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Simple Summary: Radiogenomics is the science of studying imaging–pathology associations on
a genomic level. With the potential for improved non-invasive characterization of tumors to pre-
dict survival; metastasis; and/or treatment response, it is important for clinicians to have a basic
appreciation of this nascent field. The genetic basis for clear cell kidney cancer is more well-defined
than many other malignancies, making it an ideal target for radiogenomic analysis. We first define
the field of radiogenomics in diagnostic radiology, demonstrating that image biomarkers can be
derived either qualitatively or quantitatively, the latter of which often employs machine learning. We
then summarize existing literature establishing relationships between image features and single or
multiple gene expression patterns in clear cell renal cell carcinoma. Finally, we outline limitations of
the scope and methodology of current radiogenomic studies in ccRCC and propose future directions
for this field to progress from an experimental setting into the mainstream clinical workflow.

Abstract: With improved molecular characterization of clear cell renal cancer and advances in texture
analysis as well as machine learning, diagnostic radiology is primed to enter personalized medicine
with radiogenomics: the identification of relationships between tumor image features and underlying
genomic expression. By developing surrogate image biomarkers, clinicians can augment their ability
to non-invasively characterize a tumor and predict clinically relevant outcomes (i.e., overall survival;
metastasis-free survival; or complete/partial response to treatment). It is thus important for clinicians
to have a basic understanding of this nascent field, which can be difficult due to the technical
complexity of many of the studies. We conducted a review of the existing literature for radiogenomics
in clear cell kidney cancer, including original full-text articles until September 2021. We provide a basic
description of radiogenomics in diagnostic radiology; summarize existing literature on relationships
between image features and gene expression patterns, either computationally or by radiologists; and
propose future directions to facilitate integration of this field into the clinical setting.

Keywords: clear cell kidney cancer; radiogenomics; radiomics; machine learning; gene expression

1. Introduction

Beginning in the late 1980s, our understanding of the pathology of kidney cancer
has gradually evolved beyond characterization of histological patterns to identification
of specific genetic changes [1,2]. Discovery of pathologically relevant genetic pathways
has allowed for discrimination both between and among renal cancer subtypes. The
ultimate goal of these endeavors is to create a more personalized approach to predicting
disease prognosis and response to treatment. With improved ability to characterize image
features, particularly through advances in machine learning, diagnostic radiology is also
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primed to enter personalized medicine through the field of radiogenomics. Here, we define
this nascent field and review available studies in clear cell kidney cancer involving the
association of single-gene mutations as well as more complex gene expression patterns
with imaging phenotypes.

2. What Is Radiogenomics?

Radiogenomics is the science of identifying the associations between imaging features
of a lesion and the underlying genomic signatures. For instance, by developing radio-
genomics signatures, one can predict the tumor response to treatment by combining the
imaging findings and genomic data. This process can also be used to decode the genetic
makeup of a mass seen on imaging that fits the radiogenomic profile developed for that
specific mass subtype [3–5]. One of the advantages of this approach is a complete eval-
uation of the makeup of the mass as opposed to tissue sampling that only evaluates a
small portion of the tumor, which may underestimate the dominant molecular pattern
given intra-tumoral heterogeneity [6]. Thus, by identifying surrogate imaging biomarkers
that represent distinct genotypes with prognostic significance, radiogenomics can improve
traditional tumor genetic testing through more comprehensive tumor characterization via
wider anatomic coverage. As with current biomarkers, these imaging phenotypes should
have prognostic significance; that is, to better define, beyond size and growth rate criteria
alone, appropriate candidates for active surveillance and/or systemic treatment regimens
in the case of advanced disease.

Imaging characteristics can be obtained either qualitatively (i.e., discrete variables
scored by one or more radiologists) or quantitatively. Some of the quantitative variables
such as size and degree of contrast uptake/washout can be calculated by the clinicians,
while more complex relationships between individual image pixels cannot be ascertained
by the naked eye. Conversion of these relationships into mineable quantitative features
is the practice of radiomics [5,7,8]. The region of interest (either a single slice or the
full volume of the tumor) is marked within an image (segmentation) to be recognized
by computer software for image feature extraction. Differential pixel intensities of an
image can be captured into either first order features (i.e., frequency distribution of pixel
intensities without any spatial information such as skewness or kurtosis) or higher order
features (i.e., spatial relationship between different pixel intensities such as gray level
discrimination matrix). Given the number of extracted features (at times exceeding 1000)
and the assumed nonlinear relationship between features and the dependent variable (i.e.,
presence or absence of a genetic mutation), machine learning is often employed to establish
such relationships. More specifically, the data are split into training and testing sets, with
an assigned algorithm developing relationships among relevant features using training
data. The ability of the model to accurately classify patients into discrete categories (i.e.,
mutation or no mutation) is employed on the test data, using the known mutation status
as the comparator of efficacy. Typically, prior to model training, the number of extracted
features is reduced, either by eliminating redundant features (i.e., those with high intra-
class correlation) and inconsistent features (i.e., those not seen if tumor is segmented by a
different radiologist), with or without the aid of machine learning. In summary, the steps of
a radiomics algorithm are segmentation; feature extraction; feature selection; and, in most
cases, machine learning. This workflow is summarized in Figure 1.

