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ABSTRACT: Förster resonance energy transfer (FRET) is an
important mechanism for the estimation of intermolecular
distances, e.g., in fluorescent labeled proteins. The interpreta-
tions of FRET experiments with standard Förster theory relies
on the following approximations: (i) a point-dipole approx-
imation (PDA) for the coupling between transition densities of
the chromophores, (ii) a screening of this coupling by the
inverse optical dielectric constant of the medium, and (iii) the
assumption of fast isotropic sampling over the mutual
orientations of the chromophores. These approximations
become critical, in particular, at short intermolecular distances,
where the PDA and the screening model become invalid and the variation of interchromophore distances, and not just
orientations, has a critical influence on the excitation energy transfer. Here, we present a quantum chemical/electrostatic/
molecular dynamics (MD) method that goes beyond all of the above approximations. The Poisson-TrEsp method for the ab
initio/electrostatic calculation of excitonic couplings in a dielectric medium is combined with all-atom molecular dynamics (MD)
simulations to calculate FRET efficiencies. The method is applied to analyze single-molecule experiments on a polyproline helix
of variable length labeled with Alexa dyes. Our method provides a quantitative explanation of the overestimation of FRET
efficiencies by the standard Förster theory for short interchromophore distances for this system. A detailed analysis of the
different levels of approximation that connect the present Poisson-TrEsp/MD method with Förster theory reveals error
compensation effects, between the PDA and the neglect of correlations in interchromophore distances and orientations on one
hand and the neglect of static disorder in orientations and interchromophore distances on the other. Whereas the first two
approximations are found to decrease the FRET efficiency, the latter two overcompensate this decrease and are responsible for
the overestimation of the FRET efficiency by Förster theory.

■ INTRODUCTION

Förster resonance energy transfer (FRET), introduced in the
late 1940s of the last century,1 has become one of the most
important methods to measure distances in macromolecules,
since its introduction as a “spectroscopic ruler” in 1967 by
Stryer and Haugland.2 Over recent years, there has been
substantial interest in the application of the single-molecule
FRET technique to studying biomolecules3−9 that triggered the
development of advanced analysis tools.4,10−13 In the experi-
ment, FRET is measured between a donor and an acceptor
chromophore, which are attached to the biomolecule. A
nonradiative relaxation process transmits the electronic
excitation from the initially excited donor to the acceptor
chromophore, which is initially in the ground state. The
efficiency of the transfer depends on the distance between the
chromophores as well as on their mutual orientation. In the
experiment, the transfer efficiency is determined via the
measured fluorescence intensity of the donor, ID, and acceptor,
IA, as
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where γ = ϕAσA/(ϕDσD) takes into account differences in the
fluorescence quantum yield ϕ and the sensitivity σ of the
detector for the photons of the donor (D) and the acceptor
(A). From Förster theory for excitation energy transfer, the
well-known simple expression for the FRET efficiency is2
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where R is the center-to-center distance between the
chromophores and the Förster radius R0 is defined via1
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containing the fluorescence quantum yield of the donor ϕD, the
overlap integral OαI = ∫ 0

∞dν αA(ν)ID(ν)/ν
4 of the experimental

absorption spectrum αA(ν) of the acceptor (in molar
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absorbance) and the area-normalized emission spectrum ID(ν)
of the donor, NA is Avogadro’s constant, and n is the refractive
index of the medium. As seen in eq 2, the Förster radius R0
denotes the distance at which E = 0.5, that is, 50% of the donor
excitation is transferred to the acceptor and 50% decays to the
ground state of the donor. The independent determination of
the different quantities entering the Förster radius R0 from
spectroscopy on the isolated chromophores is of great practical
use because it allows the interchromophore distance R to be
predicted using eq 2

= −−R E R E( ) ( 1)0
1 1/6

(4)

in the coupled system from measured FRET efficiencies E,
without free parameters. However, the simplicity of the
expression is only obtained after applying several considerable
approximations. Central to the formulation is the assumption
that the transition densities of the donor and the acceptor
interact as point transition dipoles, where the screening of this
Coulomb interaction is described as 1/n2, with n being the
refractive index of the environment. In addition, the
chromophores are assumed to rotate “freely” in the average
of the square of the coupling matrix element over mutual
pigment orientations giving rise to the factor 2/3 in R0

6 in eq 3.
Despite the general success of Förster theory, there are cases
where some of the approximations become invalid and the
theory needs to be extended, as has been reviewed, e.g., in refs
15−17.
As noted above, at close interchromophore distances, one

expects the point-dipole approximation (PDA) to fail because
the chromophores experience more details of the other
chromophore’s transition density. The validity of the PDA
has been investigated by quantum chemical methods,18−20,22−26

as the transition density cube method18 allowing for a
numerically exact calculation of the Coulomb coupling.
Application of these methods enabled estimation of the PDA
accuracy for different systems. For bacteriochlorophyll a (BChl
a) pigments, the PDA was reported to work reasonably well for
center-to-center separations >15 Å.18 For the B850 ring of
strongly coupled BChl a pigments, with center-to-center
distances distances <10 Å, in the light-harvesting complex
LH2 of purple bacteria, the PDA significantly overestimates the
excitonic couplings.19 A qualitatively similar but even more
dramatic effect was reported22 for the excitonic coupling
between a segment of polyfluorene (PF6) and tetraphenylpor-
phyrin (TPP) using semiempirical quantum chemical calcu-
lations. In this study, the PDA was found to overestimate the
excitonic coupling by more than one order of magnitude for
interchromophore distances smaller than 10 Å. Examination of
the PDA between nanorods revealed an interesting dependence
of the error on the intermolecular orientation: whereas for
nanorods oriented on one line, the PDA underestimates the
coupling by as much as a factor of 2, it overestimates the
coupling between parallel oriented nanorods by as much as a
factor of 3.25 A similar effect was reported for the excitonic
coupling between conjugated polymers.21,23 The enhancement/
decrease of excitonic coupling by the PDA for different
orientations can lead to a fortuitous error compensation in the
orientational average, if both chromophores are allowed to
rotate freely, as demonstrated in another computational
study.26 In this study, it was found that the error of the PDA
dramatically increases if one of the two chromophores is kept
fixed, and the other is free to rotate, as compared to the case
where both are allowed to orient randomly.

