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ABSTRACT Inferring relatedness from genomic data is an essential component of genetic association studies, population genetics,
forensics, and genealogy. While numerous methods exist for inferring relatedness, thorough evaluation of these approaches in real
data has been lacking. Here, we report an assessment of 12 state-of-the-art pairwise relatedness inference methods using a data set
with 2485 individuals contained in several large pedigrees that span up to six generations. We find that all methods have high accuracy
(92–99%) when detecting first- and second-degree relationships, but their accuracy dwindles to ,43% for seventh-degree relation-
ships. However, most identical by descent (IBD) segment-based methods inferred seventh-degree relatives correct to within one
relatedness degree for .76% of relative pairs. Overall, the most accurate methods are Estimation of Recent Shared Ancestry (ERSA)
and approaches that compute total IBD sharing using the output from GERMLINE and Refined IBD to infer relatedness. Combining
information from the most accurate methods provides little accuracy improvement, indicating that novel approaches, such as
new methods that leverage relatedness signals from multiple samples, are needed to achieve a sizeable jump in performance.
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THE recent explosive growth in sample sizes of genetic
studies has led to an increasing proportion of individuals

with at least one close relative in a data set, necessitating
relatedness detection. As the number of pairs in a sample
grows quadratically in its size, for a constant rate of re-
latedness amongpairs, proportionatelymore individualswill
have close relatives in large data sets. This pervasiveness has
relevance to nearly every genetic analysis performed in
moderate to large-scale data, including trait mapping and

population genetics. In particular, inferring relatedness be-
tween samples (Weir et al. 2006; Thompson 2013; Speed
and Balding 2015) is essential to avoid spurious signals in
genetic association studies (Marchini et al. 2004; Hirschhorn
and Daly 2005; Voight and Pritchard 2005); empowers link-
age analysis by enabling the correct specification of pedigree
structures (O’Connell andWeeks 1998;Ott 1999; Epstein et al.
2000); facilitates identification of relatives in the context of
forensic genetics (Jobling and Gill 2004; Weir et al. 2006;
Kayser and de Knijff 2011); and is needed to account for or
remove relatives in population genetic analyses (Queller and
Goodnight 1989; Hurst 2009; Schraiber and Akey 2015). Re-
latedness estimation has also drawn the interest of the general
public via companies that offer genetic testing services and
advertise their ability to find customers’ relatives, thus allow-
ing individuals to explore their ancestry and genealogy. The
broad utility of relatedness detection has motivated the de-
velopment of numerous methods for such inference. These
methods work by estimating the proportion of the genome
shared identical by descent (IBD) between individuals

Copyright © 2017 Ramstetter et al.
doi: https://doi.org/10.1534/genetics.117.1122
Manuscript received February 4, 2017; accepted for publication July 8, 2017; published
Early Online July 26, 2017.
Available freely online through the author-supported open access option.
This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10.
1534/genetics.117.1122/-/DC1.
1Corresponding authors: Department of Biological Statistics and Computational Biology,
Cornell University, 102G Weill Hall, Ithaca, NY 14853. E-mail: mdr232@cornell.edu;
and alw289@cornell.edu

Genetics, Vol. 207, 75–82 September 2017 75

http://orcid.org/0000-0003-0737-0533
https://doi.org/10.1534/genetics.117.1122
http://creativecommons.org/licenses/by/4.0/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.1122/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.1122/-/DC1
mailto:mdr232@cornell.edu
mailto:alw289@cornell.edu


(Weir et al. 2006; Speed and Balding 2015) or a closely
related quantity, where an allele in two or more individuals’
genomes is said to be IBD if those individuals inherit it from
a recent common ancestor (Thompson 2013). Characteriz-
ing the true relatedness of two or more samples is challeng-
ing for several reasons, including chance sharing of alleles
between individuals who are only distantly related, and the
fact that the distributions of IBD proportions for different
relatedness classes overlap (Hill and Weir 2011; Thompson
2013) (e.g., first cousins and half-first cousins).