Compared to other malignancies, the genetic basis of clear cell kidney cancer is well-
established, with a relative paucity of genes implicated in pathogenesis. Thus, kidney
cancer is a prime target for initial application of radiogenomics. Below, we review available
studies in clear cell renal cell cancer (ccRCC) radiogenomics, focusing on exploratory
investigations into relationships between imaging features and mutations in single genes;
gene expression patterns; methylation changes in specific genes; and microRNA expression.
The goal of each of these investigations is to better predict relevant clinical endpoints, such
as overall survival; development of metastasis; and treatment response.
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We conducted the review using PubMed, EMBASE, Google Scholar, and Web of Sci-
ence. We searched by title/abstract in the following databases using the search parameters:
“artificial intelligence or radiomics or machine learning or deep learning or radiogenomics”
AND “clear cell” AND “kidney or renal”. Articles published up to September 2021 were
included. Eliminating redundant articles, 354 articles were identified from our search
parameters. Titles from articles were screened out if they did not involve a correlation of
imaging features to gene expression patterns. Through this manner, we identified 20 full
text, original study articles that were incorporated into this review. See Figure 2 for a
summary of the workflow for inclusion of studies for this review. Table 1 summarizes these
studies with their relevant findings.
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focal masses to ensure matching of radiologically identified lesion with appropriate pathological 
specimen. Classification of machine learning algorithms is typically binary and thus analyzed using 
receiver operated curve (ROC), with area under the curve (AUC) used as benchmark for machine 
performance. Image created using BioRender.com (accessed on 27 November 2021). 
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Figure 2. Flowchart demonstrating the search strategy and selection criteria for the articles included
in this review.
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Table 1. Summary of 20 reviewed articles on radiogenomics in clear cell renal cell carcinoma. Nature of feature extraction is indicated by “Radiologist” if features are
scored by one or more radiologists. Elsewise, software derived features are indicated by “Computational”. Number of selected features indicated in parenthesis.
TAT (total adipose tissue), VAT (visceral adipose tissue), AUC (area under the curve), OR (odds ratio), HR (hazard ratio), CSS (cancer specific survival), OS (overall
survival), PFS (progression free survival).

Author Title Year of Publication Patient #
Feature

Extraction
(Number)

±Machine
Learning Image Phase Used Genes Studied Outcome

Karlo et al. [9]

Radiogenomics of
Clear Cell Renal Cell

Carcinoma:
Associations between
CT Imaging Features

and Mutations

2014 233 Radiologist (10) − CT BAP1
VHL KD5MC

BAP1 and KD5MC: renal
vein invasion (OR 3.50 and

3.89)
VHL: ill-defined margin (OR
0.49), nodular enhancement

(OR 2.33), intratumoral
vasculature (OR 0.51)

Shinagare et al. [10]

Radiogenomics of clear
cell renal cell

carcinoma: Preliminary
findings of the cancer

genome atlas–renal cell
carcinoma

(TCGA–RCC) imaging
research group

2015 103 Radiologist (6) − Contrast-enhanced
CT

BAP1
MUC-4

BAP1: Ill-defined margin and
calcification

MUC4: Exophytic growth

Greco et al. [11]

Relationship between
visceral adipose tissue
and genetic mutations
(VHL and KDM5C) in

clear cell renal cell
carcinoma

2021 97 Computational
(3) − CT KDM5C vs. VHL KDM5C higher TAT and VAT

area than VHL

Feng et al. [12]

Identifying BAP1
Mutations in Clear-Cell
Renal Cell Carcinoma

by CT Radiomics:
Preliminary Findings

2020 54 Computational
(58)

+ (Random
Forest) CT BAP1 AUC 0.77

Kocak et al. [13]

Machine
learning-based

unenhanced CT texture
analysis for predicting
BAP1 mutation status
of clear cell renal cell

carcinomas

2020 65 Computational
(6)

+ (Random
Forest) CT BAP1 AUC 0.897



Cancers 2022, 14, 793 6 of 19

Table 1. Cont.

Author Title Year of Publication Patient #
Feature

Extraction
(Number)

±Machine
Learning Image Phase Used Genes Studied Outcome

Ghosh et al. [14]

Imaging-genomic
pipeline for identifying
gene mutations using

three-dimensional
intra-tumor

heterogeneity features

2015 78 Computational
(1636)

+ (Random
Forest)

CT nephrographic
phase BAP1 AUC 0.71

Kocak et al. [15]

Radiogenomics in
Clear Cell Renal Cell
Carcinoma: Machine

Learning-Based
High-Dimensional

Quantitative CT
Texture Analysis in
Predicting PBRM1

Mutation Status

2019 45 Computational
(10)

+ (Random
Forest) CT PBRM1 AUC 0.987

Chen et al. [16]

Reliable gene mutation
prediction in clear cell

renal cell carcinoma
through

multi-classifier
multi-objective

radiogenomics model

2018 57 Computational
(43)

+ (6 classifier
composite) CT

VHL
PBRM1
BAP1

AUC
0.88
0.86
0.93

Mutation status prediction

Marigliano et al. [17]

Radiogenomics in clear
cell renal cell

carcinoma: correlations
between advanced CT

imaging (texture
analysis) and

microRNAs expression

2019 20 Computational
(6) − CT miR-21-5p

R2 = 0.25 between entropy
and change in miR-21-5p

expression between tumor
and surrounding

parenchyma

Cen et al. [18]

Renal cell carcinoma:
predicting RUNX3

methylation level and
its consequences on

survival with CT
features

2019 106 Radiologist (9) − CT RUNX3 methylation

High methylation: left side
(OR 2.70), ill-defined margin

(OR 2.69), intratumoral
vascularity (OR 3.29)—AUC

of 0.73
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Table 1. Cont.

