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SUMMARY

In this article we use high-throughput epigenomics, transcriptomics, and prote-
omics data to construct fine-graded models of the ‘‘protein-coding units’’ gath-
ering all transcript isoforms and chromatin accessibility peaks associated with
more than 4000 genes in humans. Each protein-coding unit has the structure of
a directed acyclic graph (DAG) and can be represented as a Bayesian network.
The factorization of the joint probability distribution induced by the DAGs im-
poses a number of conditional independence relationships among the variables
forming a protein-coding unit, corresponding to the missing edges in the
DAGs. We show that a large fraction of these conditional independencies are
indeed verified by the data. Factors driving this verification appear to be the
structural and functional annotation of the transcript isoforms, as well as a notion
of structural balance (or frustration-free) of the corresponding sample correlation
graph, which naturally leads to reduction of correlation (and hence to indepen-
dence) upon conditioning.

INTRODUCTION

The last 20 years have witnessed an explosion of the number and accuracy of omics techniques, and with

them of our possibilities to monitor and understand in a systematic way the events that lead to the expres-

sion of genes and proteins (Dihazi et al., 2018; Hawe et al., 2019; Huang et al., 2017; Subramanian et al.,

2020). These omics techniques call for integrative models to be developed, and in fact also the number

of multi-omics computational solutions proposed in the literature has grown at a stable pace. See the sur-

veys Berger et al. (2013); Bersanelli et al. (2016); Gomez-Cabrero et al. (2014); Meng et al. (2014); and Zeng

and Lumley (2018). Most of this literature focuses on system-level methods in which genome-wide models

are developed and investigated. Typical examples are gene regulatory networks (Duren et al., 2017;

Greenfield et al., 2013; Huynh-Thu and Sanguinetti, 2019; Miraldi et al., 2019; Siahpirani and Roy, 2017), pro-

tein-protein interaction networks (DeLas Rivas and Fontanillo, 2010; Vogel and Marcotte, 2012), or combi-

nations of these layers with genetic interactions, methylation, genome-wide association studies, signaling,

and so on (Buetti-Dinh et al., 2020; Fu et al., 2017; Godsey, 2013).

The approach we take in this article is not aimed at developing novel system-level models, but rather at

integrating various omics into fine-graded models of transcription and translation at the level of single

gene/protein. The omics we consider are epigenomics (ATAC-seq), transcriptomics (RNA-seq), and pro-

teomics (mass spectrometry), all performed on primary human naive CD4+T-cells during early T-helper

type 1 (TH1) cell differentiation. ATAC-seq (Assay for Transposase-Accessible Chromatin sequencing)

is one of the most popular high throughput techniques for chromatin accessibility profiling (Yan et al.,

2020). The regions (called peaks) of open chromatin identified by the method can be associated with

the nearest gene and play an important role in its regulation, as the binding of transcription factors to

DNA is enabled (or facilitated) by chromatin accessibility. RNA-sequencing at sufficient depth (4 ,107

reads per sample in our case) allows us to quantify gene expression at the level of alternative splice var-

iants of a gene. For this reason, we have decided to consider in our model the expression of these splice

variants in place of a single lump value describing gene expression. Annotated ATAC-seq peaks can be

assigned with reasonable accuracy also to the splice variants of a gene, by labeling them according to

their transcription start site. To measure protein abundance we used mass spectrometry. As this tech-

nique is not sensitive enough to detect protein isoforms in a systematic way (Blencowe, 2017; Tress
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et al., 2017), in our model all splice variants of a gene are necessarily associated with the protein that the

corresponding gene is coding for.

While these types of data have been around for a while, understanding how to combine them in a construc-

tive way is still problematic because of the low RNA-protein and RNA-ATAC correlations (Duren et al., 2017;

Fortelny et al., 2017; Vogel and Marcotte, 2012), and because of the limited knowledge about how to deal

with splice-level transcripts in a systematic way (Floor and Doudna, 2016). The aim of this article is to

contribute to these topics.

