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Introduction

The associations have been well established between 
ambient air pollutants, such as sulfur dioxide (SO2), nitrogen 
oxides (NOx), aerosol particulate matter (PM), ozone (O3), 
and human health (1-4). With rapid economic growth, 

China has suffered from substantial air pollution, resulting 
in many studies evaluating the impacts of air pollution 
on human health (5-8). For example, exposure to NO2 
or SO2 has been associated with bronchitis, asthma, and 
emphysema, all of which were more pronounced in children 
and asthmatic patients (9). Numerous studies have reported 

Trends in ambient air pollution levels and PM2.5 chemical 
compositions in four Chinese cities from 1995 to 2017

Zixuan Yin1, Xiaofeng Huang1, Lingyan He1, Suzhen Cao2, Junfeng Jim Zhang3,4,5

1Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen 

Graduate School, Shenzhen 518055, China; 2School of Energy and Environmental Engineering, University of Science and Technology Beijing, 

Beijing 100083, China; 3Nicholas School of Environment & Duke Global Health Institute, Duke University, Durham, USA; 4Duke Kunshan 

University, Kunshan 215316, China; 5Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 

Guangzhou 510120, China

Contributions: (I) Conception and design: L He, JJ Zhang; (II) Administrative support: None; (III) Provision of study materials or patients: None; 

(IV) Collection and assembly of data: Z Yin; (V) Data analysis and interpretation: Z Yin, X Huang; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.

Correspondence to: Lingyan He. Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, 

Peking University Shenzhen Graduate School, Shenzhen 518055, China. Email: hely@pku.edu.cn.

Abstract: An in-depth analysis of the specific evolution of air pollution in a given city can provide a better 
understanding of the chronic effects of air pollution on human health. In this study, we reported trends in 
ambient concentrations of particulate matter (PM) and gaseous pollutants [sulfur dioxide (SO2), nitrogen 
dioxide (NO2), and ozone (O3)] from 1995 to 2017 and PM2.5 composition for the period of 2000–2017 in 
Guangzhou, Wuhan, Chongqing, and Lanzhou. We provided socio-economic indicators to help explain the 
pollution trends. SO2 and PM (including PM10 and PM2.5) concentrations showed a downward trend in recent 
years with the most notable reduction in SO2 in Chongqing and PM2.5 in Guangzhou. There was an overall 
flat trend for NO2, while O3 showed an upward trend in recent years except in Lanzhou. The majority of 
PM2.5 mass was SO4

2− (6.0–30 μg/m3) and organic carbon (6.0–38 μg/m3), followed by NO3
− (2.0–12 μg/m3), 

elemental carbon (2.1–12 μg/m3), NH4
+ (1.0–10 μg/m3), K+ (0.2–2.0 μg/m3), and Cl− (0.2–1.9 μg/m3). Except 

for secondary inorganic aerosols in Wuhan, annual average concentrations of all PM2.5 constituents showed 
a declining trend after 2013, corresponding to the trend of PM2.5. The secondary sources in PM2.5 were 
found to be most prominent in Wuhan, while the most abundant EC and Cl− in Lanzhou was attributed 
to the use of coal. Despite temporal and spatial variabilities across the four cities, coal combustion, traffic 
emissions, and secondary pollution have been the major sources of PM2.5 pollution. These trends in ambient 
air pollution levels and PM2.5 composition may help understand changes in health outcomes measured at 
different times within the time period of 1995–2017 in the four cities.

Keywords: Air pollution; long-term variation; PM2.5; chemical composition; source

Submitted Nov 18, 2019. Accepted for publication Apr 10, 2020.

doi: 10.21037/jtd-19-crh-aq-004

View this article at: http://dx.doi.org/10.21037/jtd-19-crh-aq-004

6410

Review Article on Children’s Respiratory Health and Air Quality

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-19-crh-aq-004


6397Journal of Thoracic Disease, Vol 12, No 10 October 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(10):6396-6410 | http://dx.doi.org/10.21037/jtd-19-crh-aq-004

that PM2.5 and its specific chemical constituents were linked 
to the incidence of respiratory diseases and mortality as well 
as lung function (10-12).