Another important aspect in the calculation of the
interchromophore coupling is how to take into account the
polarizability of the environment, leading to local field and
screening effects.27,28 As shown by using density functional
response theory29 or quantum mechanical perturbation
theory,30 the excitonic coupling between chromophores in a
dielectric medium can be related to the classical Coulomb
coupling between transition densities in a homogeneous
environment with an optical dielectric constant n2. If two
chromophores are so close that their transition densities are
located in the same cavity, approximated either as an ideal
sphere29 or as molecule-shaped,30 it was demonstrated that
depending on the mutual geometry of the transition dipole
moments, the Coulomb coupling might be enhanced (“in-line”
geometry) or decreased (screened, “sandwich” geometry) as
compared to the case without including the dielectric
environment. As also discussed by Scholes et al.,31 this effect
may depend on distance, because with increasing distance, the
molecular cavities become less connected. For larger distances
between chromophores, where the transition densities reside in
different cavities, the presence of the second cavity can
approximately be ignored when solving the Poisson equation
for the electrostatic potential of the transition density in the
first cavity. If, in addition, the molecular cavities are
approximated by spheres and the transition densities by point
dipoles located in the centers of these spheres, an analytical
estimate of the screening/local field correction factor f, defined
as the ratio J(ϵ = n2)/J(ϵ = 1) between the excitonic coupling in
the medium with optical dielectric constant ϵ = n2 and in
vacuum, can be obtained. In this case, f is obtained as f = 9n2/
(2n2 + 1)2,28,32 which, for the common value of n2 = 2, gives a
correction factor f = 0.72 as compared to f = 1/n2 = 0.5 used in
Förster theory. Because the Förster rate constant depends in
second-order on the excitonic coupling, the above difference
results already in a difference of a factor of 2 in the rate
constant. Using molecule-shaped cavities and atomic transition
charges, as in the Poisson-TrEsp method, f was found to vary
between 0.5 and 0.8 for most of the couplings between
chlorophyll a pigments in photosystem I trimers, depending on
the mutual orientations of the pigments, rather than on
distance.30

The latter findings at first glance seem to be at odds with an
earlier study, where quantum chemical calculations within the
polarizable continuum model reported an exponential distance
dependence of the screening factor for selected chlorophyll
dimers.31 However, the screening constant was defined as the
ratio between the coupling obtained in the medium and the
coupling obtained by leaving out the direct influence of the
medium on the coupling but including its effect on the
oscillator strength of the pigment transitions. As demonstrated
in a subsequent work by the same group,33 the implicit effect of
the medium on the oscillator strength of the pigments
counterbalances its explicit effect on the coupling. Because of
this effect, the screening constant defined in the usual way as
the ratio between the coupling in the medium and in vacuum
was found to become distance independent.33

Probably the most critical approximation in the interpreta-
tion of FRET experiments on fluorescent labeled biomolecules
with Förster theory is the assumption of the random mutual
orientations of the chromophores.34,35 Using a PDA in the
orientational averaged Förster rate constant, a ⟨κ2⟩orient factor
appears, resulting from the orientational average over the
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square of the excitonic coupling. For randomly oriented
chromophores, it holds that

κ⟨ ⟩ = 2
3

2
orient (5)

which is contained in the Förster radius R0 in eq 3, whereas the
κ2 values of individual chromophore geometries vary between 0
and 4. Hence, it is clear that any restriction in the
conformational flexibility of the chromophore, e.g., in its
binding pocket in the protein, will lead to a nonuniform
distribution of mutual orientations of chromophores and
thereby to a deviation of ⟨κ2⟩orient from the isotropic value 2/
3. This important aspect has been investigated by molecular
dynamics (MD) simulations on fluorescent labeled hen egg-
white lysozyme36 and polyproline.10,37 In the case of the
lysozyme study, where the orientation of one chromophore was
practically fixed by its binding pocket, the ⟨κ2⟩orient value
obtained from the MD simulations was about 30% smaller than
the theoretical value obtained by taking into account one fixed
dipole and one freely rotating one. In the case of polyproline,
where both chromophores were flexible, the deviations between
the two values was found to be about 14%. In both studies, a
correlation was found between the actual distance between
chromophores and the corresponding (instantaneous) κ2

values. Taking into account this correlation, which is usually
neglected, led to another 5% change in the average rate
constant.36

Although the effect of any one of the approximations
described above has been studied in the past, how their
interplay effects the interpretation of FRET experiments on
fluorescent labeled proteins is less understood. The success of
the standard Förster theory seems to suggest that there can be
substantial error compensation between the different approx-
imations. The present study was designed to answer this
question and to provide new tools that allow experimental
situations, where the standard theory is invalid, to be described,
in particular, for short intermolecular distances. In our
calculation scheme, the conformational flexibility of the
chromophores will be described by MD simulations and the
excitonic coupling for the different conformations is obtained
with the Poisson-TrEsp method30,38 that goes beyond the PDA
and includes screening and local field effects caused by the
electronic polarization of the environment.
A suitable model system for this type of study is polyproline,

which was used 50 years ago by Stryer and Haugland2 to
introduce FRET as a spectroscopic ruler. Polyproline forms a
trans-helix in trifluoroethanol (TFE)2,37 and in water,37 where
in the latter case, in a fraction of complexes, a single internal
proline in cis conformation occurs, as detected by nuclear
magnetic resonance spectroscopy37 and inferred also from
fluorescence quenching by photo-induced electron transfer
measured between a chromophore and a tryptophan residue
attached to the termini of the polyproline helix.39 Because of
the internal cis conformation of a proline, the chromophores
attached in FRET experiments to the ends of the polyproline
helix come closer than that for all-trans polyproline. Therefore,
the mean transfer efficiency measured in water is somewhat
higher than that in TFE.37 All-trans polyproline is relatively
stiff, as predicted by early molecular mechanics calculations of
conformational energies40 and MD simulations.37 Using long
flexible linkers for the chromophores on one hand has the
advantage of getting close to the isotropic limit for ⟨κ2⟩orient, but
on the other hand, this can lead to static disorder in

interchromophore distances that needs to be taken into
account in the interpretation of the FRET experiments. The
term “static” refers to all conformational transitions that are
slow compared to the fluorescence lifetime of the dyes. In this
way, Best et al.37 finally explained a deviation between the two
R0 values that Stryer and Haugland2 obtained for the
polyproline system labeled with naphtyl donor and dansyl
acceptor from the measured distance dependence of the energy
transfer efficiency (eqs 1 and 2) and from spectroscopic data on
the isolated chromophores (eq 3). A systematic investigation of
the distance dependence of the FRET efficiency in polyproline
labeled with Alexa dye molecules was performed by Schuler et
al.14 using single-molecule experiments and ensemble time-
correlated single photon measurements. Treating polyproline as
a rigid rod and using Förster theory resulted in predicted FRET
efficiencies that are smaller than the measured ones for long
interchromophore distances (polyproline helices), whereas
those predicted for small distances are larger than the
experimental values. The deviations at large distances were
explained by the larger flexibility of longer helices14 and by a
subfraction of polyproline with internal cis residues.37 For short
distances, it was speculated14 that the deviations between
Förster theory and experiment could be due to the breakdown
of the PDA. The method introduced in the present work will
allow us to analyze these deviations quantitatively.
The rest of this article is organized in the following way.

First, we introduce our method combining quantum chemical,
electrostatic, and MD calculations. Next, we apply this method
to describe FRET experiments on polyproline helices of
different lengths, containing 6, 11, 14, and 20 proline residues
labeled with Alexa Fluor 488 and Alexa Fluor 594
chromophores, termed in the following as P6, P11, P14, and
P20, respectively, and we compare the results with experimental
data.14 Finally the results are discussed, including a detailed
analysis of the different approximations that are necessary to
arrive at Förster theory, and conclusions are presented.