Motivated by the substantial need to identify relatives in
modern samples, we present an evaluation of 12 state-of-the-
art pairwise relatedness methods, each capable of scaling to
analyze thousandsof individuals, including seven thatdirectly
infer genome-wide relatedness measures (Manichaikul et al.
2010; Thornton et al. 2012; Li et al. 2014; Moltke and
Albrechtsen 2014; Sun and Dimitromanolakis 2014; Chang
et al. 2015; Conomos et al. 2016) and five IBD segment de-
tection methods (Gusev et al. 2009; Browning and Browning
2011a, 2013a,b; Durand et al. 2014) that we used to infer
these quantities. To assess these methods, we used SNP array
genotypes from Mexican American individuals contained in
large pedigrees from the San Antonio Mexican American
Family Studies (SAMAFS) (Mitchell et al. 1996; Duggirala
et al. 1999; Hunt et al. 2005). Our analysis sample included
2485 individuals genotyped at 521,184 SNPs (Supplemental
Note in File S1) within pedigrees that span up to six genera-
tions, and with genotype data from as many as five generations
of individuals. Given this large sample, including 13 pedigrees
with.50 individuals (Supplemental Material, Figure S1 in File
S1), numerous relatives exist, andwe used these to evaluate the
inference methods. Specifically, we analyzed .3700 pairs of
individuals within each of the first- through fifth-degree relat-
edness classes, 816 and 73 sixth- and seventh-degree relatives,
respectively, and.3million pairs of individuals that are report-
ed as unrelated (Table 1). Prior evaluations of relatedness in-
ference methods included only a subset of the methods we
evaluate, and either considered simulated data (Manichaikul
et al. 2010; Thornton et al. 2012; Moltke and Albrechtsen
2014; Sun and Dimitromanolakis 2014; Conomos et al. 2016)
(which may not fully capture the complexities of real data),

used small sample sizes (Manichaikul et al. 2010; Huff et al.
2011; Thornton et al. 2012; Conomos et al. 2016), or did not
consider sixth- and seventh-degree relatives (Manichaikul et al.
2010; Thornton et al. 2012; Moltke and Albrechtsen 2014;
Conomos et al. 2016). This analysis of real data from large
numbers of up to sixth-degree relatives, as well as dozens of
seventh-degree relative pairs, provides a comprehensive evalu-
ation of existing pairwise relatedness inference methods.

The performance metric for this study is the rate at which
each method infers the pairs of samples to have the same
degree of relatedness as that reported in the SAMAFS pedi-
grees. These reported relationships are generally reliable, and
we filtered out relative pairs whose degree of relatedness is
potentially inflated due to cryptic relatedness between their
ancestors (Supplemental Note in File S1). Some programs
infer the degree of relatedness (Li et al. 2014), while others
infer a kinship coefficient (Manichaikul et al. 2010; Thornton
et al. 2012; Moltke and Albrechtsen 2014) or a coefficient of
relatedness (Chang et al. 2015; Conomos et al. 2016) [which
is two times the kinship coefficient (Wright 1922)], and the
remainder instead detect IBD segments (Gusev et al. 2009;
Browning and Browning 2011a, 2013a,b; Durand et al.
2014) (Table 2). To infer the degree of relatedness from an
estimated kinship coefficient, we used the mapping recom-
mended in the KING paper (Table S1 in File S1), which is
generally consistent with simulations (Manichaikul et al.
2010).

For IBD detection methods that report the number of IBD
segments shared at a locus (Gusev et al. 2009; Browning and
Browning 2013b), denoted IBD0, IBD1, and IBD2 for the
corresponding number of copies that are IBD, it is straightfor-
ward to calculate a kinship coefficient (Thompson 2013).
This coefficient, fij; between a pair of samples i; j denotes
the probability that a randomly selected allele in individual
i is IBD with a randomly selected allele from the same geno-
mic position in individual j. Let kð0Þij ; kð1Þij ; and kð2Þij denote the
proportion of their genomes that individuals i; j share IBD0,
IBD1, and IBD2, respectively; then the kinship coefficient is

fij ¼
kð1Þij
4 þ kð2Þij

2 : The proportions kð1Þij and kð2Þij are simply the
sum of the genetic lengths of the IBD1 and IBD2 segments,
respectively, between samples i; j divided by the total genetic
length of the genome analyzed. For the IBD detection meth-
ods (Browning and Browning 2011a, 2013a; Durand et al.
2014) that do not distinguish between regions that are IBD1
from IBD2, the proportion of the genome that is inferred to be
IBD0 provides an alternate means of estimating the degree of
relatedness (Table S1 in File S1), with the ranges of values
here again from the KING paper (Manichaikul et al. 2010).
We classified pairs of individuals with lower kinship coeffi-
cients or higher IBD0 rates than indicated for the eighth-
degree range as unrelated.