Author Title Year of Publication Patient #
Feature

Extraction
(Number)

±Machine
Learning Image Phase Used Genes Studied Outcome

Yu et al. [19]

Renal Cell Carcinoma:
Predicting DNA

Methylation Subtyping
and Its Consequences
on Overall Survival

With Computed
Tomography Imaging

Characteristics

2020 212 Radiologist (12) − CT Tumor methylation
(M1-M3 subtype)

M1: >7 cm (OR 2.45), necrosis
(OR 4.76)

M2: necrosis (OR 0.047),
enhancement (OR 0.083)

M3: Long axis > median (OR
0.30), necrosis (OR 3.26)

Jamshidi et al. [20]

The radiogenomic risk
score: construction of a

prognostic
quantitative,
noninvasive

image-based molecular
assay for renal cell

carcinoma

2015 70 Radiologist (4) − Contrast CT SPC gene signature
RRS correlation with SPC
(R = 0.45), HR 3.32 for CSS

after surgery

Jamshidi et al. [4]

The radiogenomic risk
score stratifies

outcomes in a renal cell
cancer phase 2 clinical

trial

2016 41 Radiologist (4) − Contrast CT SPC gene signature

PFS: 6 mo (high RRS) vs.
>25 mo (low RRS)—After

bevacizumab tx
OS: 25 mo (high RRS) vs.
>37 months (low RRS)

Bowen et al. [21]

Radiogenomics of clear
cell renal cell

carcinoma:
associations between

mRNA-based
subtyping and CT
imaging features

2019 177 Computational
(8) − CT mRNA subtyping

(m1-m4)

M1: OR 2.1—well-defined
margin

M3: OR 0.42 (well-defined
margin), OR 2.12 (renal vein

involvement)

Yin et al. [22]

Integrative radiomics
expression predicts

molecular subtypes of
primary clear cell renal

cell carcinoma

2018 8 Computational
(4)

+ (Fisher’s linear
discriminant

analysis)
PET and MRI Molecular subtype of

ccRCC (ccA vs. ccB)
Accuracy of

classification—86.96%
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Table 1. Cont.

Author Title Year of Publication Patient #
Feature

Extraction
(Number)

±Machine
Learning Image Phase Used Genes Studied Outcome

Lee et al. [23]

Integrative
radiogenomics

approach for risk
assessment of
post-operative
metastasis in

pathological T1 renal
cell carcinoma: a pilot
retrospective cohort

study

2020 58 Computational
(4)

+ (Random
Forest) Contrast CT

Multiple
gene-mediated

pathways
AUC 0.955—Metastasis

Zhao et al. [24]

Validation of CT
radiomics for

prediction of distant
metastasis after

surgical resection in
patients with clear cell

renal cell carcinoma:
exploring the

underlying signaling
pathways

2021 547 Computational
(9)

+ (Logistic
regression) CT 19 gene pathway

signatures AUC 0.84—Metastasis

Lin et al. [25]

Radiomic profiling of
clear cell renal cell
carcinoma reveals

subtypes with distinct
prognoses and

molecular pathways

2021 160 Computational
(122)

+ (Consensus
clustering) Unenhanced CT

VHL, MUC16, FBN2,
and FLG

Cell cycle related
pathways

C1: Lower OS and PFS than
C2 and C3

C1: Lower VHL expression
C3: Higher FBN2 expression

Huang et al. [26]

Exploration of an
integrated prognostic

model of
radiogenomics features
with underlying gene
expression patterns in

clear cell renal cell
carcinoma

2021 205 Computational
(4)

+ (LASSO/SVM
for feature

selection, random
forest for

classification)

Contrast CT Gene modules

AUC 0.837, 0.806 and
0.751—1-, 3-, and 5-year OS

(combined radiogenomic
model)
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Table 1. Cont.

Author Title Year of Publication Patient #
Feature

Extraction
(Number)

±Machine
Learning Image Phase Used Genes Studied Outcome

Zeng et al. [27]

Integrative
radiogenomics

analysis for predicting
molecular features and

survival in clear cell
renal cell carcinoma

2021 207 Computational
(4)

+ (Random
Forest) Contrast CT

VHL, BAP1, PBRM1,
SETD2, molecular
subtypes (m1–m4)

AUC 0.846—5-year OS
(Combined radiogenomic

model)

The # refers to number (as in number of patients).
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3. Associations between Image Features and Mutations in Single Genes Commonly
Implicated in ccRCC