■ THEORETICAL METHODS

Calculation of Excitonic Coupling. In Förster theory, a
PDA is used for the excitonic coupling reading

κ μ μ
=J

n RPDA 2
D A

3 (6)

with the center-to-center distance between the chromophores
R, the optical transition dipole moments of the donor and the
acceptor μD = μDeD and μA = μAeA, respectively, and the
orientational factor

κ = · − · ·e e e e e e3( )( )D A D R A R (7)

where eR is a unit vector along the connection between the
centers of the two chromophores, and eD and eA are unit
vectors oriented along the transition dipole moments of the
donor and the acceptor, respectively. The factor 1/n2 in eq 6
takes into account screening of the Coulomb coupling by the
optical polarizability of the environment.
In the transition charge from the electrostatic potential

(TrEsp) method,24 the electrostatic potentials of the ab initio
transition densities of the chromophores are fitted by atomic
partial charges, and the coupling is obtained from these charges
as
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where the transition charges qI
(D) of the donor and qJ

(A) of the
acceptor are placed at the respective atoms I and J. The factor f
describes screening and local field corrections in an implicit
way.
An explicit description of these effects is obtained with the

Poisson-TrEsp method.30,38 Here, the transition charges of the
chromophores are placed in molecule-shaped cavities that are
surrounded by a homogeneous dielectric with optical dielectric
constant ϵ = n2, which equals the square of the refractive index
and represents the electronic polarizability of the solvent. A
Poisson equation is solved for the potential φA of the transition
charges of the acceptor

∑φ π δ∇· ϵ ∇ = − −qr r r R( ( ) ( )) 4 ( )
J

J JA
(A) (A)

(9)

with ϵ(r) = 1, if r points inside a chromophore cavity, and ϵ(r)
= n2 otherwise. The excitonic coupling between chromophores
is then obtained as

∑ φ=‐J q R( )
I

I IP TrEsp
(D)

A
(D)

(10)

where φA(RI
(D)) is the electrostatic potential of the transition

charges of the acceptor at the position of the Ith transition
charge qI

(D) of the donor.
Calculation of Rate Constant. The rate constant k of

excitation energy transfer for weak excitonic coupling J between
donor and acceptor reads, using Fermi’s Golden Rule,

= | |π
αℏ

k J D I
2 2 ,41 with the overlap integral DαI between the

normalized lineshape functions of donor emission and acceptor
absorption. In our calculations, we describe the rate constant as

= | |k J C2
(11)

where the excitonic coupling J is obtained from the ab initio
transition density in different approximations (PDA, TrEsp, P-
TrEsp) and the calibration constant C takes into account the
overlap integral of the lineshape functions and, in the case of
TrEsp and Poisson-TrEsp, also uncertainties in the absolute
magnitude of the quantum chemical transition density, as will
be described in detail below. For large intermolecular distances
and isotropic orientations, the orientationally averaged rate
constant is given by the Förster expression1,34

τ
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with the Förster radius R0 in eq 3, the lifetime τD of the excited
state of the isolated donor, and the interchromophore distance
R. Using eqs 5−7 and 11, we obtain
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where μM is the magnitude of the transition dipole moment of
the donor (M = D) or acceptor chromophore (M = A). Please
note that we have assumed that only κ depends on the mutual
orientation of the chromophores. Hence, the calibration
constant follows as

τ μ μ
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R n3
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From the above equation, in the PDA (eq 6), the rate constant
in eq 11 becomes

τ
κ=k
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where κ2(t) is the square of the orientational factor κ (eq 7).
Please note that the information about the magnitude of the
transition dipole moment of the donor is contained in its
radiative lifetime τD/ϕD and that of the acceptor in the
absorption spectrum, both entering the prefactor R0

6/τD in the
Förster rate constant (eqs 3 and 12), which is obtained from
the experimental spectroscopic properties of the isolated
chromophores.
In the case of TrEsp and Poisson-TrEsp, the factor C in eq

14 also corrects for uncertainties in the absolute magnitude of
the transition density. The quantum chemical transition
densities are effectively rescaled such that their first moment,
that is, the transition dipole moments, resemble the
experimental values. The transition dipole moment of
chromophore M is given as

∑μ = e qRM
I

I
M

I
M

,0
( ) ( )

(16)

where qI
(M) are the atomic transition charges obtained from a fit

of the electrostatic potential of the ab initio transition density of
the isolated chromophore M, and RI,0

(M) is the equilibrium
position of the Ith nucleus of this chromophore, obtained from
a geometry optimization of the whole polyproline−chromo-
phore system, with the molecular mechanics force field used in
the MD simulations. Because of slight changes of the
equilibrium structure with respect to that obtained for the
isolated chromophore in a quantum chemical geometry
optimization, the magnitude of the transition dipoles is slightly
changed for the molecular mechanics geometries. For the
donor chromophore Alexa 488, the transition dipole increases
from 8.2 D in the quantum chemical calculations to 8.4 D in
the molecular mechanics geometry of the whole system. A
similar increase, from 4.6 to 4.9 D, is obtained for the acceptor
chromophore Alexa 594. For the present Alexa chromophore
pair, a Förster radius R0 = 5.4 nm in water (n = 1.33) and an
excited state lifetime of the isolated donor of τD = 4 ns were
determined.14 With the transition dipole moments μD = 8.4 D
and μA = 4.9 D, discussed above, from eq 14, a calibration
constant

= − −C 0.676 cm ns2 1 (17)

results for the present system. This calibration constant will be
applied in eq 11 to calculate instantaneous rate constants k
along the MD trajectories, using the TrEsp (eq 8) and the
Poisson-TrEsp (eq 10) methods for the excitonic couplings.

FRET Efficiencies from Rate Constant Averages. Under
stationary conditions, the populations of excited states of the
donor and the acceptor nD and nA, respectively, are constant in
time and are related by dnA/dt = 0 = knD − nA/τA, with the
excitation energy transfer rate constant k and where τA

−1 =
(τA

rad)−1 + (τA
nr)−1 comprises radiative and nonradiative decay

processes between the excited and the ground state of the
acceptor. Hence, the relative population of excited states of the
donor and the acceptor under stationary conditions is
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The field intensities of the donor and acceptor fluorescence
follow as ID/A

(F) ∝ nD/A/τD/A
rad , and the detectors measure the

intensities ID/A ∝ σD/AID/A
(F) , where σD and σA are the sensitivities

of the detectors for the donor and acceptor photons,
respectively. Hence, the relative intensities are given as
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which, using eq 18, becomes
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with γ = ϕAσA/(ϕDσD) introduced in eq 1, where the
fluorescence quantum efficiencies ϕD/A are defined as ϕD/A =
τD/A/τD/A

rad . τD in eq 20 is the excited state lifetime of the donor
in the absence of the acceptor and comprises radiative and
nonradiative processes. With eq 20, the energy transfer
efficiency in eq 1 is obtained as

=
+

τ

E
1

1
k

1

D (21)

Depending on the relative timescale of energy transfer/
fluorescence decay and conformational dynamics, two limiting
scenarios can be distinguished. If the conformational dynamics
of the chromophores is fast compared to their fluorescence
lifetime, the emitted photons have averaged over the different
mutual orientations and an average rate constant ⟨k⟩ appears in

the measured efficiency = +
τ ⟨ ⟩

−

( )E 1
kf

1
1

D
. In the limit where

the conformational transitions are slow, the emitted photons
measure the efficiencies of the different (static) conformations

and the overall efficiency is given as = +
τ

−

( )E 1
ks

1
1

D
. In

the analysis of our MD trajectories, we take into account the
fluctuations that are fast compared to the excited state lifetime
of the chromophores by an average of the rate constant and
those which are slow by an average of the efficiency. The overall
efficiency is then obtained as