The results from the analysis are shown in Figure 1, which
depicts the proportion of sample pairs inferred to be within
each of the degree classes that we considered (first- through
eight-degree and unrelated), separated according to their

Table 1 Numbers of pairs of individuals in the SAMAFS data set
that passed sample filtersa and are reported to have relatedness
between first- and seventh-degree or as unrelated

Degree Number of pairs

1 4969
2 6625
3 8241
4 7636
5 3794
6 816
7 73
Unrelated 3,051,598
Total 3,083,752

We combined reported monozygotic (MZ) twins with the set of first-degree
relatives.
a Supplemental Note in File S1.
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reported relatedness degree. All methods perform well when
inferring first- and second-degree relatives, with accuracies
ranging from 98.8 to 99.5% for first-degree relatives, and
from 92.8 to 98.6% for second-degree relatives. However,
the methods’ accuracies diverge for more distant related-
ness, with the IBD segment-based methods generally having
higher accuracy than those that rely on allele frequencies of
independent markers. For example, for sixth- and seventh-
degree relatives, the top-performing IBD segment-based
method has 58.1 and 42.5% accuracy, respectively, while
the highest performing allele frequency-based method has
an accuracy of only 44.6 and 27.4%, respectively. This gen-
eral pattern applies to fourth- and fifth-degree relatives as
well, although with less discrepancy between these two in-
ference approaches for these closer relatives. The decreased
inference accuracy of all methods for higher relatedness
degrees is likely due to the exponential drop in mean pairwise

IBD shared and an increased coefficient of variation for more
distant relationships (Hill 1993; Visscher 2009; Hill and Weir
2011).

While the accuracies for exact inference of distant relatives
are fairly low among all methods, the IBD segment-based
methods (excluding fastIBD) are correct to within one degree
of the reported relationship at a rate of$95.3% for sixth-degree
relatives and$76.7% for seventh-degree relatives. At the same
time, ERSA, GERMLINE, andRefined IBD classify$80.4%pairs
of unrelated individuals correctly, and several other methods
also correctly infer �80% pairs of unrelated individuals, al-
thoughmany of thesemethods perform poorly when classifying
reported relatives. The inference of �20% of the .3 million
unrelated samples as eighth-degree or closer relatives suggests
the presence of a nontrivial fraction of unreported relationships
in these data. Alternatively, and perhaps more likely, many of
these may be false positive relationships, as distinguishing pairs

Figure 1 Performance comparison of the evaluated methods using the SAMAFS data set. Bar plots denote the percentage of sample pairs that are reported to
have a given degree of relatedness and that are inferred to be related as the indicated degree. The bar plots are separated on the horizontal axis by the reported
relatedness degree and on the vertical axis by inferred relatedness degree. For clarity, the plots list above each bar the inferred percentage that the corresponding
bar depicts. Program names listed in red are IBD segment-based methods while those in black use allele frequencies for inference. Red horizontal bars under a
bar plot indicate that the corresponding inferences agree with the reported relationships.
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of unrelated individuals from fairly distant relatives is difficult.
With the lower bound for eighth-degree relatives being a total
of 19.5 cM of IBD segments shared between individuals, spuri-
ous inferences at this level are possible, with IBD segments de-
tected in regions subject to historical selection (Albrechtsen
et al. 2010) or with low SNP density potentially leading to
inflated IBD proportions. In that regard, we note that some
analyses of IBD reweight segments that overlap regions with
excess IBD sharing to improve the reliability of overall sharing
rates (Browning and Browning 2013c; Ball et al. 2016). Addi-
tionally, analyses that consider relatedness among the parents
and/or children of inferred distant relatives have the potential
to avoid some of these issues, and indeed, the recently de-
veloped relatedness classification method PADRE does an-
alyze familial relatedness signals and shows improved accuracy
(Staples et al. 2016).

Overall, themostaccurateprogramsforfirst- throughseventh-
degree and unrelated classification are ERSA, GERMLINE,
and Refined IBD—all IBD segment-based methods. The im-
proved accuracy of these methods may be due to their focus
on identifying long stretches of identical haplotype segments
that more readily discriminate recent shared relatedness from
chance sharing of alleles. The IBDseqmethod,while performing
well for inferring first- through seventh-degree relatives, infers
a much larger fraction of pairs of individuals as related that are
reported as unrelated, suggesting it may be biased toward
detecting higher levels of IBD sharing than the other methods.