Combining the three layers of data with bioinformatic analysis, we construct a map from chromatin acces-

sibility to splice variants and then one from splice variants to protein. We call such a combined map a pro-

tein-coding unit. Since causality flows unidirectionally from chromatin accessibility to transcripts and then

to proteins, the map can be represented as a directed acyclic graph (DAG), see Figure 1A. As the protein-

coding units associated with different genes/proteins are essentially disjoint when only the aforemen-

tioned variables are considered, the entire genome can be modeled as a large set of independent

DAGs, which can be analyzed in parallel. For this choice of model we can work in an extremely advanta-

geous regime: 1) The interaction graph (i.e., the DAG) can be assumed to be known; 2) all variables of

interest (i.e., the nodes of the DAG) are experimentally measured.

A class of models that is particularly suitable to deal with DAGs is Bayesian networks (Friedman, 2004;

Huynh-Thu and Sanguinetti, 2019; Kalisch and Bühlmann, 2007; Koller and Friedman, 2009; Lauritzen,

1996; Maathuis et al., 2010; Pearl, 1988). A Bayesian network is actually defined as a DAG with a random

variable assigned to each node. When the topology of the graph is known, then the joint probability dis-

tribution of the Bayesian network factorizes according to the DAG. Full measurement of the variables

means that we have the opportunity to verify if indeed the sample distribution respects the structure

predicted by the DAG. In fact, in a Bayesian network, absence of an edge between two nodes can be ex-

pressed as a conditional independence relationship among the variables (Koller and Friedman, 2009; Laur-

itzen, 1996). Hence, checking the DAG factorization is equivalent to checking howmany of the correspond-

ing conditional independencies are verified by the data, test which can be carried out by computing partial

correlations. We show in the article that the data indeed verify many of the predicted conditional indepen-

dencies, meaning that the predicted structure of the protein-coding units is largely validated by our data.

The verification of conditional independencies is particularly high for protein-coding units directly involved

in the cellular process that our data are describing, T-cell differentiation, and even more for TH1 cell

differentiation.

Among the factors leading to verification of conditional independence, the functional and structural anno-

tation of splice variants of a gene appear to play a major role, thereby confirming the idea that ‘‘principal’’

transcript isoforms are indeed an important factor behind protein synthesis, see Gonzalez-Porta et al.

(2013); Ezkurdia et al. (2015). The relevance of such isoforms is here cross-validated by using conditional

independence relationships to determine a dominant splice variant in each protein-coding unit. The

method we propose provides a ranking of the splice variants of a gene even when standard criteria, like

RNA abundance, fail to do so.

Apart from these results, a novel contribution of this article consists in identifying a property of sample data

that most likely leads to a validation of a conditional independence relationship. To our DAGs we can asso-

ciate a matrix of sample correlations R, and the corresponding signed sample correlation graph GðRÞ. We

show in the article that when the subgraph of GðRÞ associated with a conditional independence is structur-

ally balanced (i.e., all its cycles have an even number of negative edges), then it is much more likely that the

corresponding conditional independence is validated by the sample data. Structural balance (hereafter

referred to simply as ‘‘balance’’) is a well-known concept in graph theory (Harary et al., 1965). It is related

to the notion of frustration-free graph in Ising spin glasses (Facchetti et al., 2011; Mezard and Montanari,

2009; Mezard et al., 1986), and to the idea of coherence in biological networks (Alon, 2007). Its interpreta-

tion in the present context is similar to that of a ‘‘parity check’’ in error correcting codes (Cover and Thomas,

2006; Gallager, 1963; Mezard and Montanari, 2009): it provides an internal check of consistency among the

sample data involved in the graph. What we show in the article is that balance most often leads to contrac-

tion of the correlation upon conditioning, i.e., to a partial correlation that shrinks toward 0, and hence to-

ward ‘‘exact’’ conditional independence.
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The observation that balance corresponds to consistent sample data is in our knowledge novel for the field

of Bayesian networks. Somewhat related concepts of ‘‘internal consistency’’ have been used for graphical

models in Lauritzen et al. (2019); Slawski and Hein (2015) in relationship to a property which we call inverse

balance, but which is called signed multivariable total positivity of order 2 (signed MTP2) in Lauritzen et al.