In the period of 1993–1996, a cross-sectional study 
of children’s respiratory health in relation to ambient air 
pollution was conducted based on a gradient in pollutant 
concentrations across the four Chinese cities of Lanzhou 
(LZ), Wuhan (WH), Chongqing (CQ), and Guangzhou 
(GZ) (13-17). The study found that higher air pollution 
levels were significantly associated with a greater risk for 
developing symptoms, respiratory disease, and reduced 
lung function in children. Parents had a greater risk 
of respiratory diseases. More than 20 years later, with 
significant changes in many aspects of the society and 
the population, it is important to understand the extent 
to which air pollution changes contributed to changes in 
respiratory health in children in these cities.

In general, heavy air pollution events were highly 
concentrated in four regions: North China Plain, Yangtze 
River Delta (YRD), Pearl River Delta (PRD), and Sichuan 
Basin (18,19). Three of the four cities (WH, GZ, and CQ), 
located in YRD and PRD, have often been the sites for 
studying various characteristics of air pollution (20-24).  
Taking PM pollution as an example, improvement in 
the PRD region has been substantial in the past decade 
(making O3 often become the primary pollutant in recent 
years) (25), while PM2.5 remained the primary pollutant 
in the YRD region and the Sichuan Basin (26,27). Many 
studies have also been launched in LZ because of its unique 
meteorological and geographical conditions (near the desert 
with four distinct seasons) (28,29). The published reports 
provided valuable information to understand longitudinal 
changes in ambient air quality in the four cities.

In the present review, based on the background 
information of socio-economic development, we aim to 
systematically examine the changes in air pollution levels 
and PM2.5 chemical compositions from the 1990s to 2017. 
Data for air pollutants (PM2.5, PM10, SO2, NO2, and O3) in 
the four cities were collected from 1995 to 2017 to study 
the evolution of the air pollution in each city. In addition, 
spanning more than a decade we analyzed data on the 
chemical compositions of PM2.5 to identify the temporal 
and spatial changes in the source apportionments of PM2.5. 
We anticipate that the findings of this review can provide 
insights to help understand potential changes in health 
outcomes attributable to changes in air quality from the 
time of the original health study to the time of the current 
health study in the same cities. We also expect that the 

findings can provide historical perspectives on air quality 
evolutions to inform new control policies.

Data and methods

Study site description

Based on the studies conducted more than 20 years ago, our 
current analysis included four Chinese cities of LZ, WH, 
CQ, and GZ (see Figure 1). Located in the northeastern 
side of the Qinghai-Tibet Plateau, LZ is situated in a semi-
enclosed Yellow River valley basin that narrows in the 
north and south and extends in the east and west direction. 
LZ is characterized by windy and arid springs, which is a 
high season of sand and dust weather, where the climate 
has clear vertical variation spectrum and transitional 
characteristics (30-32). WH is geographically situated at the 
confluence of the Yangtze and Han Rivers and lies in central 
China, where the north subtropical monsoon climate 
offers sufficient light and heat and abundant rainfall (33).  
Moreover, WH is the core city of the Yangtze River 
Economic Belt, which has developed as an important 
industrial base and comprehensive transportation hub in 
China. CQ is characterized as a mountainous city located in 
the southwestern part of China and the upper reaches of the 
Yangtze River. With the annual humidity upwards of 70%–
80%, CQ is nicknamed the City of Fog (34). As the core city 
of the Pearl River Delta metropolitan area, GZ is located in 
the south-central part of Guangdong Province, which is the 
largest city in South China. GZ belongs to the subtropical 
monsoon climate zone with an average annual temperature 
of 20–22 ℃.

Data collection

Data on socioeconomic indicators
It is known that air quality is generally associated with 
economic development stages. To help understand the 
long-term trend of ambient air pollution, we collected 
auxiliary data pertaining to the socioeconomic indicators 
from the Statistical Bulletin on National Economic and Social 
Development (35-38) in four cities. Annual values of four 
indicators between 1995 to 2017 included Gross Domestic 
Product (GDP), resident population, gross industrial 
output, and domestic car ownership. Measurement units 
for the indicator values were 100 billion yuan for GDP 
and gross industrial output, million people for the resident 
population, and ten thousand vehicles for domestic car 
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Figure 1 Map showing the four cities included in this study, including Lanzhou (LZ), Wuhan (WH), Chongqing (CQ), and Guangzhou (GZ).

Lanzhou, Gansu Province
35˚23'~37˚42' N
102˚24'~104˚33' E

Chongqing Municipality
28˚10'~32˚13' N
105˚11'-110˚11' E

Guangzhou, Guangdong Province
22˚26'~23˚56' N
112˚57'~114˚03' E

Wuhan, Hubei Province
29˚58'~31˚22' N
113˚41'~115˚05' E

ownership.