τ
= +

⟨ ⟩
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where ⟨...⟩f denotes an average of the instantaneous rate
constant k(t) over the fast fluctuations
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and ⟨...⟩s describes an average of the efficiencies with respect to
static disorder, that is, conformational substates, with lifetimes
that are longer than the excited state lifetime of the
chromophores. In our simulations, we run several MD
trajectories for randomly chosen initial conditions, perform
the average in eq 23 for every trajectory separately, and
afterwards, combine all trajectories and perform the average
over static disorder of the whole ensemble. The above
distinction between fast and slow fluctuations will be checked

by performing Monte Carlo (MC) simulations of FRET
efficiencies, described further below.
With the PDA rate constant kPDA in eq 15, the FRET

efficiency in eq 22 becomes

κ
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2
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where the interchromophore distance R(t) and orientational
factor κ(t) are obtained from the MD simulations. In the case
of the Poisson-TrEsp couplings (eq 10) and the TrEsp
couplings (eq 8), the rate constant k(t) entering the FRET
efficiency in eq 22 is obtained from eqs 11 and 17.
The FRET efficiencies, calculated as described above, will be

compared with experimental results from single-molecule
spectroscopy.14 In the latter case, distribution functions are
obtained with a width that is largely determined by the shot
noise resulting from the finite number of photons collected, and
to a minor extent, by the mixture of all-trans polyproline with
polyproline containing a cis conformation. For polyproline 20,
it has been estimated that in 30% of the peptides, a single
internal cis residue is present somewhere along the helix.37 In
the present work, for simplicity, we investigate only all-trans
polyproline, but provide an estimate of the influence of the
missing contribution to the efficiency resulting from internal cis
conformations. Because the photons are collected with ms
time-resolution,14,37 except for the cis−trans conformational
change occurring on a longer timescale,39 there is complete
conformational averaging over the mutual geometries of the
two chromophores during the observation time of a single
molecule. Furthermore, we do not include the shot noise
because it does not critically affect the average efficiencies,
which were found to agree with efficiencies obtained from the
time-correlated ensemble experiments.14 A detailed investiga-
tion of the distribution functions measured in single-molecule
FRET experiments is a highly non-trivial task4,10,37 and is
beyond the scope of the present work.

FRET Efficiencies from Monte Carlo Simulations. To
check the validity of eq 22 for the efficiency derived above,
where we have separated the slow from the fast fluctuations in
the respective averages, direct Monte Carlo (MC) simulations10

of the efficiencies along the MD trajectories, from which the
instantaneous rate constants k(t) are obtained, are performed.
These MC calculations consist of an outer and an inner run. In
the outer run on a given MD trajectory, an initial starting time t
is chosen randomly, from where the inner MC run is started.
The latter is performed along the MD trajectory providing the
time-dependent rate constant k(t) in time steps of Δt. We
assume that a photon was absorbed by the donor at this initial
time t. We now distinguish between the probability pD = Δt/τD
that the donor gets de-excited by photon emission, the time-
dependent probability pA(t) = k(t)Δt that the excitation energy
of the donor is transferred to the acceptor, and the probability 1
− pD − pA(t) that the donor stays excited within the next time
step Δt, as illustrated in Figure 1. In the inner MC run, a
particular realization of events is obtained by picking a random
number X that is uniformly distributed in the interval between
0 and 1. This interval is divided according to the three
probabilities discussed above. If X is smaller than pD, the donor
emits a photon and a new outer MC run is started. If X is larger
than pD and smaller than pD + pA(t), there is excitation energy
transfer to the acceptor and the acceptor emits a photon. Again,
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the outer MC run is restarted by choosing a new initial time t. If
X is larger than pD + pA(t), the donor stays excited and the
system moves to the next point t + Δt in time, that is, the
instantaneous rate constant k(t) used in the previous step is
replaced by k(t + Δt), and a new random number X is taken
and the next event determined, accordingly. This procedure is
continued until either a donor or an acceptor photon is
emitted. Afterwards, a new outer MC run is started. The FRET
efficiency then follows from the total numbers nD and nA of
donor and acceptor photons, respectively, as

γ
=

+
E

n
n n

A

A D (25)

where the factor γ takes into account the different fluorescence
quantum yields of the donor and the acceptor and the different
sensitivities of the detectors of the donor and acceptor photons,
as before. The outer MC run is repeated until the efficiency E is
converged.
Finally, we note that the MC procedure described above

includes the limiting cases of dynamic and static disorder,
where the fluctuations of the rate constant are fast and slow,
respectively, compared to the excited state lifetime of the
donor, as well as all intermediate regimes. In the case of fast
fluctuations, the inner MC run on average will sample many
different rate constants before a photon is emitted; whereas for
slow fluctuations, every excited donor state has just seen one
FRET rate constant and the outer MC run alone determines
the disorder.
Estimation of Contribution from Internal Cis Residues

to the Efficiency. NMR experiments37 have shown that there
is a small percentage of polyproline helices containing cis
prolines, where the probability pc of such a cis conformation
was found to be 10% for the C-terminal proline and pc = 2% for
the remaining prolines, termed internal in the following. Hence,
the probability of finding a polyproline helix with k internal
residue in cis conformation is given as10

=
−

−‐
− −⎛

⎝⎜
⎞
⎠⎟p

N
k

p p
1

(1 )k
N k N k
cis

( )
c c

( 1 )

(26)

The probabilities resulting for one and two cis conformations
are listed in Table 1 for the polyprolines investigated here (N =
6, 11, 14, 20). The probabilities for more than two cis residues
is negligible (<1%). The single-molecule experiments for N =
20 in water and in TFE solvent, where no internal cis residues
in polyproline are formed, have revealed that there is an
efficiency increase by 0.1 due to the internal cis residues from
Et
(20) = 0.51 in TFE37 to Ec

(20) = 0.61 in water.14,37 We have used
the efficiencies extracted for γ = 1 (eq 1) in ref 37 from
experimental data on P20 to be consistent with the efficiencies
extracted in ref14 for the different helices considered in this
work.

The increase in efficiency in the presence of cis residues is
due to the smaller interchromophore distance. Using the
Förster expression for R(E) in eq 4, the decrease in average
distance for this system can be estimated as

Δ = −R R E R E( ) ( )20 t
(20)

c
(20)

(27)

which results in ΔR20 = 3.5 Å for the present system.
For geometrical reasons, we estimate the average distance

decrease of the other (N = 9, 11, 14) polyprolines as

Δ = ΔR R
R

R

P

P
N

N N

20
t
( )

t
(20)

cis
( )

cis
(20)

(28)

where Rt
(N) is the average interchromophore distance obtained

for the N-proline all-trans helix in our MD simulations (2nd
column of Table 2) and Pcis

(N) =∑k pk‑cis
(N) is the probability to find

at least one internal cis residue in the helix. From this decrease
in average distance, using E(R) in eq 2, an increase of the
efficiency

Δ = − = − Δ −E E E E R R E R( ) ( )N
N N N

N
N

c
( )

t
( )

t
( )

t
( )

(29)

results, which is used to obtain an estimate for the efficiency of
those polyproline helices with all internal trans conformations,
for which no direct experimental data are available. The
numerical values for ΔEN are given in Table 1 (last column).
Whereas there is a significant increase of the experimental
efficiency for the longest helix P20 due to the internal cis
residues, the influence of the latter is practically zero for the
shortest helix P6. Finally, we note that there are no experiments
on polyproline without the small fraction of C-terminal cis
conformations. Modeling studies39 show that a cis conforma-
tion at the end of a helix has a much weaker influence on the
interchromophore distance than one in the center, as expected.
Indeed, MD simulations with and without C-terminal cis
residues obtained a very similar decay of the donor fluorescence
by FRET.37 In the present analysis, therefore, we neglect the
influence of these C-terminal cis conformations.