(2019), and deals with the concentration matrix associated with R. The latter property is more restrictive

than balance, however it can be shown that for it the aforementioned idea of contraction upon conditioning

holds systematically. The impact of both balance and inverse balance on the empirical validation of the

structure of the protein-coding units is analyzed in detail in the article.

RESULTS

The 4797 protein-coding units obtained from our data are represented as DAGs and treated as a parallel

set of Bayesian networks, as described in the Methods and in Figure 1. Our aim is to check consistency

Figure 1. Introduction. Conceptual workflow of the article

(A) The causal dependencies considered in a protein-coding unit can be represented as a DAG. A Bayesian network can be associated with the DAG, with

joint probability distribution that factorizes according to the DAG. A number of conditional independence relationships follow (notice that some of the

conditioning sets can be reduced).

(B) The sample correlation graph GðRÞ corresponding to the DAG. Blue (resp. red) edges represent positive (resp. negative) entries of R. In this case GðRÞ is
not balanced.

(C) Checking conditional independence on the data: examples. The variables involved in a conditional independence form a motif on the DAG, to which is

associated a subgraph of GðRÞ. If this subgraph is balanced then typically the correlation contracts upon conditioning, often leading to an empirical

validation of the predicted conditional independence.
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between the factorization of the joint probability distribution predicted by the structure of the DAGs and

our sample data for ATAC-seq (variable a in our notation), splice-level RNA-seq (variable s) and mass-spec

protein abundance (variable p), i.e., to check to what extent also the empirical sample distributions factor-

ize according to the DAGs, and what are the implications for our protein-coding units. For that, it is conve-

nient to express the factorized probability distribution of a DAG as a set of conditional independence re-

lationships (also called Markov conditions) among the nodes of the DAG, as described in the Methods and

summarized in Table 1. See also Figure 1 for an example.

Conditional independence verification via partial correlations

With the data we have available, a correlation-based verification test can be carried out exhaustively on

the entire set of 1:5 , 105 predicted conditional independencies, using sample partial correlations. In for-

mulas, a conditional independence between variables x and y with conditioning set C is expressed as

x t yjC, where x and y are any of a, s, and p, localized on the same DAG. Verification of the conditional

independence corresponds to the partial correlation Rxy:C being small enough:
��Rxy:C

�� < q, where q is a

threshold provided by a Fisher z-test, see STAR Methods for more details. As can be seen in Figure 2A,

for a significant fraction of nodes the conditional independencies are indeed verified by the sample par-

tial correlation test. In particular, the number of nodes with 100% and with 0% of successes is resp. 19.5%

and 17.9%, while 44.3% of the nodes have at least 50% of confirmed conditional independencies. The

verification is particularly successful for conditional independencies between different ‘‘layers’’ of the

DAG, which are by far the most important types of independencies when it comes to understanding

the structure of the DAGs, see the Discussion section for more details. For them the overall percentage

of successes is 89.3%, see Table 1 and inset in Figure 2A. In practice, this result means that the vast ma-

jority of causal independencies among the a, s and p variables predicted by the structure of the Bayesian

networks are indeed confirmed by the data.

It is also possible to aggregate the statistics of the Markov conditions according to the DAGs to which a

node belongs. The size of the DAGs varies as shown in Figure 3A, and the total number of predicted

and verified conditional independencies is shown in Figure 3C. The maximum number of predicted

(resp. verified) conditional independencies on a DAG is 1201 (resp. 915). For 14.5% of the DAGs no condi-

tional independence is verified, while for 4.9% all are verified. When focusing only on the a/ s and a/ p

classes of conditional independencies the corresponding percentages are 24.7% and 51.4%, see inset in

Figure 3B.