Data on air pollutants
The official data of air pollutants were annually averaged 
and extracted from the Report on the State of Environment 
(25,39-41) for the four cities during 1995 and 2017. 
Although we collected a significant amount of data, reports 
documenting annual concentrations of SO2 and NO2 in 
1997 and 1998 were not available in WH and GZ (data 
was missing for CQ in 1997), while data from 1997 to 2001 
were not available in LZ. Based on the Chinese Ambient Air 
Quality Standards formulated in 1996 (GB3095-1996) (42), 
the state requirement to monitor PM10 data began in 2000, 
replacing total suspended particulate (TSP). Thus, the PM10 

data were first added into the report from 2000 in CQ, and 
other three cities began keeping records in 2001. Similarly, 
the PM2.5 monitoring data were first added to the reports 
in 2012 based on the Chinese Ambient Air Quality Standards 
revised in 2012 (GB3095-2012) (43). We chose the daily 
averaged values in maximum 8-hour O3 concentrations from 
2014 on the website (44) where the data were collected from 
China National Environmental Monitoring Centre, due to the 

inconsistencies in the reports (such as the different year 
when data were first added and different type of monitoring 
O3 including daily averaged in maximum 8-hour and one-
hour averaged).

Data sources of chemical components and source 
apportionments of PM2.5

We reviewed articles regarding chemical composition and 
source apportionment of PM2.5 to summarize spatial and 
temporal evolution of source emissions in the four cities. 
We integrated the absolute values and relative proportions 
of chemical compositions from PM2.5 across different years 
(from 2000), including major water-soluble ions [sulfate 
(SO4

2−), nitrate (NO3
−), ammonium (NH4

+), potassium (K+), 
and chloride (Cl−)], carbonaceous components [elemental 
carbon (EC), organic carbon (OC)], main toxic and source-
characteristic metals [zinc (Zn), manganese (Mn), lead 
(Pb), copper (Cu), and chromium (Cr)] and others (relative 
proportion not shown). All relevant studies discussing 
individual cities are summarized in Table 1. Strict screening 
throughout the entire reviewed processing for considering 
the variable methods of data presentation in each document 
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was reflected in the selection of long-term research data for 
one subject group in a given city. We found that the data for 
EC and OC were not available before 2013 in LZ based on 
the above screening principles. Additionally, normalization 
methods were used to eliminate gaps between the data with 
a wide range of sources. The model equation can be written 
as follows:

2.5=1
% ( PM )n

ij ijkk
y = x/ /n∑ 	 [1]

where y%ij is  the normalized proportion of one 
component in PM2.5 of city j in year i; x is the absolute 
concentrations of component, while n represents the article 
counts of city j in year i.

To better describe the local pollution characteristics 
during the examined period, we also reviewed the annual 
environmental protection regulations and specific 
implementation methods from the State and Urban Report 
on the State of Environment in the Environmental Protection 
Bureau’s official website (25,39-41).

An overview of social and economic 
development in four cities

Since entering into the 21st century, China has experienced 
rapid urbanizat ion and an exponentia l  economic  
growth (77). Based on the available accounting, the four 
cities presented an obvious gap in the urban development 
for diverse socioeconomic indicators summarized in Table 2.

By 2017, GZ was recognized as one of the first-tier cities 
with the largest regional GDP (2,150 billion yuan) and 
gross industrial output (2,269 billion yuan) compared to 
other cities. Even in 1996, the number of domestic vehicles 
in GZ reached 871 thousand vehicles, resulting in the 
lower growth rate compared to other cities. The resident 
population has increased by 2.51 million people, and the 
growth rate since 1995 was only second to WH (where 
the growth rate was up by 53.4%, from 7.10–10.89 million 
people). The available data suggest that WH experienced 
very significant development owing to the highest growth 
rates of GDP by 21 times and resident population growth 

Table 1 Published studies reporting chemical compositions of PM2.5 in the four cities during 2000 and 2017

City References

LZ Tao, 2009 (45); Li et al., 2016 (46); Shen et al., 2016 (47); Wang et al., 2015 (28); Wang, 2017 (29); Wei et al., 2017 (48); Yang, 2013 
(49); Li et al., 2015 (50)