■ COMPUTATIONAL DETAILS
Molecular Dynamics Simulations. The conformational

dynamics of all-trans polyproline helices of 6, 11, 14, and 20
proline residues labeled with Alexa 594 and Alexa 488 dyes in
aqueous solution was studied with all-atom MD simulations.10

The system was dissolved in a water box filled with 300 mM
NaCl, which equals the ionic strength of 50 mM sodium
phosphate buffer used in the experiment.14 For polyproline, we
used the standard molecular mechanics CHARMM force field
(version v35b3).42,43 The parameters of the force fields of the
Alexa chromophores were created by an analogy approach from
that of similar chemical groups in the CHARMM force field42,43

(respective parameter files can be downloaded from the

Figure 1. Illustration of Monte Carlo procedure described in the text.

Table 1. Probabilities pk‑cis
(N) (Equation 26) To Find k = 1 and

2 Internal Cis Conformations in a Polyproline Helix of
Length N and Resulting Increase in FRET Efficiency ΔEN

a

N p1‑cis
(N) (%) p2‑cis

(N) (%) ΔEN
6 13.9 1.0 0.002
11 16.7 1.6 0.014
14 20.4 2.5 0.039
20 26.4 4.9 0.1

aEstimated as described in the text (eq 29).
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Supporting Information (SI)). The water molecules of the
aqueous environment were explicitly included using a TIP3P
parameterization.44 The MD simulations were performed with
the NAMD software package.45 First, polyproline, labeled with
Alexa dyes, was geometry optimized, using as a starting
structure an all-trans polyproline helix with backbone dihedral
angles ϕ = −75° and Ψ = 150°. Periodic boundary conditions
were applied in all dimensions. The initial conformations for
the trajectories were obtained after a 5 ns equilibration run. The
trajectories were propagated with a 2 fs time step, at a constant
temperature 300 K and NPT conditions. The constant pressure
control was enabled by a Langevin piston with period 100 fs
and decay time constant 50 fs. The cut-off distance for
electrostatic and van der Waals interactions was set to 12 Å. For
the calculation of long-range electrostatic interactions, the
particle-mesh-Ewald method was employed. For each polypro-
line length, we generated 10 trajectories, each with a time
window of 200 ns. Two snapshots of the MD simulation on P6
are shown in Figure 2. In the structure shown in the left part,
the distance between chromophores is large, and in that in the
right part, it is small, representing an “open” and a “closed”
conformation. In the latter, the long flexible linker of the donor
chromophore Alexa 488 is directed back onto the polyproline
helix and the chromophore comes in contact with the helix, as
noted also in earlier modeling studies.10,12

Quantum Chemical/Electrostatic Calculations. The
geometry of the isolated chromophores was optimized by
density functional theory (DFT) calculations using the B3LYP
exchange-correlation (XC) functional and a 6-31G* basis set
with the program Jaguar.46 On the basis of this geometry, the
transition density between the ground state and the first excited
state of the chromophores and the corresponding electrostatic
potentials were calculated using the Hartree−Fock/config-
uration interaction with single excitations method and a 6-
31G* basis set, with the program Q-CHEM.47 Atomic
transition charges were obtained by fitting the ab initio
electrostatic potential of the transition density on a 3D grid
around the chromophores using the program CHELP-BOW.48

Numerical values of the transition charges of the chromophores
are given in the SI. These charges were placed at the respective

atom positions obtained from the MD simulations. In the
Poisson-TrEsp method, the Poisson equation (eq 9) for the
electrostatic potential of the transition charges in molecule-
shaped cavities embedded in a homogeneous dielectric was
solved numerically every 10 ps along the MD trajectories using
the program MEAD.49 In the TrEsp method, the excitonic
couplings were obtained directly from the Coulomb coupling
(eq 8) between transition charges of the two chromophores,
first in vacuum ( f = 1) and later in the medium by introducing
an effective dielectric constant ( f = 1/ϵeff) based on the
comparison with the Poisson-TrEsp couplings. In the PDA,
first, the magnitude and direction of the transition dipoles of
the chromophores in the molecular frames were obtained by
placing the quantum chemical transition charges onto the
equilibrium structure resulting from the molecular mechanics
force field, as described above (eq 16). The transition dipole of
Alexa 488 was found to be oriented parallel to the line
connecting atoms C24 and C28, and that of Alex 594 is
oriented parallel to the connection between atoms C24B and
C28B (the position of these atoms is defined in the SI). During
the MD simulations, the direction of the transition dipoles was
obtained from the positions of those four atoms and the
resulting point dipoles were placed at the centers of the central
rings of the conjugated π-systems of the chromophores (see
SI). Finally, the Coulomb coupling between point dipoles was
calculated using eqs 6 and 7. The TrEsp and PDA couplings
were evaluated every 500 fs along the MD trajectories.

■ RESULTS

In Figure 3, correlation plots are presented of excitonic
couplings obtained along the 2 μs MD trajectories for the four
polyproline helices (P6, P11, P14, and P20) investigated in this
work. To investigate the validity of the PDA, we have correlated
the PDA couplings with the TrEsp couplings (in vacuum) in
the right half of Figure 3. For the shortest helix P6, there is
significantly less correlation than for the longer helices P11−
P20, illustrating the shortcomings of the PDA at close
interchromophore distances. The correlation is largest for the
longest helix (P20), as expected.

Table 2. FRET Efficiencies E Obtained in Different Approximations as a Function of the Average Interchromophore Distance
⟨R⟩ for Helices with Different Number N of Polyprolines in Comparison to Experimental Values Eexp

14 and Eexp
(corr)a

N ⟨R⟩ (Å) Eexp Eexp
(corr) EP‑TrEsp ETrEsp EPDA EPDA

(R,κ) EPDA
(R,iso) EPDA

(F)

6 25.3 0.93 0.93 0.93 0.93 0.92 0.91 0.94 0.99
11 34.7 0.86 0.85 0.84 0.84 0.81 0.78 0.87 0.93
14 42.5 0.81 0.77 0.77 0.77 0.73 0.70 0.76 0.81
20 56.8 0.61 0.51 0.46 0.46 0.46 0.41 0.43 0.42

aEexp
(corr) was corrected for the presence of internal cis residues, as described in the text (eq 29, Table 1). EP‑TrEsp and ETrEsp were obtained from eqs 22

and 11 using either eq 10 or 8, respectively, for the couplings. The expressions for the PDA efficiencies EPDA, EPDA
(R,κ), EPDA

(R,iso) and EPDA
F are given in eqs

24 and 31−33, respectively.