Noting that the SAMAFS consist of admixed Mexican
Americanindividuals,weexaminedtheaccuracyresultsamong
the allele frequency-based methods, several of which account
for population structure. While IBD segment-based methods
generally have the best performance and do not directly ac-
count for population structure, inferring IBD segments is com-
putationally demanding, and considering the performance of
more efficient allele frequency-based methods is of interest.
Among all these methods, PC-Relate has the highest accuracy
across all levels of relatedness, and it accounts for population
structure using principal components (PCs) inferred from a
set of samples with low relatedness (Conomos et al. 2016).
However, PREST-plus has only slightly lower performance
than PC-Relate even though it does not account for popula-
tion structure. PREST-plus implements a hidden Markov
model that enables it to leverage linkage signals to identify
regions that are likely to be IBD between samples (Sun and
Dimitromanolakis 2014). Therefore, although PREST-plus
does not explicitly detect IBD segments, it leverages similar
signals to the IBD segment-based approaches, which might
enable it to be less susceptible to biases caused by ignoring
the effects of population structure. Relatedness estimation
that ignores population structure in admixed samples can
produce either a positive or negative bias (Conomos et al.
2016). Consistent with this, PLINK infers many sample pairs
to be more related than they are reported to be, and, at the
same time, infers substantial fractions of fourth- through
seventh-degree pairs as unrelated. KING also dramatically
underestimates relatedness, presumably because it assumes

that all samples derive from one of several homogeneous
populations, a model that is inappropriate for recently
admixed samples (Manichaikul et al. 2010). We also exam-
ined results from the version of KING that assumes a single
homogeneous population, and its accuracy profile more
closely resembles that of PLINK (data not shown).

Because the relatedness within SAMAFS has the potential
to confound methods that characterize population structure
(Conomos et al. 2015), we further analyzed the performance
of several methods using a data set consisting of the SAMAFS
samples together with a diverse set of HapMap individuals
(International HapMap 3 Consortium et al. 2010) (Figure S4
and Supplemental Note in File S1). This combined data set
yields inferences of sample ancestry proportions that are
strongly correlated with those inferred in a reduced data
set that has only low-level relatedness (Supplemental Note
in File S1). Using this sample, the accuracies of both REAP
and RelateAdmix improve significantly, suggesting that either
high levels of relatedness or limited ability to discriminate the
ancestral populations in the admixed-only SAMAFS data ad-
versely affected the initial inference. Based on this augmented
analysis, REAP and RelateAdmix have closer accuracies to
that of PC-Relate yet remain somewhat less accurate (Figure
S4 and Supplemental Note in File S1). The accuracies of
PC-Relate and of KING are quite similar between the two
analyses, with the exception that PC-Relate has improved
accuracy for seventh-degree relatives in the larger sample.
Given this improvement and the fact that PC-Relate is the
highest performing allele frequency-based method overall,
we tested it further by varying its input parameters and the
kinship values it uses to detect the set of individuals it uses
to infer PCs. All these PC-Relate runs resulted in similar
accuracies except for different rates of inferred seventh-
degree relatives (Figure S5 and Supplemental Note in File
S1); the variation in seventh-degree relatedness inference
may be due to stochastic factors and the relatively small
numbers of these relatives in the data set.

Besides considerations related to detecting population
structure, the presence of many relatives in SAMAFS may
lead to biased allele frequency estimates. Furthermore, hap-
lotype phasing and therefore IBD inference accuracymight be
greater than would be achieved in a sample composedmostly
of unrelated individuals. To ensure the performance results
presentedherealsoapply toanalysesofnonpedigreedata sets,
we identified a set of only distantly related individuals using
FastIndep (Abraham and Diaz 2014) and merged these sam-
ples with pairs of related individuals to form 1000 data sets
(Supplemental Note in File S1). Each reduced data set con-
tains at most one related pair of samples from any distinct
SAMAFS pedigree, limiting the potential for bias. When clas-
sifying sample pairs included in at least one reduced data
set, PLINK’s inference accuracy differs by ,3% for the first
through fifth relatedness degrees compared to the full data
set (Figure S2 in File S1), suggesting that allele frequency
biases are small and only minimally affect inference accuracy.
To test the IBD detection methods, we increased the sample
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size of these reduceddata sets by furthermerging 580HapMap
samples (Supplemental Note in File S1). Results from run-
ning the IBD segment-based methods on these data sets
show a reduction in accuracy that ranges between 0 and 9.6%
for first- through fifth-degree relatives, indicating that relat-
edness in SAMAFS may affect the inference accuracy (Figure
S3 in File S1). Yet the results are still consistent with those of
the larger analysis as the IBD segment-based methods gen-
erally have higher performance than allele frequency-based
methods. This is true even in the reduced data sets that have
no more than 1204 samples and therefore are subject to a
nontrivial rate of phasing error (Browning and Browning
2011b).

