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Lin28A induces energetic switching to
glycolytic metabolism in human embryonic
kidney cells
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Abstract

Background: Loss of a cell’s capacity to generate sufficient energy for cellular functions is a key hallmark of the
ageing process and ultimately leads to a variety of important age-related pathologies such as cancer, Parkinson’s
disease and atherosclerosis. Regenerative medicine has sought to reverse these pathologies by reprogramming
somatic cells to a more juvenile energetic state using a variety of stem cell factors. One of these factors, Lin28, is
considered a candidate for modification in the reprogramming of cellular energetics to ameliorate the ageing
process while retaining cell phenotype.

Results: Over-expression of Lin28A resulted in key changes to cellular metabolism not observed in wild-type
controls. Extracellular pH flux analysis indicated that Lin28A over expression significantly increased the rate of
glycolysis, whilst high resolution oxygen respirometry demonstrated a reduced oxygen consumption. Western blot
and real-time PCR analysis identified Hexokinase II as one of the key modulators of glycolysis in these cells which
was further confirmed by increased glucose transport. A metabolic switching effect was further emphasised by
Western blot analysis where the oxygen consuming mitochondrial complex IV was significantly reduced after
Lin28A over expression.

Conclusions: Results from this study confirm that Lin28A expression promotes metabolic switching to a phenotype
that relies predominantly on glycolysis as an energy source, while compromising oxidative phosphorylation.
Mechanisms to augment regulated Lin28A in age related pathologies that are characterised by mitochondria
dysfunction or in differentiated and aged post-mitotic cells is the future goal of this work.
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Background
Regulation of cellular metabolism holds great potential
to intervene in the progression of human disease and
ageing [1]. Research suggests that loss of a cell’s energetic
capacity during ageing and age related pathologies can be
causative and therefore amenable to intervention [2–4].
Regenerative medicine has identified stem cell factors
capable of fundamentally reorganising cellular metabolism
and cell phenotype which may further be able to repro-
gram metabolism within the context of cancer, cardio-
vascular disease and kidney disease [5–7]. However, to

provide a new therapeutic avenue in differentiated som-
atic cell types their mechanism of action needs to be
clarified.
Lin28 is an RNA binding protein that positively regu-

lates embryogenesis timing and progenitor self-renewal
[8]. Recognised as one of the key pluripotency markers
it exists as two conserved paralogs, Lin28A and Lin28B,
which are highly expressed during embryogenesis, where
it promotes cell growth and maintenance of a more ju-
venile energetic phenotype [9]. Both homologs repress
the Let-7 (lethal-7) family of regulatory microRNAs
(miRNA) [10, 11] required for terminal cell differenti-
ation by inhibiting the drosha and dicer microprocessor
complexes required for the production of mature miRNA
[1]. Most mature cells observe down regulation of
Lin28 that occurs during differentiation with a concurrent
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increase in expression of mature Let7 miRNAs to main-
tain terminal cell fate [10].
Metabolomic profiling confirms promotion of an em-

bryonic like bio-energetic state that leads to an enhanced
metabolism from glycolysis [1, 10, 12]. Enhanced glucose
metabolism is a key hallmark of functional Lin28 within
these cells. Indeed, Lin28 over expression in both in
vitro and in vivo models demonstrates increased glucose
metabolism via increased glucose uptake and an increase
in the glycolytic enzyme pyruvate dehydrogenase kinase
1 PDK1 [5]. Over-expression of Lin28 also results in
increased tissue repair and an improved glucose toler-
ance [13]. However, unregulated Lin28 expression is also
implicated in human malignancies through increases in
glycolytic metabolism and cellular proliferation [13–15]
intimating that unregulated Lin28 may be oncogenic.
Studies on human embryonic stem cells have also sug-
gested that the Lin28/Let 7 axis interacts with multiple
mitochondrial enzymes suggesting further effects on oxi-
dative phosphorylation [16]. Therefore, modification of
Lin28 expression may have multiple roles in tissue re-
generation and reprogramming metabolism.
Although many in vitro studies have elucidated the

role of Lin28 in glycolysis, the exact role Lin28 plays in
regulating oxidative phosphorylation is unknown. This
study outlines key effects Lin28 has on mitochondrial
activity and demonstrates further specific effects Lin28
has on glycolysis.