While mutations in Von-Hippel Lindau (VHL) gene have long been implicated in the
pathogenesis of ccRCC [1,2], the Cancer Genome Atlas (TCGA) helped identify additional
causative genes, including those in the chromosome 3p region adjacent to VHL, such as
polybromo-1 (PBRM1); BRCA associated protein 1 (BAP1); and SET domain containing 2
(SETD2) [28]. Indeed, while 90% of sporadic clear cell kidney cancers are associated with
3p chromosomal deletions, a minority of these tumors have wild type VHL expression,
indicating the independent role of other genes within this region in tumorigenesis. Addi-
tional relevant genes for ccRCC identified by TCGA include lysine specific demethylase
5C (KDM5C) and mucin 4 (MUC-4) [29,30]. Although the presence of a VHL mutation
itself has not been shown to have any predictive or prognostic value, important clinical
differences emerge with respect to the mutational status of other genes. For instance,
PBRM1 mutational status may determine response to immune checkpoint therapy [31,32];
BAP1 mutations are associated with more aggressive tumors [28,33]; tumors with SETD2
and KDM5C mutations are linked to unfavorable prognosis in the localized setting [34–36];
and tumors with MUC4 mutation have a favorable prognosis [37].

Karlo and others [9] sought to assess whether mutations in VHL; KDM5C; SETD2;
and/or BAP1 were associated with any image features from computed tomography (CT).
A total of 233 patients from two cohorts (i.e., MSKCC and the Cancer Imaging Archive
(TCIA)) with available CT and genomic analysis had their corresponding tumors scored on
eight qualitative (e.g., presence of necrosis) and two quantitative (e.g., tumor size) features
via consensus from three radiologists. Significant image-genotype correlations were seen
with VHL, KDM5C, and BAP1 mutations. Tumors with VHL mutations were associated
with a well-defined tumor margin; nodular enhancement; and presence of intratumoral
vascularity. KDM5C and BAP1 mutations were more predominant in tumors with renal
vein invasion. Finally, KDM5C mutant tumors tended to be hypo-enhancing relative to the
renal cortex in the CT nephrographic phase.

Shinagare et al. [10] performed a similar type of hypothesis-generating study; here,
103 patients exclusively from the Cancer Imaging Archive (TCIA) had six imaging features
on either contrast-enhanced CT (79% of cohort) or MRI assessed by three radiologists. For
each feature, the median or most common score (depending on whether the variable was
qualitative or quantitative) was used to determine an association with tumor genotype.
Despite the overlap in image features and patients with Karlo et al. [9], different results
were obtained. With respect to VHL; KDM5C; and BAP1 mutational status, there was a
significant association only with BAP1. Namely, tumors with BAP1 mutations were more
likely to have ill-defined margins and calcifications. Additionally, MUC-4 mutation was
associated with an exophytic tumor growth pattern.

Despite the inconsistency in results between these two studies, plausible biological
explanations can be ascertained for these surrogate imaging biomarkers. For instance,
BAP1 mutations confer aggressive traits to renal tumors, which may increase the likelihood
of renal vein invasion as well as promote de-differentiation and increased proliferation,
both of which can account for a poorly visualized tumor margin. The unregulated HIF
expression with VHL mutation, resulting in upregulation of angiogenesis factors, can
explain the prominence of intratumoral vascularity seen in these tumors.

Greco et al. [11] sought to characterize differences, if any, between patients with
VHL and KDM5C mutant tumors in terms of abdominal fat content. With 52 VHL and
10 KDM5C mutant tumors derived from the TCIA cohort, patients with KDM5C mutations
had higher total and visceral abdominal fat content than those with VHL tumor mutations.
The authors also included a cohort of patients with no renal tumors (n = 35) and noted that
ccRCC overall is associated with higher total and visceral fat content. There is evidence that
fat deposits in obese individuals may promote oncogenesis and tumor progression through
a chronic inflammatory state created through adipokines [38,39], which may explain the
study results, given the negative prognostic biomarker of localized KDM5C mutant tumors.
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Apart from qualitative and quantitative scoring derived from radiologists, associations
between image features and single gene alterations have also been studied using radiomics
and machine learning. For instance, Feng et al. [12] used a random forest classifier to assign
tumors from 54 TCIA patients (45 BAP1 wildtype and 9 BAP1 mutants) to either presence
or absence of BAP1 mutation based on 58 quantitatively derived radiomics features, with
an AUC of 0.77. Image features from this study were derived from the nephrogenic CT
phase, with the most predictive being a higher order feature (gray level run length matrix—
number of consecutive voxels of a similar gray level intensity within a given direction [8].
Kock et al. [13] also used a random forest classifier to predict BAP1 tumor mutational status
but used an unenhanced CT for easier availability and improved homogeneity between
image studies, the latter of which is relevant in the multi-institutional collaboration of
TCIA. Utilizing CTs of 65 patients (13 BAP1 mutant tumors and 52 BAP1 wildtype tumors),
the random forest classifier was trained on 6 selected features, achieving an AUC of 0.897.
Although Ghosh et al. had previously shown features extracted from nephrographic phase
as opposed to unenhanced phase to be most predictive of BAP1 mutation [14], it should
be noted that different extracted features from Feng et al. [12] were used to train this
model; indeed, the dominant feature class was first-order. Nevertheless, half of the selected
features [13] were higher order, indicating that region of interest (ROI) analysis without
taking into account the spatial relationship of encapsulated voxels (i.e., utilizing only first
order features) was insufficient for optimal prediction of BAP1 mutation status.