In comparison to previous method evaluations, our results
show some notable differences. For example, using real data
from 30 pedigrees, ERSA reported lower accuracies for first-
through sixth-degree relatives thanwe observe (Li et al. 2014),
with differences ranging from 8.9 to nearly 21%. We believe
this is attributable to differences in sample size, as the ERSA
analysis considered only 304 individuals compared to 2485 here.
This, in addition to the decreased accuracy of IBD segment-based
methods in the reduced data sets described above, indicates that
sample size can have a dramatic impact on the quality of IBD
segment-based methods. Thus, smaller studies may wish to use
allele frequency-based methods such as PC-Relate or, for
nonadmixed individuals, KING-robust, which in fact considers
data from each sample pair separately rather than estimating
allele frequencies from the full data (Manichaikul et al. 2010).
The authors of PC-Relate (Conomos et al. 2016) find that KING
and PLINK each tend to both overestimate and underestimate
relatedness when analyzing admixed individuals, which is
consistent with our results. They also report that PC-Relate
generally outperforms REAP and RelateAdmix, matching
our findings even after we incorporate additional HapMap
individuals to aid detection of population structure (Supple-
mental Note in File S1). To our knowledge, other evalua-
tions of relatedness inference approaches have not included
methods that directly detect IBD segments, and our results
indicate that these are promising methods to apply in this
setting.

As current methods provide only moderate accuracy when
classifying third- through seventh-degree relatives, we eval-
uated the potential for increasing performance by combin-
ing inference results from the top three programs: ERSA,
GERMLINE, andRefined IBD.Wefirst usedanapproach that
calls the degree of relatedness for a pair only when all three
programs unanimously agree on the relatedness degree, pro-
viding no classification for other pairs (3012 relative pairs and
632,615 reported unrelated pairs are unclassified). In compar-
ison to themost accuratemethod’s performance in each degree
class, the inference accuracy using this strategy increases only
slightly for related pairs (+0.01, +0.13, +2.6, +1.5, +3.4,
+2.2, and +1.1%, respectively, for first-through seventh-
degree), but increases by 9.0% for unrelated pairs. This
indicates a high level of discordance among the inferred
relatedness status for a large fraction of pairs that are reported

as unrelated. Many of these unrelated pairs must therefore
have borderline inferences, and indeed most methods infer a
sizeable fraction as only eighth-degree relatives (Figure 1).We
also considered a majority vote between the three programs,
discarding cases in which all three programs inferred a differ-
ent degree (only five relative pairs had such variable infer-
ences while 110,848 pairs reported as unrelated are so
discrepant). With this approach, there is a slight decrease in
performance overall (20.04, 20.6, 21.3, 20.7, 20.2, 22.3,
and 0% for first- through seventh-degree relatives and
+1.6% for unrelated samples). These results suggest that
while there is room for improvement in the specificity of
relatedness inference methods, dramatic accuracy gains
are likely to be achieved only with novel approaches and
not composites of current methods. Of interest in this regard
are recently developed methods that combine information
across related individuals to infer a pedigree structure and/or
improve relatedness accuracy (Staples et al. 2014, 2016; Ko
and Nielsen 2017). Importantly, each of these methods relies
on a pairwise relatedness approach, highlighting the contin-
ued relevance of pairwise inference methodologies even as
new methods arise for addressing multi-way relatedness
inference.