Validation based on null models

To evaluate whether the level of confirmation of the causal dependencies we obtain from the data is indeed

meaningful for our protein-coding units, we compared the true distribution of the verified conditional in-

dependencies with two null models. The first null model is obtained by replacing y in an expression like

x t yjC with a randomly chosen yr (not necessarily located on the same DAG). In the second null model,

both y and C are instead replaced by randomly chosen yr and Cr (of the same cardinality as C and also in

this case not necessarily on the same DAG). The latter null model expresses the probability of obtaining

a conditional independence by pure chance, while the former null model describes how much of the infor-

mation on x is captured by C (recall that C is interpreted either as a set of parents of x for local Markov con-

ditions or as a d-separating set for global Markov conditions), see STAR Methods. As can be seen in Fig-

ure 2C, the first null model (x t yr jC) shifts the histogram to the right with respect to the second (x t yr jCr ).
Although conditional independence is detectable in average only in 36.8% of the trials against 29%, the

Table 1. Total number of predicted and verified conditional independencies

Markov c.i Total Type

a–a s–s a / s a / p

Total 151,362 3,741 122,094 16,607 8,920

Verified 66,264 2,167 41,292 16,192 6,613

Non-verified 85,098 1,574 80,802 415 2,307

These conditional independencies can be classified according to the type of edge involved. More than 90% of the non-veri-

fied conditional independencies are of type s - s, while for the a / s and a / p the verification rate is much higher
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difference is significant (2-sample t-test, pvalue � 0). The distribution for the true conditional indepen-

dences is essentially bimodal, with an average of successes of 46.4%. Also this is a statistically significant

difference against the 36.8% of the best null model.

Validation based on the ontology of the protein-coding units

As our experiments describe a CD4+T-cell differentiation process toward TH1 cells, we reasoned that the

signal-to-noise ratio in our data should be particularly high for the protein-coding units directly involved

in such process. To verify this hypothesis, we compiled a list of genes involved in T-cell differentiation at

large, and a second list more specific to TH1 differentiation (see STAR Methods) and checked to what

extent the conditional independencies described above are verified in these subsets of protein-coding

units. Quite remarkably, we observe that nearly all statistics indeed improve, as can be seen in Table 2. In

particular, the verification of the a/p conditional independencies (the most significant class of condi-

tional independencies, given the structure of our DAGs) passes from 74.1% of the whole set of DAGs

to 83% for the T-cell related DAGs, to 89.4% for TH1 related DAGs. All these improvements are statisti-

cally significant (Fisher exact test, see Table 2 for the pvalues). Analogous considerations hold also for

other classes of conditional independencies (a� a and s� s), see Table 2. As an alternative analysis,

we also checked the ontological enrichment of the two subsets of protein-coding units representing

0 and 100% of verified conditional independencies of type a/s and a/p shown in the inset of Figure 3B.

A

B

C

Figure 2. Conditional independence verification via partial correlations. Verifying conditional independencies

(A) Ratio between the number of verified and predicted conditional independencies for each node (a, s, or p) of a DAG. Inset: same ratio but when

considering only the conditional independencies between different layers, a/s and a/p.

(B) The histogram reports the n. of verified and predicted conditional independencies, this time binned according to the n. of predicted conditional

independencies (inset: alternative view of the same quantities, with size of the dots proportional to the height of the bars).

(C) Distribution of successful conditional independences in the true model (i.e., x t yjC, blue), in a null model in which y is replaced by a randomly chosen yr

(red), and in a null model in which both y and C are replaced by randomly chosen yr and Cr (of the same cardinality of C, yellow).
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Also, in this case, the second subset is enriched in pathways related to T-cells and their differentiation,

while the first is not, see Figure S1 in the Supplementary Information.