WH Cheng et al., 2012 (51); Zhang et al., 2012 (52); Qiu, 2014 (53); Zhang, 2014 (54); Cao, 2017 (55); Li et al., 2017 (56); Zhang, 2017 
(57); Hao et al., 2018 (20); Zhang et al., 2015 (21); Huang et al., 2016 (12); Cao et al., 2012 (22)

CQ Cao et al., 2012 (22); Lv et al., 2006 (24); Yang et al., 2011 (24); Zhang, 2007 (58); Zhang et al., 2011 (59); Li et al., 2012 (60); Yu et 
al., 2014 (61); Jiao et al., 2013 (62); Chen et al., 2017 (63); Li et al., 2014 (64); Huang et al., 2018 (65); Cao, 2017 (55); Lan, 2018 (66)

GZ Cao et al., 2012 (22); Lai et al., 2007 (67); Cao et al., 2004 (68); Wang et al., 2006 (69); Feng et al., 2011 (70); Tao, 2009 (45); Ma, 
2017 (71); Lai et al., 2016 (72); Xiao et al., 2014 (73); Liu et al., 2018 (74); Tao et al., 2017 (1); Zhao, 2018 (75); Li et al., 2016 (46); 
Tao et al., 2014 (76)

PM, particulate matter; LZ, Lanzhou; WH, Wuhan; CQ, Chongqing; GZ, Guangzhou.

Table 2 Comparison of social and economic development for four cities between 1995 and 2017

Indicators
LZ WH CQ GZ

GR* Range GR Range GR Range GR Range

GDP (100 billion yuan) 11 0.21–2.5 21 0.61–13 16 1.1–20 16 1.3–22

Population (million people) 0.20 2.7–3.3 0.53 7.1–10 0.13 30–34 0.39 6.5–9.0

Gross industrial output (100 billion yuan) 6.3 0.31–2.2 18 0.77–14 27 0.77–21 12 1.7–23

Domestic car ownership (ten thousand vehicles) 19 5.0–102 17 14–261 21 25–567 1.9 87–249

*, each indicator includes the reported value and growth rate (GR) between 1995 and 2017. LZ, Lanzhou; WH, Wuhan; CQ, Chongqing; 
GZ, Guangzhou.
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Figure 2 Temporal variations in five major air pollutants in four cities: (A) SO2, (B) NO2, (D) PM10 for 1995–2017, (C) O3, (E) PM2.5, 
(F) PM2.5/PM10 for 2012–2017. The black dotted line indicates the second-level concentration standards of pollutants according to the 
government GB3095-2012 (43) standard. SO2, sulfur; O3, ozone; PM, particulate matter.

by 53.4%. Although GZ and CQ were growing at the 
same rate in GDP (a multiple of 16) from 1995 to 2017, 
the development strength of CQ ranked number 5 among 
all large Chinese cities, reflected in approximately a 9.5% 
increase in GDP growth rate in 2017 compared to 2016 (78),  
reaching almost 2 trillion yuan, significantly more than 
GDP growth rate observed for GZ. In contrast, the slowest 
development was observed for LZ which had the lowest 
values for all indicators in 2017 compared to the Yangtze 
River Delta and PRD cities (40).

Long-term variations in major air pollutants

Using available research data on the effects of air pollution 
on human respiratory health across 20 years (79,80), we 
analyzed the long-term trends of air pollutants including 
SO2, NO2, PM10 [1995–2017], PM2.5 and PM2.5/PM10 [2012–
2017] and O3 [2014-2017]. The results are summarized in 
Figure 2.

SO2

Data presented in Figure 2A  indicate a significant 

downward trend for SO2 annual concentrations among the 
four cities from 1995 to 2017. In 2017, SO2 levels in all the 
cities dipped below 20 μg/m3, which were approximately 
one fourth of the values reported in the late 1990s. The 
SO2 levels in CQ showed the greatest improvement over 
the years (81), with a 96.4% decrease from 338 μg/m3 in 
1995 to 12 μg/m3 in 2017. A similar change was observed 
in LZ, where the declining rate of SO2 was 80.4% (from 
102 μg/m3 in 1995 to 20 μg/m3 in 2017). The trends in SO2 
levels were drastically different for GZ and WH which 
showed gradual rise prior to 2004 and 2008, respectively. 
Then we saw the values in all four cities descending 
below the second-level concentrations (60 μg/m3)  
after 2008. It was related to the rigorous investigation 
of reducing pollutant emissions in the Eleventh Five-
Year Plan (25,39-41). Despite air quality standards 
revision in 2012, SO2 was still considered as one of the six 
major pollutants, resulting in sustained efforts put into 
monitoring of SO2 performed across the country (43).  
The type of pollution has shifted from soot-pollution 
(PM10 associated with SO2) to single type of PM (PM2.5 and 
PM10 pollution) in some cities (e.g., the primary pollutant 
in LZ was PM10 and PM2.5, while in CQ and WH was 

