n)

Mn3O4 nanoparticles
(before bending) 0.92 5.52 4.1

Mn3O4 nanoparticles
(after bending for 1000 times) 0.83 5.26 3.6

Pt/C 0.95 4.49 4.0

4. Conclusions

In summary, bending-resistant cathodes have been successfully developed by direct
electrospinning for highly flexible Al-air batteries. The results showed that the electrochemical
performance is slightly affected by the bending state, and this could be attributed to the higher internal
resistance due to the separation between the electrodes and electrolyte during the bending. The battery
can be discharged over 1.2 V under 2 mA/cm2 at dynamic bending state, and the specific capacity
could reach up to 1021 mAh/cm2. The assembled Al-air batteries with the bending-resistant cathodes
exhibit excellent electrochemical and mechanical performance. This study has great potential for the
application of Al-air batteries in wearable energy-storage devices.
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