Methods
Cell culture
Cells were maintained in high glucose (4.5 g/L) Dulbecco’s
Modified Eagle’s Medium (DMEM) containing 15 % (v/v)
foetal bovine serum, 2 mM L-glutamine, 1 mM pyruvate,
100 U/ml penicillin and 100 mg/ml streptomycin. Lin28A
cells were supplemented with 10 μg/ml of the selection re-
agent Basticidin-S hydrochloride (Sigma). Lin28A over-
expressing human embryonic kidney (HEK) 293 cells were
obtained from Amsbio, UK. Non-transfected HEK293
cells were obtained from Professor Andrew Baker
(University of Edinburgh).

Quantitative real-time PCR
For gene expression experiments cells were grown in
six-well plates until they reached 90–100 % confluency.
QIAzol lysis reagent was added to wells and cells were
scraped into RNAse free micro-centrifuge tubes and
stored at -80 °C. RNA species were then extracted with
the miRNeasy® mini kit (Qiagen), quantified using a
nanodrop spectrophotometer and normalised. RNA was
then reverse transcribed to cDNA and miRNA using a
TaqMan® reverse transcription kit and an miRNA
reverse transcription Kit, respectively (Applied Biosys-
tems). For miRNA, the amplification step was performed

using specific TaqMan® miRNA probes. Real-time PCR
was performed using the Applied Biosystems 7900 HT
real-time PCR system following the manufacturer’s in-
structions. Specific TaqMan® primer-probes were pur-
chased from ThermoFisher (Additional file 1: Table S1)
and analysed using the delta CT method.

Western blotting
Cells were lysed in 1 % (w/v) lauryl maltoside detergent
(Abcam) in PBS and sonicated. A total of 20 μg of pro-
tein lysates was fractionated on 4–12 % gradient poly-
acrylamide gels and transferred to nitrocellulose
membranes (Amersham). Membranes were then blocked
in a 1:1 mix of SEA block (Thermo-Fisher) and Tris-
buffered saline containing 0.1 % (v/v) tween 20 (TBST).
Membranes were incubated overnight at 4 °C with the
relevant primary antibody. Membranes were then
washed in TBS/T and incubated with fluorescent sec-
ondary antibody (1:15000) for 2 hours. Membranes were
then transferred to the LI-COR Odyssey-Sa infrared im-
aging system for visualisation and quantification. Densi-
tometric analysis was then performed on LI-COR image
studio light (version 5.2). All primary antibody dilutions
are outlined in Additional file 1: Table S2.

Extracellular flux analysis
Extracellular acidification rate (ECAR) was evaluated
using the Seahorse XF24 analyser (Seahorse Bioscience,
MA, USA). Briefly, 5 × 104 cells were seeded in 24-well
seahorse plates 24 hours prior to the experimental run.
On the day of the experiment media were changed to
glucose and sodium pyruvate-free XF assay media and
transferred to the XF24 analyser (#102365-100; Seahorse
Bioscience, MA, USA). ECAR was determined after the
sequential addition of D-glucose (10 mM final), oligomy-
cin (1 μM) and 2-deoxyglucose (2-DG; 100 mM). All
compounds were purchased from Sigma, USA.

High resolution oxygen respirometry
Cells were trypsinized and diluted in MiR05 respiration
buffer (0.5 mM EGTA, 3 mM MgCl2, 60 mM potassium
lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM
HEPES-KOH pH 7.1, 110 mM sucrose, and 1 g/L fatty
acid free BSA) (Oroboros, Innsbruck, Austria) to 0.5 ×
106 per ml and 2 ml of cells were transferred to the O2K
Oroborus respirometer (Oroboros, Innsbruck, Austria).
Oxygen consumption rate (OCR) was determined after
the sequential addition of oligomycin (1 μM), carbonyl
cyanide m-chlorophenylhydrazone (CCCP; 1-3 μM),
rotenone (1 μM) and antimycin (1 μM).

Cell proliferation analysis
Cells were transferred to 12-well plates at a seeding
density of 1 × 104 cells/ml. Cell numbers from three
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wells were then counted every 24 hours over a 4-day
period using a Hemacytometer.