In addition, to study results potentially being affected by the image phase used and
features selected, the type of machine learning algorithm can have an impact on the
predictive performance of the model classifier. For instance, Kocak et al. [15] assessed
the differential performance of two algorithms (random forest classifier and artificial
neural network) in predicting the presence or absence of a PBRM1 mutation. In studying
45 patients (29 PBRM1 tumor wild-type and 16 PBRM1 mutants) from the TCIA using
the corticomedullary phase of CT, the random forest classifier outperformed the artificial
neural network in predicting tumor genotype, with AUC of 0.987 and 0.925, respectively. In
this study, a machine learning algorithm was used to select the extracted radiomic features
as well as train the model using the selected features. In other words, while 828 initial
features were extracted from the CT, the final features used to train the model classifier
differed depending on the algorithm (i.e., 10 features selected by artificial neural network
and 4 features by random forest classifier). Indeed, only three selected features were shared
by both algorithms, accounting for discrepancy in results beyond the intrinsic properties of
the algorithms themselves. Regardless, two out of the top three features most predictive
of PBRM1 mutation status were a higher order for both types of model classifiers. Across
both types of algorithms, tumors with the PBRM1 mutation had greater pixel heterogeneity
of gray level intensity.

Rather than comparing different machine learning algorithms, Chen et al. [16] used
six different types of classifiers to generate the composite probability of different tumor
genetic mutations. Here, 43 selected features from corticomedullary phase CT scan (a total
of 57 patients from TCIA) were used to train and test each model classifier (support vector
machine; logistic regression; discriminant analysis; decision tree; K-nearest neighbor; and
naïve Bayesian). The predictive capability of the multi-classifier algorithm was superior to
any single classifier, with AUC for predicting VHL; PBRM1; and BAP1 mutations being
0.88; 0.86; and 0.93, respectively. The selected features common to all six classifiers that
discriminated VHL mutational status were both first order (mean and kurtosis). Tumors
with VHL mutation had lower mean voxel intensity and had less variation in pixel intensity
values (i.e., less tailedness or kurtosis). On the other hand, a relatively equivalent proportion
of first and higher order features were selected across all six classifiers for distinguishing
PBRM1 mutation class. Finally, more higher order features were common to all six classifiers
for BAP1 classification, with BAP1 mutant tumors having greater heterogeneity in terms of
voxel intensity.
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4. Beyond Mutations in Common Pathogenic Single Genes in Clear Cell Kidney
Cancer: Establishing Image Biomarkers for Epigenetic, Regulatory, and Multiple Gene
Expression Signatures

Despite single gene mutations being implicated in renal cancer pathogenesis, kidney
cancer development is reliant not just on any one aberrant gene product, but also on changes
in regulatory molecules for both the gene product and its downstream effectors. While
our understanding of these modulators of gene expression is in its infancy, preliminary
investigations into relationships between imaging features and these molecules have been
conducted.

For instance, Marigliano et al. [17] sought to determine whether there was any as-
sociation between intensity-based pixel features (e.g., mean pixel attenuation) of ccRCCs
seen on contrast CT and the amount of mi-21-5p, a micro-RNA whose expression was
previously shown to be correlated with poor cancer specific survival following RCC resec-
tion [40]. Unlike previous studies, image features were extracted from both the tumor and
the surrounding normal renal parenchyma. In 20 patients, the authors found a significant
positive correlation between change in miR-21-5p expression from tumor to adjacent nor-
mal parenchyma and degree of image entropy (i.e., variation in pixel intensity within the
tumor) [17].

Another regulatory factor implicated in several carcinomas is RUNX3 (runt related
transcription factor 3), which belongs to a family of transcription factors that modulate
major developmental pathways [41,42]. Methylation of this tumor suppressor RUNX3 has
been negatively associated with overall survival in other carcinomas [43,44]. Cen et al. [18]
scored 106 ccRCCs from the TCIA cohort on 9 qualitative CT imaging features and found,
on multivariate regression, that ill-defined tumor margin, left sided tumors, and presence of
intratumoral vascularity significantly predicted elevated RUNX3 methylation levels (AUC
of 0.725). Furthermore, patients with higher methylation levels had lower median overall
survival. The laterality bias is difficult to explain, with additional validation needed, but
intratumoral vascularity and ill-defined margin are both imaging markers associated with
aggressive tumors, which is in line with the negative prognosis associated with RUNX3
methylation.

Other tumor suppressor genes that can be susceptible to methylation-induced silencing
in RCC have been identified, such as Dickkopf1 (DKK1); WNT pathway regulatory genes;
and secreted frizzed related protein (SFRP1) [45,46]. Through the TCGA, three DNA
methylation subgroups in ccRCC (M1-M3) with prognostic implications were identified,
with the M1 subtype found to have the worst overall survival [28]. In assessing tumors
from 212 patients (180 ccRCC cases) from the TCIA cohort on 12 different qualitative CT
imaging features, Yu et al. [19] noted that, on multivariate analysis, a long axis >7 cm and
presence of necrosis was associated with the unfavorable M1 subtype, with an AUC of
0.68. While M2 subtype was mostly characterized by absence of necrosis, the presence of
necrosis was a significant independent predictor of the M3 subtype on multivariate logistic
regression, limiting the utility of that imaging parameter.