Figure 2. Structure of polyproline 6 labeled with Alexa 488 and Alexa 594 chromophores in open (left part) and closed (right part) conformations,
obtained from two snapshots of a MD simulation with explicit waters (not shown).
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An excellent correlation between the TrEsp couplings in
vacuum (eq 8 with f = 1) and the Poisson-TrEsp couplings in
water (optical dielectric constant ϵ = n2 = 1.77) (eq 10) was
obtained for all helix lengths, as shown in the left half of Figure
3. The correlation is slightly weaker for the shortest helix P6 at
high absolute magnitudes of the couplings. From the ratio
between the vacuum coupling obtained with TrEsp and the
Poisson-TrEsp couplings in water, we define an effective
dielectric constant as

ϵ =
=

ϵ =‐

J f

J

( 1)

( 1.77)eff
TrEsp

P TrEsp (30)

The resulting probability densities of ϵeff are shown in Figure 4.
Very similar results are obtained for the different helices. From
the peak position of these distribution functions, we estimate an
effective dielectric constant ϵeff ≈ 1.65, which will be used in the
calculation of FRET efficiencies with the TrEsp method below.
The FRET efficiencies obtained from eqs 11 and 22 with the

Poisson-TrEsp couplings (eq 10) and TrEsp couplings (eq 8, f
= 1/ϵeff, ϵeff = 1.65) and from eq 24 for PDA couplings are
shown as a function of average interchromophore distance in
Figure 5. These efficiencies are compared to the experimental
values14 and the prediction of Förster theory (eq 2). The
original experimental values Eexp are shown, as well as those that
were corrected for the presence of internal cis residues Eexp

(corr) =

Eexp − ΔEN with the ΔEN estimated as described above (eq 29,
Table 1). Because our MD simulations were done only on all-
trans polyproline, we will compare our results with Eexp

(corr) in the
following and will refer to these values as experimental values.
As noted already in the experimental paper,14 the

experimental efficiencies for short helices are below the
predictions of Förster theory. The present Poisson-TrEsp/
MD and the simpler TrEsp/MD methods provide quantitative
agreement with the experimental values for short and
intermediate helix lengths (P6, P11, and P14) and a somewhat
too low efficiency for the longest helix (P20). Interestingly, the
PDA/MD FRET efficiencies are also close to the experimental
data, in particular, for the shortest helix P6, where the PDA for
the individual conformations starts to become invalid, as the
low correlation with the TrEsp couplings for P6 shows (right
top part of Figure 3). The PDA/MD FRET efficiencies for the
intermediate helix lengths (P11 and P14) are somewhat below
the efficiencies obtained with Poisson-TrEsp/MD and TrEsp/
MD, whereas for the shortest helix P6 and the longest helix
P20, all three methods practically give the same result.
Obviously, the PDA is not responsible for the overestimation
of FRET efficiency obtained by Förster theory for short and
intermediate interchromophore distances.
We checked our approximation to divide the ensemble

average into an average of the rate constant over the fast
fluctuations and an average of the efficiencies over the slow
fluctuations (eq 22). For this purpose, we performed MC
calculations that directly include the fast and slow fluctuations
of the instantaneous rate constant, as described above. For
these calculations, the TrEsp rate constants were used, which
are available at a step size of Δt = 500 fs along the MD
trajectories. We used this Δt for the inner run in the MC
calculations. Convergence of the computed efficiencies was

Figure 3. Correlation of excitonic couplings obtained with different
methods along the MD trajectories of polyprolines 6, 11, 14, and 20
from top to bottom. The left half contains the correlation between the
TrEsp couplings (eq 8 for f = 1) and the Poisson-TrEsp couplings (eq
10). The red solid lines are obtained from a linear regression. The
right half contains the correlations between the PDA couplings (eq 6)
and the TrEsp couplings (eq 8), both calculated in vacuum. The blue
solid lines indicate a perfect correlation between the two types of
couplings.

Figure 4. Probability density of an effective dielectric constant defined
in the text (eq 30) for four different helices: P6 (black), P11 (red),
P14 (blue), and P20 (green). The vertical dashed line in the upper
part denotes the most likely value for the effective dielectric constant
ϵeff = 1.65, which is used in the calculation of FRET efficiencies with
the TrEsp method (eq 8 with f = 1/ϵeff).
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obtained after 106 outer MC runs. The calculated MC
efficiencies are in excellent agreement with the results obtained
from eq 22, as shown in Figure 6.
An advantage of the averaged rate constants is that we can

systematically bridge the gap between the PDA/MD result and
the predictions of Förster theory by neglecting certain

correlations in this average, as will be shown in the following.
In the case of uncorrelated fast fluctuations of κ2 and R6, the
expression for the PDA/MD efficiency in eq 24 becomes

κ
= +

⟨ ⟩
⟨ ⟩

κ
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By setting ⟨κ2⟩f = 2/3, we assume isotropic mutual orientations
of the chromophores and obtain the efficiency
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Finally, we arrive at the Förster expression for the efficiency by
also including the slow fluctuations into the average of the
interchromophore distance and by setting ⟨R6⟩f+s = ⟨R6⟩ ≈
⟨R⟩6. The resulting efficiency reads

=
+ ⟨ ⟩

E
1

1 R
R

PDA
(F)

6

0
6 (33)

where ⟨R⟩ is the average interchromophore distance that has to
be identified with the distance R in eq 2 of Förster theory. The
efficiencies obtained on the different levels of approximation for
P6, P11, and P14 are shown in Figure 7, including also the

more accurate P-TrEsp and TrEsp results as well as the
experimental values. For all helices, there is a nonmonotonic
dependence of the FRET efficiency on the level of
approximation. Whereas the PDA and the neglect of
correlations in interchromophore distances and orientations
decrease the FRET efficiencies, this decrease is overcompen-

Figure 5. FRET efficiencies E as a function of mean interchromophore
distance ⟨R⟩ (obtained from the MD simulations) calculated with
different excitonic couplings (black symbols) are compared to
experimental data (red symbols) and predictions from Förster theory
(black line). The excitonic couplings have been calculated along the
nuclear trajectories obtained with MD simulations using the Poisson-
TrEsp method (filled black circles), the TrEsp method with ϵeff = 1.65
(open black squares), and the PDA (open triangles). The original
experimental values14 (red X) are corrected for the presence of a small
amount of internal cis residues, as described in the text (eq 29, Table
1). The corrected experimental values are shown as open red circles.
For P6, all symbols overlap, and for P20, all black symbols
(representing the theoretical results) overlap. The numerical values
of the data points in this graph are given in Table 2.

Figure 6. Correlation between the efficiency E obtained from the
averaged rate constants (eq 22) and the efficiency EMC obtained from
MC calculations using the instantaneous rate constants. The TrEsp
couplings have been used to calculate the rate constants. The solid line
indicates a perfect correlation.