Glucose transport assay
2-[3H] Deoxy-D-glucose transport was measured in cells
grown on12-well plates. Briefly, cells were incubated in
phosphate-buffered Krebs solution (KRP buffer; 128 mM
NaCl, 4.7 mM KCl, 5 mM NaH2PO4, 1.2 mM MgSO4,
2.5 mM CaCl2, 5 mM glucose and 0.1 % BSA) for 30
mins at 37 °C then transferred to glucose-free KRP for a
further 30 mins. Glucose transport was initiated by
addition of 2-[3H] deoxy-D-glucose (final concentration
25 μmol/L and 1 μCi/ml) to each well. The mixture was
then incubated for 5 min. Non-specific association of
radioactivity was determined by prior addition of cyto-
chalasin B (10 μmol/l). Cell culture plates were then
immersed in ice-cold PBS and allowed to dry before
addition of 1 % (v/v) Triton X-100. Samples were added
to scintillation vials 24 hours later and radioactivity was
measured using a Beckman LS6500 scintillation counter.

Data analysis
All data are presented as mean ± standard error of the
mean (SEM) where appropriate. P values were calculated
using student’s unpaired t-tests (two-tailed distribution).
Statistical significance was displayed as P < 0.05 (one

star), P < 0.01 (two stars) or P < 0.001 (three stars). All
analysis was performed on Microsoft Office Excel 2007
or Graphpad Prism (v 5). All graphs were produced on
Graphpad Prism (v 5).

Results
Characterisation of Lin28 in HEK293 cells
To identify the effect of over-expression of Lin28 in our
cell lines, we first examined mRNA expression using
q-PCR (Taqman) (Fig. 1a). Increased Lin28A mRNA re-
sulted in a concomitant downregulation of the dominant
Let-7 miRNA transcripts let 7a (P < 0.001), c (P <0.001)
and g (P < 0.05) (Fig. 1b). To examine the functional ef-
fects of Lin28 over-expression, Lin28 protein levels were
also assessed (Fig. 1c). HEK293 cells overexpressing Lin28
exhibited significantly up-regulated protein expression
compared to wild-type controls (P < 0.001) (Fig. 1d).

Lin28 over-expression induces glycolytic ‘switching’
Over-expression of Lin28 significantly increased the
maximum glycolytic rate within HEK293 cells (Fig. 2a).
The extracellular acidification rate (ECAR) is a measure
of milli-pH change attributed to accumulation of glycolytic
pyruvate acid and is a measure of glycolytic rate (Seahorse
Technologies ®). We found that Lin28 enhanced glycolysis
(P <0.001), glycolytic capacity (P <0.001) and glycolytic

Fig. 1 Characterisation of Lin28A over-expression in HEK 293 cells. Real-time PCR revealed that Lin28 mRNA expression levels were increased in
Lin28A over-expressing cells, n = 3 (a). Conversely, Let 7 a, c and g miRNA expression levels were decreased in Lin28 over-expressing cells, n = 3
(b). Western blot analysis (c) confirmed that Lin28 protein levels were also increased in over-expressing HEK cells (d), n = 4. GAPDH and U6 were
used as housekeeping genes for mRNA and miRNA expression, respectively. Student’s unpaired t-tests were used to compare between experimental
groups. Data are represented as mean ± SEM. HEK human embryonic kidney, miRNA microRNA
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reserve (P <0.001, Fig. 2b) after stimulation with glucose
and inhibiting oxidative phosphorylation. However, basal
oxidative metabolism, measured by oxygen flux (OCR) (P
< 0.05) was significantly reduced in Lin28 over-expressers
compared to the un-transfected HEK293 cells (Fig. 2c).
Interestingly, no significant difference in maximal respir-
ation was observed between the two cell types after re-
spiratory uncoupling of the mitochondrial membrane
potential (ΔΨm) with carbonyl cyanide m-chlorophenyl
hydrazone CCCP (1μg/ml).