As an application of these findings, we leveraged the high
accuracy of IBD segment-based methods to explore pairs of
samples inferred to be closely related but reported as un-
related in the SAMAFS data set. We used the top-performing
methods, ERSA, GERMLINE, andRefined IBD, to characterize
unreported relatives. These three methods all infer a small
number of first- through third-degree relationships that
connect individuals fromdifferent pedigreeswithin SAMAFS
(Figure S7 and Supplemental Note in File S1). Overall, we
found six pairs of pedigrees with at least five sample pairs
between them that the methods unanimously infer to have
first- through third-degree relatedness. Additionally, these
three methods agree on the inference of 235 and 744 pairs
of fourth- and fifth-degree relatives between the pedigrees
(data not shown), and suggest instances of reported first-
and second-degree relatives likely to have the reverse
relatedness class or to have much lower relatedness (Sup-
plemental Note and Table S3 in File S1). These results
highlight the necessity of checking reported relationships
and for unreported relatedness among samples in all co-
horts. They also indicate that there can be sizeable num-
bers of unknown relatives across a range of relatedness
degrees even in well-studied samples.

Important factors for determiningwhich analysismethod to
use in a study are its accuracy and its computational demands,
and the runtimes of the methods evaluated here vary over
several orders of magnitude (Table 2). PLINK is the fastest
program with a runtime of only 18.1 sec, while the IBD
segment-based methods require up to 64 compute days in
total (parallelized across 16 cores in our analyses). In gen-
eral, we observe a trade-off between runtime and accuracy,
with the top-performing methods being those that require
the largest compute time, and with PLINK being one of the
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least accurate methods. Given the uniformly high accuracy
of all methods for inferring first- and second-degree rela-
tives, applications that are focused only on identifying close
relatives have the option of using an efficient allele fre-
quency-based method such as PLINK or PC-Relate to per-
form inference, the latter being an accurate program that
is more computational intensive than PLINK but much faster
than IBD segment-based methods. A further consideration is
the ethnic group of the analysis cohort. PLINK and KING
have biased results for distant relatives in the admixed
SAMAFS data we focus on, but are expected to perform well
in homogeneous populations or, for KING, collections of
unadmixed samples from multiple homogeneous popula-
tions. On the other hand, for applications in which the aims
include locating more distant relatives, the use of IBD segment-
based methods should produce improved results. Although
beyond the scope of this paper, recently developed methods
for phasing extremely large samples (Loh et al. 2016)
should improve upon the computational requirements of
several methods (GERMLINE, ERSA, and HaploScore) and
extend their utility to much larger data sets than the one we
consider here.

We have presented a detailed comparison of state-of-the-
art relatedness inference methods using thousands of pairs of
individuals that range from first- to seventh-degree relatives
as well as numerous sample pairs that are reported to be
unrelated. All the methods we assessed reliably identify first-
and second-degree relatives (accuracy �92–99%), but their
accuracy falls precipitously when classifying third- to seventh-
degree relatives. This is unsurprising given the increased
coefficient of variation as well as greater skewness in the pro-
portion of genome shared as themeiotic distance between two
relatives increases (Hill and Weir 2011). Despite these chal-
lenges, several IBD segment-based methods infer relatedness
correct to within one degree of the reported relationship at
a rate of $76.7% for all relationship degrees (Figure 1).
Misreported or unknown relationships in the SAMAFS data
set likely explain some of the inference errors, particularly
since even some confidently inferred first-degree relationships
were likely misreported as a more distant relationship or as
unrelated (Figure S7 and Table S3 in File S1).Wefind that IBD
segment-based methods outperform other approaches for
more distantly related pairs, though notably these packages
require substantially more compute time to run (Table 2).
While the precise performance results presented here are spe-
cific to the SAMAFS sample, we find that reducing the sample
size still produces similar results, with methods that leverage
IBD segments generally having greater accuracy than other
approaches. Therefore, the results presented here should be
generalizable tomoderate and large-scale studies and indicate
overall properties of pairwise relationship inference method-
ologies: approaches that use IBD segments outperform other
methods for third-degree and more distant relatives; and the
specificity of the inferences, even in a data set where phase
accuracy may be relatively high, are limited for all but the
closest relatives.

Data Availability

The SAMAFS sample data are available on dbGaP under acces-
sion numbers phs000847 and phs001215. A script to extract
pairwise IBD1 and IBD2proportions from theoutput of Refined
IBD can be found at https://github.com/MonicaRamstetter/
bakeoff.
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