As illustrated above, characterizing tumors by a panel of molecular markers, as
opposed to a single entity, may more accurately capture the full extent of their biological
behavior. In this manner, Zhao et al. [47] described 259 genes that predicted survival after
ccRCC surgery independent of grade; stage; and performance status, creating the so-called
SPC (supervised principal components) gene signature. Jamshidi et al. [20] used available
CT and genetic data from 70 patients from a single institution to develop a radiogenomic
risk score (RRS) using the top 4 qualitative CT imaging features that were best associated
with expression of genes within the SPC signature. This score was independently validated
in 77 patients from the same institution at a later time point. In a separate phase II trial
assessing the role of neoadjuvant bevacizumab prior to cytoreductive nephrectomy, RRS
using pre-treatment CT features was able to predict radiological progression free survival
after anti-angiogenic administration [4].
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The Cancer Genome Atlas also helped identify four unique mRNA-based subgroups
in clear cell renal cell cancer: m1–m4 [48]. For instance, M1 contains gene sets involved
with chromatin remodeling and a higher proportion of PBRM1 mutations. On the other
hand, higher deletions of PTEN are seen in the m3 subtype. Bowen et al. scored tumors
from 177 patients from TCIA on 8 CT imaging features and noted that a well-defined tumor
margin was a significant positive predictor of m1 subtype vs. others, whereas the opposite
was true of the m3 subtype [21]. As seen in other qualitative studies, the margin status of
the m1 subtype is in line with its prognostically favorable outcome with respect to overall
survival.

Further genetic expression analysis of ccRCC tumors have revealed two distinct molec-
ular subtypes that are captured by a 34-signature gene model (ClearCode34): ccA and ccB.
CCA is characterized by upregulation of genes involved in angiogenesis, while ccB tumors
have higher cellular differentiation activity (i.e., epithelial to mesenchymal signaling). CCB
tumors are more aggressive, based on higher Furhman grade; increased nodal metastasis;
and worsened cancer specific as well as overall survival [49,50]. Unfortunately, the utility
of this biomarker is hindered due to high intra-tumoral heterogeneity [51], limiting radio-
genomic studies derived from biopsy samples. Yin et al. [22] circumvented this problem
by performing radiomic and genetic expression analysis on different areas of the tumor
from the same patient. A total of 168 features were extracted from 23 tumor ROIs on a
PET/MRI from 8 patients; using sparse partial least analysis (SPLA), 4 radiomic features
(2 first order and 2 higher order) were selected and found to correctly classify the ccRCC
molecular subtype 86.96% of the time.

Thus far, radiomic signatures have been linked to molecular factors with established
prognostic associations; for instance, BAP1 mutation with aggressive tumor phenotype or
ccB with worsened cancer specific survival. However, radiomic analysis can be used for
gene discovery, with associated prognostic and therapeutic implications. That is, machine
learning algorithms can group image features into those that are found to differ based
on clinical outcomes such as metastasis free or overall survival. The genotype of tumors
within each imaging group can then be interrogated to determine the underlying biology
of different image classes, with identification of distinct genetic pathways helping to usher,
for instance, development of new drugs.

Lee et al. [23] used three different machine learning algorithms (i.e., random forest clas-
sifier; logistic regression; and support vector machine) and a training set of 58 patients with
a contrast CT prior to partial or radical nephrectomy to determine differential contributions
of 4 selected image features (only 1 of which was higher order) towards prediction of post-
surgical metastasis. This model was independently validated on 28 patients from the TCIA
with an AUC of 0.89–0.95. Genetic expression analysis was performed on tumors, with
specific image features correlating with genes involved with translation regulation; ECM
interaction; focal adhesion; PI3K-AKT pathway; signaling by notch receptor 1 (NOTCH1);
Wnt signaling pathway; and regulation of actin cytoskeleton. Differences in fibroblast
growth factor expression and amount of T cells were found to correlate with image features,
which have therapeutic implications (i.e., preferential FGFR inhibitor or immunotherapy
for metastatic disease).

In a similar study, Zhao et al. [24] used nine radiomic features selected by machine
learning (eight of which were higher order) to predict development of postoperative
metastasis with AUC of 0.86. With genetic expression analysis and correlation with 9 image
features, 19 gene signatures (ECM interaction; focal adhesion; and PI3K-AKT pathway
were similar sets of genes from the previous study) were constructed that independently
accurately predicted metastasis (AUC of 0.84). Additionally, Lin et al. [25] developed three
distinct radiomic feature classes that, independent of tumor grade and patient age, differed
based on overall survival from unenhanced CT scans of 160 patients. Genetic analysis
revealed that classes differed based on underlying genetic mutations. For instance, class 1
with the lowest overall survival had reduced VHL mutation expression relative to the other
two classes. Class 3 had higher FBN2 expression, which has been previously associated with
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improved overall survival [52,53]. Finally, Huang et al. [26] unearthed a gene expression
module (comprised of 256 genes) that was associated with four selected radiomic features
(75% higher-order) derived from 205 ccRCC patients from the TCIA. These genes mediate
tumor angiogenesis, cell adhesion, and extracellular structure organization. The top four
correlated genes within this module (RPS6KA2, CYYR1, KDR, and GIMAP6) were selected
for incorporation into a machine learning algorithm. A decision classifier integrating
both radiomic and genomic factors was a better predictor of 1-, 3-, and 5-year overall
survival than a classifier using only radiomic features (5-year survival AUC 0.75 and 0.69,
respectively).