Lin28 over-expression increases cellular proliferation and
glucose uptake
In order to assess the functional consequences of Lin28
over-expression, cellular proliferation and glucose trans-
port were assessed. Increased proliferation of cells over-
expressing Lin28A was observed at 72 hours (P < 0.05)
and 96 hours (P < 0.001, Fig. 3a). 2-Deoxyglucose uptake
was also demonstrated to be significantly increased in
cells over-expressing Lin28 (P < 0.01, Fig. 3b).

Lin28 alters several glycolytic enzymes
In assessing the mechanism of Lin28A’s effects in meta-
bolic switching we examined several key enzymes

involved in the glycolytic pathway using Western blot-
ting. Hexokinase II (Hex II) was significantly increased
in Lin28 over-expressing cells (P < 0.001, Fig. 4c) as was
pyruvate dehydrogenase (PDH, P < 0.001, Fig. 4f ). Pyru-
vate kinase muscle isoform 2 (PKM2) was significantly
decreased in Lin28A over-expressers (P <0.01). Lactate
dehydrogenase A (LDHA) was also significantly de-
creased in Lin28 cells (P < 0.01, Fig. 4g). No differences
were observed in hexokinase I (Hex I), pyruvate fructose
kinase phosphate (PFKP) compared to age and passage
matched controls.

Complex IV is reduced in Lin28A over-expressing cells
The mitochondrial respiratory complex antibody cock-
tail (Abcam ab110413) was used to assess any differ-
ences in the protein levels of individual respiratory
complexes and normalised to nuclear encoded citrate
synthase (CS) or manganese superoxide dismutase
(MnSOD). In Lin28A over-expressing cells complex IV
was significantly decreased (P < 0.05, Fig. 5e); however,
complex III was significantly increased in the over ex-
pressing cells (P < 0.001). No differences were observed
in complexes I, II and V when compared to age matched
controls.

Fig. 2 Lin28A promotes energetic switching to a more glycolytic phenotype. Extracellular flux analysis using the Seahorse XF24 bio-analyser dem-
onstrated that ECAR was significantly increased in Lin28A over-expressing cells after addition of 10 mM glucose (glycolysis). ECAR was also in-
creased after subsequent addition of 1 μM oligomycin (glycolytic capacity) and 100 mM 2-DG (glycolytic reserve) (a and b). Conversely, high
resolution oxygen respirometry showed that even without stimulation basal oxygen consumption was reduced in over-expressing cells. No
changes in maximal respiration (after addition of 1 μM CCCP) or spare capacity (after addition of 1 μM antimycin and 1 μM rotenone) were ob-
served (c). Student’s unpaired t-tests were used to compare between experimental groups. Data are represented as mean ± SEM, n = 5 for all data
points. ECAR extracellular acidification rate, 2-DG 2-deoxyglucose, CCCP carbonyl cyanide m-chlorophenyl hydrazone
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Lin28A also has specific transcriptional effects
Several markers known to be involved in glycolytic
switching were also assessed at the transcriptional level
using real-time quantitative PCR. Similar to protein ex-
pression, Hex II mRNA was significantly increased in
Lin28A over expressing cells (P > 0.01, Fig. 6a); however,
no differences in pyruvate dehydrogenase kinase 2
(PDK2) or hypoxia inducible factor 1 α (HIF1α) mRNA
expression was observed (Fig. 6b and c, respectively). No
significant difference was observed in the nuclear
encoded mitochondrial marker citrate synthase (CS) be-
tween cell types. Interestingly, the mitophagy markers
phosphatase and tensin homolog induced putative kinase
1 (PINK1) and mitofusin 2 (MFN2) were significantly in-
creased in Lin28A over-expressing cells (P < 0.001, Fig. 6e
and P < 0.05, Fig. 6f, respectively).