350

300

250

200

150

100

50

0

200

150

100

50

0

120

110

100 

90

80

70

60
1998	 2006	 2014

1998	 2006	 2014

1998	 2006	 2014

1998	 2006	 2014

1998	 2006	 2014

1998	 2006	 2014

ug
/m

3

SO2 NO2 O3

300

250

200

150

100

50

0

120

100

80

60

40

20

0

1.0

0.8

0.6

0.4

0.2

0.0

ug
/m

3

PM10 PM2.5 PM2.5/PM10

GZ

CQ

WH

LZ

B

E

C

F

A

D



6401Journal of Thoracic Disease, Vol 12, No 10 October 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(10):6396-6410 | http://dx.doi.org/10.21037/jtd-19-crh-aq-004

PM2.5), which resulted from a series of measures to reduce 
air pollution, such as the implementation of coal-to-gas 
projects and clean coal-fired technologies (82).

NO2

Based on the data in Figure 2B, the NO2 levels have not 
really changed between 1995 and 2017, showing a relatively 
flat trend compared with SO2. Given the NO2 concentration 
values from 1995, the reductions of 91, 23, and 47 μg/m3 
were seen in GZ, CQ and LZ, respectively, while there 
was a rise of 7 μg/m3 in WH. However, in recent years, the 
level of NO2 pollution has far exceeded the second-level 
concentration (standard) after 2014 in all four cities. The 
main anthropogenic source of nitrogen oxides in cities is 
the burning of fossil fuels, two-thirds of which were emitted 
from mobile sources such as motor vehicles, and one-third 
from fixed sources such as factories and power plants (83). 
The available data indicate that the popularity of clean fuels 
has increased over the years, and exhaust emissions of motor 
vehicles have been continuously reduced (84). Nevertheless, 
the rapid urbanization has led to a sustained increase in 
the number of motor vehicles, dramatically increasing the 
emission of NO2 to some extent (49,64). The evolution of 
NO2 pollution and factors associated with NO2 emissions 
remain complicated.

O3

Ozone, with annual mean concentrations between 64 to 
102 μg/m3

 now, has become the main risk restricting the 
optimization of urban air quality after PM2.5 level declined 
in many cities in recent years. Based on the result in  
Figure 2C, the daily average in maximum 8-hour O3 
concentrations showed upward trend since 2015 in GZ, 
CQ, and LZ. Especially, LZ has experienced a remarkable 
increase leading to the highest values (101.3 μg/m3) in 2017. 
It is tangible that volatile organic compounds (VOCs) and 
NOx provide important precursors for ozone formation (33)  
largely deriving from process of petroleum refining and 
vehicle exhaust emissions (85). The rising trend of ozone 
was also highly consistent with the rise of NO2 (Figure 2B) 
in the same period, which have been reported in previous 
studies (86,87). In general, longer daylight hours and 
stronger solar radiation contribute to ozone levels (22). 
The PRD region has subtropical climate that favors ozone 
formation when precursor pollutants are present. This 
made O3 pollution receiving particular attention in GZ and 

Shenzhen (88). Although O3 concentration in WH appeared 
to be on a decreasing trend, it was in a high concentration 
range (between 80 and 100 μg/m3).

PM10

A clear reduction in PM10 levels has been found between 
1995 and 2017 in the four cities (see Figure 2D). Compared 
to 1995, the levels of PM10 in 2017 were 78.2%, 60.7%, 
59.3%, and 33.8% lower in GZ, CQ, LZ, and WH, 
respectively. However, the pollution level in 2017 was still 
higher than the second-level concentration (70 μg/m3) in 
CQ, LZ, and WH, while the value in GZ dropped below 
the standard for the first time in 2014. These reductions 
are likely a reflection of the active rectification of PM10 
carried out at the nationwide level which has achieved 
good results (44). The exception occurred in 2013, when 
the concentration of PM10 was significantly increased in all 
four cities corresponding to the worst smog in China that 
occurred the same year, which spread to 25 provinces and 
affected more than 100 different cities (44). Interestingly, 
LZ was heavily polluted with PM10, which was mainly 
from the natural and meteorological conditions (89-91). 
Additionally, LZ suffered from a very dusty weather all 
year with frequent dust storms in the city resulting in high 
PM10 concentrations (92). In general, the technological 
transformation, tightening of environmental management 
policies and increased funds (25,39-41) for controlling dust 
and coal emission were efficiently utilized in all four cities.