Determining the dominant splice variant behind protein synthesis

Another analysis that can be performed on our data using conditional independence relationships consists in

computing the splice variant that can be considered the most important (we call it ‘‘dominant’’) in order to

‘‘explain’’ the profile of a protein, and how many splice variants can instead be considered ‘‘redundant’’, in

the sense that their contribution can be explained by the presence of a dominant transcript isoform for that pro-

tein. For this, we follow the approach already used in the literature for reconstructing gene regulatory networks

(de la Fuente et al., 2004; Schäfer and Strimmer, 2005; Soranzo et al., 2007; Zampieri et al., 2008), namely, on each

DAG we search for a splice variant si such that for all other sj on the same DAG it is sj t pjsi, i.e.,
��Rsjp:si

��< q. Of

the 4111 DAGs having more than one splice variant, 29.6% have a single dominant splice isoform, and in 88.4%

of the cases a single splice can explain 50%ormore of the existing alternative splice variants for that protein, see

Figure 4. Also, this test is significant against randomizations. Notice that when restricting to TH1-related genes,

the percentage of protein-coding units having a single dominant splice isoform grows to 36.4%.

A

B

C

Figure 3. Conditional independence verification via partial correlations. Verifying conditional independencies on DAGs

(A) Left: size the DAGs; middle: number of ATAC peaks per DAG; right: number of splice variants per DAG.

(B) Ratio between number of verified and number of predicted conditional independencies per DAG. Inset: same ratio but when considering only the

conditional independencies between different layers, a/s and a/p.

(C) Histogram of the n. of verified and predicted Markov conditions, binned according to the n. of predicted conditional independencies on a DAG (inset:

zoomed alternative view of the same quantities, with size of the dots proportional to the height of the bars).
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Factors behind conditional independence: splice function and TF

It is often affirmed, see e.g., Djebali et al. (2012); Ezkurdia et al. (2015); Gonzalez-Porta et al. (2013)

(although not without controversy, see Blencowe (2017)), that many transcripts classified as splice variants

of a gene are not translated, and that many more contribute to protein synthesis only with a minor prob-

ability. To this end, the database APPRIS (Rodriguez et al., 2018) provides a classification of all transcript

isoforms of a gene based on annotation and conservation. One may then wonder to what extent the suc-

cessfully verified conditional independencies we obtain reflect the importance of the functional annota-

tion of the corresponding splice variant. A test can be carried out for some of the classes of conditional

independencies listed in Table 1, using the APPRIS ranking of splice variants described in the Methods.

For instance, for the a/p conditional independencies, from Figure 5B, it can be seen that of the 6613

validated conditional independencies 2018 (30.5%) correspond to a median APPRIS score which is the

highest possible, i.e., the observed s for the conditional independence at pjs are labeled PRINCIPAL:1

in APPRIS. The corresponding percentage for an equal number of randomly chosen s on the same DAG

is 11%, meaning that the result is statistically significant. In other words, the transcript isoform that tends

to explain most of the correlation between a and p happens often to be the splice variant that is labeled

principal for that gene in APPRIS.

A similar test cannot be carried out for the a/s and s� s classes of conditional independencies, as for

them the transcripts do not appear in the conditioning set C. It can be done, however, when we seek for

the dominant splice of a protein-coding unit, as conditioning in this case is over s (i.e., over si in the expres-

sion sj t pjsi ). When we compute the dominant splice variant according to the method described above,

we see that in around 28% of the DAGs (42% if we restrict to the DAGs admitting a splice variant classified as

PRINCIPAL:1) indeed the dominant splice has an associate score equal to PRINCIPAL:1 (green dots in Fig-

ure 5C), i.e., the splice able to alone explain the most of the profile of the protein corresponds to the most

important splice according to the current structural and functional knowledge of the proteins. This result is

highly significant (Fisher exact test, pvalue of 5 , 10�13).