Discussion
In the present study we have identified the distinct
metabolic changes occurring in the reprogramming of a
transgenic human kidney line using over-expression of
Lin28A and concomitant down regulated expression of
Let7-g. Notably, this included a metabolic ‘switching’
from an energetic state relying predominantly on oxida-
tive phosphorylation to a more glycolytic phenotype,
whilst aerobic culture conditions remained constant. In-
deed, this ‘metabolic reprogramming’ to a more glyco-
lytic phenotype has been described in detail in previous
studies [1, 5, 13]. However, we have outlined several new
mechanisms not previously identified that may contrib-
ute to Lin28’s capacity to increase glycolysis and enhance
a cell’s metabolic and mitotic performance. We have
demonstrated an increase in Hex II at both the tran-
scriptional and protein levels as well as an increase in
glucose transport. These effects demonstrate that Lin28’s
ability to increase Hex II is a crucial step in glycolytic

switching. Hex II is the most active isoform of the hexo-
kinase family [17] and increased intracellular Hex II ac-
tivity is regarded as the rate limiting step in maintaining
the glucose concentration gradient by reducing intracel-
lular glucose through phosphorylation of glucose to
glucose-6-phosphate [18]. In these cells Hex II appears
the key driver of glucose transport which is confirmed
by a combination of phosphorylation and increased glu-
cose uptake, which is predicted to occur through the
glucose transporters, such as GLUT-1, -2 and GLUT-4
[5, 18–20], as well as the sodium glucose co-transporter
2 (SGLT-2) [21]. Interestingly, an increase in PDH and a
decrease in LDHA in Lin28A cells confirmed a prefer-
ence for pyruvate decarboxylation of pyruvate to pro-
duce acetyl-CoA rather than conversion of pyruvate to
lactate. This reduction in LDHA would further increase
the amount of pyruvate for conversion to acetyl-CoA. Of
course, acetyl-CoA can be used a substrate in oxidative
phosphorylation and may be a compensatory response
to an increase in glycolytic rate. A reduction in LDHA is
also intriguing because increased LDHA is known to be
a driver of glycolysis and subsequently cancer progres-
sion, a characteristic previously attributed to Lin28 over
expression [22]. Interestingly, PKM2 protein expression
was decreased in Lin28A over-expressing cells. This was
surprising as much work has outlined the role of PKM2
as a molecular driver for glycolysis in many cancers
[23, 24]. Indeed, results from this study suggest that, at
least in HEK cells, PKM2 does not contribute signifi-
cantly to glycolysis. Indeed, in our model we did not
investigate the nature of the specific isoforms of PKM.
These couldhave significant consequences for glyco-
lytic metobolism [25], certainly this would require
closer scrutiny in relation to Lin28 expression. HIF1α
is also known to be important in the progression of several
cancers, including renal cell carcinoma; therefore, HIF1α

Fig. 3 Lin28A increases cellular proliferation and glucose transport in HEK 293 cells. Proliferation studies revealed that cell density was
significantly increased at 72 and 96 hour time points in Lin28A over-expressing cells compared to non-transfected (blank) HEK cells, n = 3 (a).
Radio-labelled glucose transport assay revealed that 2-deoxyglucose transport was also significantly increased in the Lin28A over-expressing cells
(P < 0.01, n = 6) (b). Student’s unpaired t-tests were used to compare between experimental groups. Data are represented as mean ± SEM.
HEK human embryonic kidney
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expression was assessed [5, 26]. Results from this study
showed that Lin28’s increase in glycolysis did not appear
to be HIF1α-dependent and is consistent with previously
published data [5]. Equally, the oncogene c-myc is a
known driver of Lin28, but was not overexpressed in

control cell lines or in response to Lin28 (Additional file 1:
Figure S1). This, combined with a notable reduction in
other known cancer-related proteins such as PDK and
LDHA, suggests Lin28’s role as an oncogene itself may be
overstated and may be amenable as an in vitro therapeutic

Fig. 4 Lin28A over-expression alters several glycolytic enzymes. Densitometry analysis of Western blot data (a) showed that hexokinase II (c) and
PDH (f) expression was significantly increased in Lin28A over-expressers. However, PKM2 (e) and LDHA (g) were significantly decreased in Lin28A
over expressers. No change was observed in Hex I (b) or PFKP (d). (Student’s unpaired t-tests were used to compare between experimental groups.
Data are represented as mean ± SEM, n = 4. PDH pyruvate dehydrogenase, PKM2 pyruvate kinase muscle isoform 2, LDHA Lactate dehydrogenase A,
Hex I hexokinase I, PFKP pyruvate fructose kinase phosphate
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target in certain circumstances. Indeed, the mechanism of
how up-regulation of stem cell factors, such as Lin28 ef-
fectors, can ameliorate the reliance on ox-phos through
elegant Let7 anti-miR work corroborates this link [1].
Building on these findings we now demonstrated