Figure 7. Comparison of FRET efficiencies for P6 (black), P11 (blue),
and P14 (green) obtained in different approximations (from left to
right: (i) Poisson-TrEsp (eqs 10, 11, and 22), (ii) TrEsp (eqs 8, 11,
and 22, f = 1/ϵeff = 1/1.65), (iii) PDA (eq 24), (iv) PDA neglecting
the correlation between κ2 and R6 (eq 31), (v) PDA assuming
isotropic mutual orientations of chromophores by setting ⟨κ2⟩ = 2/3
(eq 32), and (vi) standard Förster theory (eq 33)). The experimental
efficiencies are shown as horizontal dashed lines. The numerical values
of the data points in this graph are given in Table 2.
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sated by the neglect of static disorder in interchromophore
distances and orientations. Hence, the latter two approxima-
tions are responsible for the overestimation of the FRET
efficiencies by Förster theory for the present system.
There is indeed a considerable amount of static disorder in

the interchromophore distances and mutual orientations of
chromophores, as demonstrated by the distribution functions of
the orientational factor κ2 and the interchromophore distance
R, both averaged over the fluorescence lifetime, shown in
Figure 8. For comparison, we have included the distribution

function of the helix length, which is very sharp compared to
the distribution function of interchromophore distances.
Whereas the polyproline helix is rather stiff, the long flexible
linker of the donor chromophore Alexa 488 leads to large
variations in interchromophore distances. In the case of the
shortest helix P6, these variations are similar to the helix length,
as illustrated also in Figure 2, where two snapshots are shown,
representing the open and the closed conformation, with large
and small interchromophore distances, respectively.

■ DISCUSSION
The aim of the FRET experiments is to extract distances from
measured energy transfer efficiencies. Despite the long linker of
the donor chromophore Alex 488, the average interchromo-
phore distance and the average helix length agree quite well
(first and second row in Table 3). Hence, FRET for this system
represents a valid ruler for the helix length. The good
quantitative agreement between the experimental energy
transfer efficiencies with those calculated based on the present
combination of MD simulations of the nuclear trajectories and
the Poisson-TrEsp calculation of excitonic couplings provide
evidence that the MD simulations create a representative
ensemble of the conformational substates of the present system.

Therefore, it is instructive to compare the interchromophore
distances obtained from MD with those that follow directly
from the experimental efficiencies using Förster theory. For the
two longer polyproline helices, those two distances agree within
a 5% error margin (second and third rows of Table 3). For the
shortest helix, a 30% deviation between the average MD
interchromophore distance and the distance predicted by
Förster theory is obtained, and for the second shortest helix
P11, the deviation is still 15%. At first glance from Figure 3
(right top part), it seems obvious that the limitation of the PDA
is responsible for the large error of P6. However, a detailed
analysis of the different levels of approximation connecting the
MD/Poisson-TrEsp analysis with Förster theory in Figure 7
reveals that the PDA alone even leads to a slight decrease of the
efficiency and, therefore, this cannot explain the overestimation
of the FRET efficiency by Förster theory resulting in an
overestimation of the interchromophore distance. Instead, in
Förster theory, the drop in efficiency by applying a PDA and by
assuming uncorrelated distance and orientation factors is
overcompensated by the assumption of a single isotropic
orientational factor ⟨κ2⟩f = 2/3 and by the neglect of the
distribution in interchromophore distances. The latter two
approximations are not only invalid for P6 but also for the
longer helices, as Figure 8 demonstrates. In Förster theory, the
chromophores are assumed to sample their conformational
space quickly compared to their fluorescent lifetime and hence
the distribution functions of interchromophore distances and
orientations in Figure 8 should just show a sharp single peak
located at the average interchromophore distance and at ⟨κ2⟩f =
2/3, respectively. In contrast, very broad distribution functions
are obtained. The neglect of the finite width of these
distribution functions for ⟨κ2⟩f and ⟨R6⟩f is responsible for the
overestimation of the energy transfer efficiency for P6, P11, and
P14 by Förster theory in Figure 5. The error in inferred
interchromophore distance for P6 and P11 is enlarged by the
smaller slope of the Förster theory efficiency-versus-distance
curve for small distances (Figure 5). For P14 and P20, the good
quantitative agreement between the prediction of Förster
theory and the interchromophore distances obtained from MD
relies on error compensation (Figure 7) and the steep slope of
the efficiency-versus-distance curve (Figure 5). The error
compensation between different approximations of Förster
theory is a remarkable result of the present work. For example,
in the case of P11, the absolute magnitudes of the errors
between different levels of approximation in Figure 7 add up to
0.21 efficiency units, whereas the actual error of Förster theory
with respect to P-TrEsp/MD is just 0.07 units, due to the
different signs of individual errors of the underlying

Figure 8. Probability density of interchromophore distance and helix
length (blue and red curves, respectively, in left half), orientational
factor ⟨κ2⟩f of PDA (right half), all averaged over the fast fluctuations
(as in eq 23) for the different polyproline helices (from top to
bottom): P6, P11, P14, and P20. The red curves in the left half have
been scaled down as indicated by the red numbers for better
comparison.

Table 3. Average Helix Length ⟨Rhelix⟩ and
Interchromophore Distance ⟨R⟩ Obtained from MD
Simulations for the Different Polyproline Helices of Length
N As Compared to Distances R(Eexp

(corr))a

MD Förster

N ⟨Rhelix⟩ ⟨R⟩ R(Eexp
(corr))

6 20.0 25.3 35.1
11 34.1 34.7 40.4
14 42.2 42.5 44.2
20 59.1 56.8 53.6

aEstimated from experimental efficiencies Eexp
(corr) (corrected for internal

cis residue, Table 2, fourth column) using Förster theory (eq 4, R0 =
54 Å). All distances are given in units of Ångstrom.
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approximations. This deviation is only about a factor of 2 larger
than the minimal experimental error (0.02 to 0.05 efficiency
units) in single-molecule FRET experiments, estimated in a
benchmark study recently,13 based on independent experiments
performed in 20 different laboratories worldwide.
A critical extension of the standard theory, essential for the

present analysis, was to go beyond the PDA and the simple 1/
n2 screening model for the calculation of excitonic couplings.
The Poisson-TrEsp method is ideally suited for this purpose
because it is accurate, numerically efficient, and robust against
distortions of molecular conformations, obtained here from
classical MD simulations. Interestingly, the efficiency calculated
with PDA couplings for the shortest helix P6 agrees quite well
with that obtained for the Poisson-TrEsp couplings (Figure 5),
despite the fact that the individual PDA couplings for P6 are
not very accurate, as the correlation with the TrEsp couplings
(right top part in Figure 3) demonstrates. Obviously, there is
also an error compensation in the average over the different
conformations leading to the FRET efficiency. A similar effect
was noted already in earlier quantum chemical calculations,26 as
discussed in the Introduction. Interestingly, this error
compensation works somewhat less well for the intermediate
helix lengths P11 and P14, despite the much better correlation
between the individual PDA and TrEsp couplings (right middle
parts in Figure 3). For the longest helix P20, the PDA couplings
of the individual conformations are accurate enough that no
error compensation is needed to give quantitative agreement
between the resulting efficiency and those obtained with the
Poisson-TrEsp and the TrEsp methods.
The numerical bottleneck of the Poisson-TrEsp method is

the solution of a Poisson equation for the electrostatic potential
of transition charges of the chromophores. The excellent
correlation between Poisson-TrEsp couplings and the TrEsp
results (left column in Figure 3) suggests that the local field
correction and screening effects can be approximated by
screening the vacuum couplings by an effective dielectric
constant, which for the present system amounts to ϵeff ≈ 1.65,