PM2.5

Monitoring of PM2.5 levels began in 2012 and showed very 
comparable trends to PM10 pollution. We also calculated 
the ratio of PM2.5/PM10 that represents the composition of 
particulate pollution. The larger the ratio, the higher the 
mass concentration of fine particles (respirable particles) in 
total inhalable particles (all particles with an aerodynamic 
diameter ≤10 μm). For the same inhaled mass of PM10, a 
higher PM2.5/PM10 ratio means that more fine particles can 
reach and deposit in the deep lung and cause more health 
damages (93). Specifically, there was a clear downward 
trend in PM2.5 levels from 2013 in GZ, CQ and WH, with 
decreases of 18 μg/m3, 25 μg/m3, and 42 μg/m3 respectively 
(concentrations dropped 18 μg/m3

 since 2012 in LZ). Unlike 
with PM10, the most serious pollution with PM2.5 was 
observed in WH. Data suggest that the transport of local air 
masses from the northeast of WH may have contributed the 
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most to PM2.5 pollution, which originated from the cluster 
of steel plants located in the northeast region of WH (94). 
As shown in Figure 2F, we observed continuously decreasing 
trends of PM2.5/PM10 ratio from 2012 in both GZ and WH, 
while LZ had the lowest value because of serious PM10 

pollution (shown in Figure 2D). Although the pollution level 
was overall reduced, the other three cities did not meet the 
second-level standard (35 μg/m3) formulated in GB3095-
2012 (43), while GZ has reached the value of 35 μg/m3 in 
2017. The strict prevention and control during the multi-
sport Asian Games played an important role, leading to 
reductions in PM levels in the southern China compared to 
other regions of the country (95).

Spatiotemporal variation of chemical 
composition and sources of PM2.5 in four cities 
during 2000 and 2017

Based on the available literature, the chemical characteristics 
of PM2.5 in China are considered to be a mixture of 
organic and inorganic matter including water-soluble 
ions, elemental carbon, crustal material, and hydrocarbons 
(63,96-98), mainly originating from meteorological 
evolutions and potential human activities, such as 
transportation, household activities, vehicular movement 
and industrial sector (99). Due to the regional economic 

development, changes in industrial and energy structures, 
and an increasing number of vehicles, the composition 
ratios of PM2.5 vary with location and time (100). Based on 
the policy—Air Pollution Prevention and Control Action Plan, 
introduced by the Chinese government in 2013 (101), we 
compiled the available data representing the average PM2.5 
concentrations and the relative composition of PM2.5 during 
two periods (2000–2013 and 2014–2017) in the four cities 
(Figures 3 and 4).

Review of PM2.5 concentrations

The averaged PM2.5 concentrations after 2013 were 34.5, 
34.4, 19.1 and 2.3 μg/m3 lower than previous values at first 
periods [2000–2013] in GZ, CQ, WH and LZ, respectively 
(Figure 3). The data were in agreement with the results 
presented in Figure 2E. A significant decrease in the average 
values of PM2.5 occurred geographically from north to south 
after the overall rectification in 2013, ranging from 39 to 
102 μg/m3.

SO4
2−, NO3

−, and NH4
+

The proportions of three ions, crucial elements of the 
secondary inorganic component of air pollution, including 
SO4

2− (8.4–57%), NO3
− (4.2–21%) and NH4

+ (2.3–19%), 

Figure 3 Spatiotemporal variation of mass fractions in major chemical composition of PM2.5 in the four cities prior to and after 2013. Digital 
label for every sector indicates the corresponding component proportion, and the size of each fan corresponds to the absolute concentration 
of PM2.5. PM, particulate matter.
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Figure 4 Variations in the absolute concentrations (μg/m3) of examined PM2.5 and seven components before and after 2013 in LZ, WH, 
CQ, and GZ. Solid column represents the first period [2010–2013] while the dotted line column indicates the second period [2014–2017] in 
each component across four cities. PM, particulate matter; LZ, Lanzhou; WH, Wuhan; CQ, Chongqing; GZ, Guangzhou.
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showed different changes across different dimensions. 
Considered as the first major anthropogenic source, SO4