mRNA transcripts of several mitochondrial-related pro-
teins have yielded additional intriguing results. The
mitophagy marker PINK1 (PTEN-induced kinase1) [27]
and its downstream effector Mitofusin 2 (MFN2) were
significantly increased in Lin28 over expressing cells.
This suggests a novel role for Lin28 in promoting ener-
getic switching to a more glycolytic phenotype through
mediating enhanced mitochondrial recycling which may
underpin the specific effects of Lin28 on oxidative phos-
phorylation that include a decrease in basal oxygen con-
sumption using a high resolution oxygen respirometry.
Further analysis revealed a reduction in the oxygen con-
suming complex IV proteins which may account for the
reduction in basal oxygen consumption and adding

further weight to the notion that reduced oxidative me-
tabolism in these cells is driven by Lin28. A reduction in
oxygen consumption has been noted in various Lin28
studies utilising cancer cell lines, such as Hep3B cells
(Ma et al., 2014). However, in contrast, mouse embry-
onic fibroblasts (MEF) isolated from mice where Lin28
was over-expressed showed an increase in oxygen con-
sumption rate [13], suggesting Lin28A over expression
may have distinct effects depending on cell type [6, 7,
13]. The remarkable metabolic plasticity we show here
suggests that use of synthetic targeted nucleases, such as
inducible clustered regularly interspaced short palin-
dromic repeats (CRISPR), or age related inducible ex-
pression vectors, may eventually be able to augment
favourable changes in cells and tissues of choice.

Conclusions
Results from this study confirm that augmenting Lin28A
expression in differentiated epithelial lineages has the

Fig. 5 Lin28A over-expression has specific effects on mitochondrial complexes III and IV. Densitometric analysis of Western blot data (a) revealed
no difference in complex I (b), II (c) or Complex V (f) but mitochondrial complex III significantly increased in Lin28A cells (d). A significant reduction in
complex IV protein expression was also observed (e). Student’s unpaired t-tests were used to compare between experimental groups. Data are
represented as mean ± SEM, n = 4
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potential to reprogram cellular energetics through in-
creasing Hex II expression and activity. A number of de-
generative pathologies could be potential beneficiaries of
this cellular reprogramming [28–30].

Consent for publishing
All authors offer their full consent in the publishing of
this manuscript. Consent forms are available on request.

Availability of data
The University of Glasgow, our approved data reposi-
tory, provides a comprehensive data management and
freely available service which supports the principles of
open access details of which can be found here:

http://www.gla.ac.uk/services/datamanagement/looking
afteryourdata/preservation/repositories/.
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Abbreviations
anti-miR: anti microRNA; CCCP: carbonyl cyanide m-chlorophenyl hydrazone;
CRISPR: clustered regularly interspaced short palindromic repeats;
HEK: human embryonic kidney; HEX II: hexokinase 2; LDHA: lactate
dehydrogenase; Let-7: lethal-7 family of regulatory; MEF: mouse embryonic
fibroblasts; MFN2: mitofusin 2; miRNA: microRNAs; PDH: pyruvate
dehydrogenase; PINK1: PTEN-induced kinase1; SGLT-2: sodium glucose
co-transporter.

Fig. 6 Lin28A over-expression has various effects on mRNA transcription. Real-time PCR analysis revealed over-expression of Lin28A increased
hexokinase II mRNA expression (a). No significant differences were observed in expression levels of HIF1α (b), PDK2 (c) or citrate synthase (d).
Mitophagy markers PINK1 and MFN2 were significantly increased in Lin28A over-expressing cells (e and f). 18S was used as a housekeeper gene
for normalisation purposes. Student’s unpaired t-tests were used to compare between experimental groups. Data are represented as mean ± SEM,
n = 3 for each group. HIF1α hypoxia inducible factor 1 α, PDK2 pyruvate dehydrogenase kinase 2, PINK1 PTEN-induced kinase1, MFN2 mitofusin 2,
CS citrate synthase
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