5. Limitations and Future Directions

While radiogenomics has the potential to revolutionize a clinician’s diagnostic capa-
bilities, several existing limitations in this field will need to be addressed to allow these
advances to proceed beyond the experimental setting. First, many of the institutional-based
studies fail to have an external validation set from an outside institution, limiting the
generalizability of their findings. In a recent review, only 7% of studies utilizing radiomic
analysis of renal masses had this type of validation [54].

Despite not having an independent validation set, studies attempt to nonetheless
seek generalizability by relying on cohorts from TCIA, which are comprised of images
from multiple institutions. However, as institutions differ in image processing protocols, a
different problem emerges, particularly for radiomic analysis, with the type and quantity
of features extracted dependent on the specific way an image is acquired and processed
(e.g., number of slices used for segmentation) [5,54].

A significant time burden in the radiomics workflow is manual segmentation, es-
pecially if more than one slice is considered. Manual segmentation is also subject to
inter-observer variability [55,56]; although, some studies have tried to address this issue
through multi-reader segmentation. As software to achieve reliable automated segmen-
tation improves and becomes more available, large imaging sets can not only managed
efficiently, but segmentation of tumor for radiomic analysis can be performed prospectively
as part of the diagnostic radiologist’s clinical workflow [5].

Apart from image acquisition differences, other aspects of heterogeneity within ra-
diomic studies can be seen, accounting for discrepancies in results. For instance, studies
investigating the same question (i.e., whether radiomic features can predict the presence
of BAP1 mutations) use different phases of CT (i.e., nephrographic vs. excretory vs. un-
enhanced). Radiomic studies have been inconsistent in the CT phase most predictive of
outcomes. As was illustrated above, features derived from CT nephrographic phase was
most predictive of BAP-1 mutation status [14]; however, Nguyen et al. found that features
from the corticomedullary phase was most predictive of renal mass characterization (e.g.,
RCC vs. benign) [57]. Just as is performed by the practicing radiologist, the optimal strategy
may be to incorporate features from all CT phases into radiomic analysis.

Studies also differ in the extent of feature extraction, with some not obtaining higher
order features from image filtration. Additionally, there is variability in the manner through
which feature selection is performed, with some but not others employing machine learning
to eliminate redundant and/or inconsistent features. Another important, yet underutilized,
consideration for feature selection is that predictive model performance may be improved
if features related to slice thickness and tumor size are also eliminated [58]. The former
is an important consideration with studies relying on multi-institutional databases such
as TCIA. With regard to the latter, as radiomics is meant to augment current diagnostic
capability, development of radiomic signatures should only involve features that are not
easily calculable in the clinical setting.

Thus, for radiomic studies to be reliably compared against each other, standardization
of image processing (including acquisition and segmentation); feature extraction; and
feature selection needs to be established. Perhaps an international consensus conference can
be conducted for this purpose, with stakeholders from different fields outlining guidelines
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(i.e., radiologists; computer scientists; technicians; physicists; and treating clinicians).
Standardization will also ensure that multi-disciplinary collaboration can be robustly
performed from high quality and well curated images. Large sample sizes are necessary
to improve generalizability of machine learning classifiers. With low sample size (i.e.,
<1:10 ratio of features: number of patients/tumors in a particular group [5]), overfitting of
data can occur, preventing the model from performing well on other types of data, both
within and outside a given institution. Additionally, in order to further promote replication
of results in other institutions, source code of decision classifiers should be made public,
which is not routine practice at present [59].

Currently, the vast majority of current radiomic and radiogenomic studies focus on CT.
This approach is sensible at present, given that this imaging modality is the predominant
means of evaluating renal masses worldwide. However, with its lack of radiation, MRI
has grown in popularity, particularly as more serial imaging is incorporated into kidney
tumor evaluation (i.e., active surveillance or treatment response in metastatic disease). The
main advantage of MRI is the additional information that can be obtained from a variety
of imaging sequences, such as T2 or DWI, which may improve image prediction models
by providing additional radiomic features. Only one study reviewed here utilized MRI
for computational image feature extraction; it is hoped that additional studies utilizing
MRI for radiogenomic analysis will be conducted as experience and/or availability of this
imaging modality grows.

In terms of scope of study, radiogenomic analysis thus far has largely focused on molec-
ular features of the tumor itself. However, the tumor exists within a microenvironment
that modulates its growth and development. For instance, Zhong et al. [60] identified two
subtypes of ccRCC from analysis of the TCGA that differed based on checkpoint inhibitor
and lymphocyte expression. These differences in immune-related tumor microenvironment
have prognostic relevance; for instance, the subtype with elevated checkpoint inhibitor
expression was predicted to have reduced response to immunotherapy. Some preliminary
radiogenomic work characterizing the tumor ecosystem has been employed, such as Greco
et al. [11] characterizing visceral fat content with ccRCC mutation as well as Marigliano
et al. [17] and Lee et al. [23] also incorporating the surrounding normal parenchyma in
feature extraction. It is hoped that as the field of radiogenomics evolves along with our
understanding of the biology of the tumor microenvironment, additional radiomic analysis
of the parenchyma and perinephric fat surrounding a tumor can be performed to establish
more comprehensive surrogate imaging biomarkers.