2− 
contributed the most. The data indicate that LZ had the 
largest absolute levels of sulfates (28±18 μg/m3) prior to 
2013, followed by CQ, where the absolute concentration 
was upwards of 27±15 μg/m3. Given high levels of SO4

2−, 
there was a possibility that the sulfides from the coal 
burning had undergone a secondary conversion, indicating 
that CQ and LZ experienced more serious coal combustion 
emission prior to mandatory rectification in 2013. The 
long-term use of coal-fired heating in LZ and clusters of 
factories in CQ contributed significantly to high SO4

2− 
levels (32,102). Importantly, recent concentrations of SO4

2− 
in GZ, CQ and LZ decreased sharply, with average values 
of 6.5±2.2, 10±3.2 and 11±3.7 μg/m3, respectively.

Based on the literature evidence suggesting that 
approximately 50% of nitrate mass can be attributed to 
coal combustion (103), NOx, as the precursor of nitrate, is 
mainly derived from urban anthropogenic activities such 
as traffic and factory emissions. The continuously upward 
trend occurred in WH during the two periods (average 
values 11–20 μg/m3). A slightly upward trend in the levels 
of NO3

− also occurred in CQ mainly due to the surge in 
the number of motor vehicles (Table 2), while LZ and GZ 
showed considerably lower levels of NOx emissions.

The trends of NH4
+ in four cities were somewhat 

comparable to trends seen for SO4
2− and NO3

−. Specifically, 
we observed that the secondary inorganic pollution 
sources dominated the composition of PM2.5 in WH. 
Cheng et al. (104) found stronger oxidation process of 
SO2 and NO2 in the atmosphere from research between 
2016–2017. Due to the massive burning of fossil fuels, coal 
and biomass, the secondary inorganic aerosols accounted 
for a large proportion in the industrial area of WH, while 
the soil source dominated the large traffic volume and 
frequent urban construction throughout the year (29). 
Notably, in LZ, only 1.3±0.8 μg/m3 of concentration value 
was recently normalized and similar results were found for 
ammonium levels which were lower than 3% in Northwest 
China during 2006–2013 based on a previous study (105). 
Overall, the data suggest that the secondary source of 
PM2.5 in the northwest region (like LZ) was relatively 
small due to the yearly dry climate, which is not conducive 
to the occurrence of secondary reactions (48).

EC and OC

The levels of OC ranked first or second among the 
constituents shown in Figure 3 in four cities, accounting for 
approximately 7–30% in terms of fraction. The proportions 
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Figure 5 Comparisons of concentrations of five major metal elements during two periods [1996 and 2010–2017]. Solid column represents 
the first period [1996] while the dotted line column indicates the second period [2010–2017] for each component across four cities.
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of OC were relatively reduced after 2013 in all regions, 
especially in CQ (from 37±21 μg/m3 in first period to 
13±2.2 μg/m3 in second period). Other studies suggested 
that OC can be used to estimate the organic matters 
(OM), which is typically obtained by multiplying OC by 
a specific coefficient (63). Additional indirect data suggest 
that VOCs, the precursor of organic matter, were recently 
increasing. Taken together, CQ had the highest organic 
pollution compared to other cities prior to 2013 and the 
most effective control over VOC emissions. As a primary 
burning indicator, EC accounted for approximately 5–9% 
of emissions in the four cities. There were clear downward 
trends in WH, CQ and GZ, presenting the absolute 
concentration changes of 12±7.1 to 6.1 μg/m3, 7.6±3.3 to 
4.0±1.3 μg/m3 and 5.4±2.9 to 2.3±0.4 μg/m3, respectively. 
Geographically, values of EC decreased from north to 
south. The EC had a similar source like particulate organic 
carbon (POC), and was not a major chemical fraction in 
aerosol particles found in China (105).

K+ and Cl−

The highest average concentrations of Cl− were seen in LZ 
(6.4±1.9 μg/m3 and 3.3±0.6 μg/m3 before and after 2013, 
respectively) while the trends for other cities were relatively 
flat. Combined with the highest proportion of Cl− (3–7%) 
in LZ, the data further suggested that coal burning was the 

main source of aerosol pollution in this local area. Primary 
component K+, as a biomass indicator, showed significant 
decreases in average concentrations across all cities (ranging 
from 0.5 to 2.1 μg/m3), suggesting that the overall control 
of biomass burning has achieved very good results.