rather independent of chromophore distance and relative
orientation of the chromophores (Figure 4). This aspect
dramatically reduces the numerical effort because the solution
of a Poisson equation can be avoided to a large extent. To
determine the value ϵeff, however, at least some molecular
conformations need to be analyzed with Poisson-TrEsp. The
analytical model approximating the molecules as spheres and
the transition density by a point dipole, discussed in the
Introduction, predicts an effective screening constant ϵeff = 1.29,
which does not explain our numerical result ϵeff = 1.65 for the
present system. The independence of this screening constant of
interchromophore distance and orientation (Figure 3) is
striking. For the shortest helix P6, in the closed conformation
(right part in Figure 2), the distance between atoms in different
chromophores can get as small as 3.5 Å, and hence the two
molecule-shaped cavities become very close. In such situations,
depending on the mutual orientation of chromophores, an
enhancement or a decrease of ϵeff has been reported earlier,29,30

including the Poisson-TrEsp study on photosystem I.30 It
seems that for the present system P6, the closed conformation,
for which small interchromophore distances occur, has led to
preselected mutual chromophore orientations, which do not
show strong enhancement/suppression effects of excitonic
coupling. This result, however, depends on the properties of
the specific system and most likely does not hold in general.
Recently, it was found12 that the TIP3P parameterization of

water molecules in combination with AMBER force field
parameters of the polyproline−chromophore system leads to a
bias in the statistical weight of the different conformations
toward the closed conformation, in which Alexa 488 gets close
to the polyproline helix and the interchromophore distances are
small (shown in the right part of Figure 2). To remove this bias,
the authors propose to combine the AMBER force field with a
scaled TIP4P water model, and within PDA, they obtain a
FRET efficiency of 0.83 for the all-trans P11, which is also
investigated in the present work. Because this value is above our
PDA value (0.81) and a bias toward the closed conformation is

Figure 9. Closest interatomic distance between the Alexa 488 chromophore and the polyproline helix along three representative 200 ns trajectories
for polyproline helices P11 (left), P14 (middle), and P20 (right). The red horizontal lines refer to a distance of 3 Å used to define the bound state of
the chromophore.12
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expected to increase the FRET efficiency, due to the smaller
interchromophore distances, it seems that our force field
combination (CHARMM-TIP3P) does not contain such a bias.
More direct support for this conclusion is obtained by
investigating the contact between Alexa 488 and polyproline
in detail. The closest distance between this chromophore and
the polyproline helix is shown in Figure 9 for some selected
trajectories for P11, P14, and P20. Besides relatively rapid
fluctuations with amplitudes in the range of 3−15 Å, periods of
up to a few tens of ns are visible with small amplitude
fluctuations around a distance of 2.5 Å. We repeated an earlier
analysis12 and determined the fraction of conformations with a
closest distance smaller than 3 Å, referred to as “bound state”,
where the Alexa chromophore is in a closed conformation (as
depicted in Figure 2, right part). We obtain fractions of 49, 58,
and 55% for P11, P14, and P20, respectively, which are at the
upper limit of the 20−50% range suggested to be realistic
before.12 These bound states are important contributors to the
static disorder in Figure 8.
For static disorder, we consider all fluctuations that are

slower than the excited state lifetime of the isolated
chromophores (4 ns). We made use of this separation between
static and dynamic disorder in the averages of the efficiencies
and rate constants in eq 22. The border between slow and fast
disorder is somewhat weakly defined because the excited state
lifetime of the isolated chromophores represents only an upper
bound for the actual excited state lifetime of the donor in the
coupled system. Excitation energy transfer, in particularly for
short distances, leads to shorter lifetimes. To investigate
whether our procedure suffers from such a systematic error,
we have performed MC calculations. The efficiencies obtained
by these MC calculations are practically identical to the
efficiencies obtained from the averaged rate constants for all
helix lengths. The deviations in the 0.01 efficiency unit range
are below the minimal experimental uncertainty in single-
molecule experiments.13 In particular, the deviations do not
depend on the interchromophore distance. Hence, the above
described systematic error is small.
A subtlety in the interpretation of the experimental data on

the present polyproline system concerns the influence of a
small fraction of systems with a single proline in cis
conformation. It would be helpful to also measure, besides
the FRET efficiency of P20,37 the remaining helices P6, P11,
and P14 in TFE solution, where no internal cis conformations
occur, in order to check the present estimates for the changes in
efficiency ΔEN (eq 29) that are based on Förster theory.

■ CONCLUSIONS
In the present work, we have extended the analysis of FRET
experiments to short interchromophore distances. The new
method, which combines all-atom MD simulations with
quantum chemical/electrostatic calculations of the excitonic
coupling goes beyond the PDA, takes into account microscopic
information about the conformational substates of the system,
and includes a microscopic model for screening and local field
correction effects in the excitonic coupling. This method was
successfully applied to a polyproline helix of variable length
labeled with Alexa dyes, revealing quantitative agreement with
mean average FRET efficiencies from single-molecule experi-
ments. In particular, the deviations of experimental efficiencies
from predictions of the standard Förster theory, observed for
short and intermediate helix lengths, are explained in detail. We
find that for the present system, the neglect of static disorder in

interchromophore distances and orientations is responsible for
the overestimation of the FRET efficiency by the Förster
theory. In the case of intermediate helix lengths, Förster theory,
due to a fortuitous error compensation between different
approximations, is still able to infer qualitatively correct
interchromophore distances, whereas for the shortest helix
P6, the distance predicted by Förster theory is about 30% too
large. Error compensation effects in the conformational average
lead to excellent performance of the PDA in the calculation of
the FRET efficiency for P6. Therefore, not the PDA but the
additional approximations in Förster theory, discussed above,
are responsible for the overestimation of the intermolecular
distance for P6.
The quantitatively correct MD/Poisson-TrEsp method can

be further simplified by approximating the local field and
screening effects by an effective dielectric constant, which,
however, has to be determined by comparison of Poisson-
TrEsp and TrEsp couplings obtained for a subset of molecular
conformations. For the present system, excellent quantitative
agreement between TrEsp and Poisson-TrEsp FRET efficien-
cies was obtained by introducing a single effective dielectric
constant, independent of interchromophore distance and
orientation. The MD/Poisson-TrEsp and MD/TrEsp methods
introduced in the present work can be expected to be very
helpful in the quantitative interpretation of FRET experiments
on other biomolecules in the future, because these methods are
numerically efficient and accurate at all intermolecular
distances. They can be the theoretical counterpart to the
recently established experimental protocol for high precision
single-molecule FRET experiments.13
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Fretting about FRET: Correlation between κ and R. Biophys. J. 2007,
92, 4168−4178.
(37) Best, R. B.; Merchant, K. A.; Gopich, I. V.; Schuler, B.; Bax, A.;
Eaton, W. A. Effect of Flexibility and Cis Residues in Single-Molecule
FRET Studies of Polyproline. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
18964−18969.
(38) Adolphs, J.; Müh, F.; Madjet, M. E.; Renger, T. Calculation of
Pigment Transition Energies in the FMO Protein: From Simplicity to
Complexity and Back. Photosynth. Res. 2008, 95, 197−209.
(39) Doose, S.; Neuweiler, H.; Barsch, H.; Sauer, M. Probing
Polyproline Structure and Dynamics by Photoinduced Electron
Transfer Provides Evidence for Deviations From a Regular Polyproline
Type II Helix. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17400−17405.
(40) Schimmel, P. R.; Flory, P. J. Conformational Energy and
Configurational Statistics of Poly-L-Proline. Proc. Natl. Acad. Sci. U.S.A.
1967, 58, 52−59.
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