While a clear advantage of establishing imaging biomarkers of underlying genetic
activity is that images provide wider anatomical coverage than can be procured by a biopsy
sample, many radiogenomic studies still correlate image features of an entire tumor with
genetic information from a biopsy specimen. Furthermore, most of the time, the exact
location of the biopsy is not known, preventing radiomic analysis of the corresponding
area of a tumor to achieve a more optimal association study given genetic intra-tumor
heterogeneity [61]. For this reason, the study by Yin et al. [22] was unique in that radiomic
analysis was performed at different areas of a single tumor, with each area having distinct
genetic testing and thus a known gene expression pattern. Future studies should also
perform radiogenomic analysis within tumors as opposed to simply between different
tumors. In the era of digital pathology utilizing quantitative image analysis and machine
learning, models characterizing spatial heterogeneity of genetic mutations and surrounding
microenvironment (i.e., T lymphocyte expression) within a tumor have been developed [62].
Provided that these models can be validated across institutions, they can be integrated into
radiomic studies to provide more robust imaging–pathology associations.

Although the majority of presented studies here utilize tumors of different stages
in image analysis, the genetic information is generally derived from the primary kidney
tumor. That being said, the assumption of genetic homogeneity between the primary tumor
and metastatic deposits may not necessarily hold. In a recent study using ClearCode34 to
classify primary and metastatic tumor sites into different molecular subtypes (i.e., clear
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cell type A and B), there was a 43% discordance in subtype between the primary tumor
and metastatic deposits within the same patient [63]. On the other hand, for a given
patient, the molecular subtypes were similar among different metastatic sites. Thus, future
radiogenomic studies incorporating patients with metastatic disease should have tumor
sampling from metastatic sites to obtain a more reliable genotype within which to develop
image biomarkers for prognostically relevant outcomes such as treatment response. It is
clear that feature extraction from radiomic analysis provides more information about a
tumor than can be ascertained by any radiologist (i.e., higher order features). However,
with greater complexity comes greater abstraction of data from traditional biological or
clinical understanding. Seeking to understand higher order features in clinical terms
is challenging. However, “de-mystifying” these features can be accomplished through
studying associations between qualitative and quantitative image variables. For instance,
ill-defined tumor margin is associated with unfavorable genotypes, such as BAP1 mutation;
methylation of RUNX3; and SPC gene signature. Determining which radiomic higher order
features relate to these qualitative variables will allow for better integration of the literature
and to improve clinical relevance of these features.

Given that tumor genetic testing does not often encompass the entire tumor (i.e., biopsy),
radiomic analysis may provide additional prognostic information beyond the procured molec-
ular signature [64]. Thus, rather than determining radiomic–genomic correlations alone,
studies should incorporate both radiomic and genomic factors into prognostic models. Addi-
tional integration of existing clinical predictors and other -omic analysis into these models
will also help improve prediction of clinically relevant outcomes. For instance, Zeng et al. [27]
demonstrated that a combined radiomic, genomic, transcriptomic, and proteomic model
had higher AUC than any single model alone in predicting overall survival of patients with
ccRCC. Additionally, Yin et al. [22] showed that a model combining radiomic and clinical
features (tumor size; stage; and grade) outperformed a radiomics only model in predicting
ccRCC molecular subtype (91.3% vs. 86.96% accuracy). Finally, Huang et al. [26] developed
an integrative nomogram of ccRCC survival incorporating tumor stage, gender, and a risk
score incorporating both prognostic radiomic and genetic factors.

6. Conclusions

Radiogenomics represents the next paradigm shift in diagnostic medicine, and just
as with the Human Genome Project, kidney cancer is one of the lead malignancies with
which to apply advances from this field. Initial work in radiogenomics of clear cell kidney
cancer has been promising, with relationships seen between imaging features and single
and multiple gene expression patterns. Not only can image phenotypes be linked to prog-
nostically relevant molecular signatures, but they can also be used to facilitate identification
of associated gene expression pathways (i.e., biological basis of image differences) and
can augment existing clinico-pathologic nomograms. Establishing non-invasive surrogate
imaging biomarkers will no doubt increase the non-invasive diagnostic armamentarium
of the clinician, with both prognostic and therapeutic implications, and has been greatly
facilitated with radiomics and machine learning, which can elucidate the complex pat-
terns within an image in an objective, quantifiable manner, unlike qualitative scoring by
radiologists.

Future directions include feature extraction of the surrounding tumor environment;
utilization of modalities other than CT; incorporating spatial tumor genetic heterogeneity
in radiomic analysis; and integration of multi-omic (i.e., transcriptomic) and clinical infor-
mation to create more powerful decision tools. Most importantly, consensus guidelines
on radiomic and machine learning analysis need to be employed to facilitate comparison
among studies and collaboration among institutions to allow advances in radiogenomics to
be implemented in the clinical setting.
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