Trace metal elements

Data summarized in Figure 5 show the comparison of trace 
metal concentrations in 1996 and in recent years (from 2010 
to 2017) in four cities, including Zn, Mn, Pb, Cu, Cr, that 
are either specific source indicators or trace elements with 
serious impact on human health (106-109).

The concentrations of metal elements were generally 
low, ranging from 0.003 to 2.8 μg/m3 more than 20 years 
ago, compared to recent values in the range of 0.012− 
1.7 μg/m3. Data suggested that Mn, Zn, Pb were mainly 
derived from metal smelting (110) or combustion 
processes (111). Additionally, we observed the highest 
concentration values of Zn in all cities due to background 
content in soil and supernumerary content of vehicle 
exhaust emissions and tire wear (112). A small increase 
in the concentration of Zn and Mn was found in CQ and 
WH, while LZ and GZ showed an obvious decrease. 
The levels of Cu in CQ and LZ showed significant rise, 
while they were relatively flat in WH and GZ. Two 
toxic metals, Pb and Cr (113), showed variable trend 



6405Journal of Thoracic Disease, Vol 12, No 10 October 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(10):6396-6410 | http://dx.doi.org/10.21037/jtd-19-crh-aq-004

concentrations across the four cities. At present, coal 
burning and industrial production (such as smelting and 
sintering process) have become the main sources of Pb 
due to mandatory use of unleaded gasoline since late 
1990s (114). During the 12th Five-Year Plan period for 
controlling heavy metal pollution, Pb was included as 
one of the key target pollutants (115). Emission of Pb 
from factories seem to be effectively controlled in recent  
years (114). However, emissions of Cr from coal burning 
and industrial production appear to have increased 
significantly in WH, possibly due to the specificity of the 
study site (e.g., near the factory) in the reviewed literatures.

Conclusions and perspectives

Inter-annual variations in five major pollutants across two 
decades and chemical components of PM2.5 in the recent 
years in the four cities were comprehensively summarized. 
It helped to provide a better understanding of the evolution 
of pollution sources for studying changes in health 
outcomes related to changes in air quality in populations 
with similar ages living in the same cities. The findings can 
be summarized as follows:

(I)	 All four cities experienced rapid growth over the 
last two decades; however, there were obvious 
geographical differences. For example, GZ, as 
one of the first-tier cities, was ranked first in 
GDP among all cities, while LZ showed slow 
development. Of note, the growth rate of CQ was 
the highest as of 2017 from the prior year.

(II)	 The evolution of five conventional pollutants in 
GZ, LZ, WH and CQ varied with space and over 
time. Clear downward trends occurred in SO2 
and PM (including PM10 and PM2.5) levels. SO2 
concentrations in all four cities were below the 
second-level concentration (standard) of 60 μg/m3 
after 2008, while PM2.5 and PM10 were still not up 
to the standard, except for PM10 in Guangzhou. 
In particular, the greatest improvement of SO2 
pollution occurred in CQ (a decline of 96.4%), 
and GZ showed the best results for reduction in 
particulate pollution. The levels of NO2 showed 
relatively flat trends compared to other pollutants. 
Importantly, O3 concentrations have been on 
rise, which should be considered in examining 
the effects of ambient air pollution on human 
respiratory health.

(III)	 Among the chemical components of PM2.5, 

organic carbon and SO4
2− dominated PM2.5 mass 

concentration in all cities. The overall levels of 
pollutants showed decreases after 2013 in LZ, 
CQ and GZ, but the trend was the opposite in 
WH showing an upward trend in SO4

2−, NO3
−, 

NH4
+, and Cl− between 2014 and 2017. Moreover, 

WH had the highest mass fraction of SO4
2−, NO3

− 
and NH4

+, indicating that the control of coal 
combustion and vehicle emissions should be stricter 
in this city. Finally, LZ, among the four cities, had 
the lowest proportion of secondary components 
and highest levels of EC and Cl- mainly emitted 
from perennial coal-fired emissions.

(IV)	 The concentrations of different metals showed 
different long-term trends, ranging from 0.003 to 
2.8 μg/m3 more than 20 years ago, compared to 
recent values in the range of 0.012−1.7 μg/m3.
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