As an alternative test for the s� s class of conditional independencies (which alone gives more than 90% of

the non-verified conditional independencies), it is possible to compute a set of Transcription Factors (TF)

potentially associated with each transcript according to a footprinting analysis, as described in the STAR

Methods. We can then observe that there is a noticeable difference between splice variants involved in

s� s conditional independencies that are verified by the data and those that are not. Namely the former

tend to have a higher number of putative TF than the latter, see Figure 5D. This difference is significant

(2-sample t-test, p-val � 0).

Coupling the protein coding units: shared peaks and protein complexes

Genes and proteins take part in regulatory networks characterized by a multitude of interactions, some of

which involve multiple protein-coding units. For instance, protein-coding units may be coupled by the

presence of shared chromatin peaks, intended as peaks that influence splices located on different pro-

tein coding units (i.e., splices associated with different genes, and hence to different proteins), see Fig-

ure S4A. In our data 876 (i.e. �3%) peaks belong to this category. To analyze the effects brought by a

shared peak, we can consider the joint DAG containing the peaks, splices and proteins of the two

different protein units, see the example in Figure S4A. This form of coupling leads to additional condi-

tional independencies in the joint DAG. For example, in the case of the DAG in Figure S4A, we can

Table 2. Fraction of verified conditional independencies according to type (see Table 1) and according to protein

ontology

Fraction of verified c.i n. DAGs Type

a–a s–s a / s a / p

All DAGs 4797 57.9% 33.8% 97.5% 74.1%

T cell related DAGs 148 65% (0.01) 40% (10�13) 97.1% 83% (10�5)

TH1 related DAGs 34 66.7% 39.7%(6 $ 10�5) 97.3% 90.2% (3 $ 10�5)

P-values from an exact Fisher test relative to the ‘‘all DAGs’’ classification are reported when the result is at a significance level

of at least 0.05.
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consider the conditional independencies s12 t s21ja2, and p1 t p2jfs11; s12g; which do not exist when we

consider the two protein-coding units separately. In particular, it is interesting to note that considering

interactions between protein-coding units introduces a new class of conditional independencies, that of

p� p.

We have systematically tested the set of conditional independencies that arise from the presence of shared

peaks, which can be of two types:

s1i t s2jjacomm; p1 t p2jS1;

where ski indicates the i-th splice that belongs to the protein unit of pk ; acomm represent the peaks in com-

mon between s1i and s2j ; and S1 = fs11; s12;.g is the set of splices associated with p1 (the situation is spec-

ular if we take the set of splices associated with p2).

Our analysis shows that �29% of these new conditional independencies in the joint DAG are verified by the

data, see Table S1, which is a similar value to what was observed for the set of ‘‘single-DAG’’ s� s conditional

independencies in Table 1. On the other hand, it is interesting to note that only around 20% of the conditional

A

C

B

Figure 4. Determining the dominant splice variant behind protein synthesis. Finding the dominant splice variant

on DAGs

(A) histogram of the correlation between splice variants and corresponding protein (only the best correlating splice

variant is considered for each protein).

(B) Fraction of alternative splice variants in a DAG which can be explained by a single ‘‘dominant’’ splice variant si , i.e.,

fraction of sj such that sj t pjsi . 100% means that n� 1 of the n splice variants can be explained by a single splice variant.

(C) Histogram of the number of explained splice variants vs number of splices in a DAG, for all DAGs (inset: the same

quantity is shown, with width of the dots proportional to height of the bars).

ll
OPEN ACCESS

8 iScience 25, 104048, April 15, 2022

iScience
Article



independencies between proteins is validated by the data. We can interpret this as a sign that the causal links

introduced by the shared ATAC peaks do not propagate in a significant way to protein co-regulation.

Another potential form of interactions among our protein-coding units is due to the existence of protein

complexes. These introduce another type of interaction in the model, in the form of an undirected p� p

edge, see Figure S4B. In terms of probabilistic graphical models, the resulting graph is no longer a

A

C

D

B

Figure 5. Factors behind conditional independence: splice function and TF. Role of splice annotation and TF

(A) To each splice isoform is associated a score obtained from the APPRIS database. The distribution of all scores for the� 27K splices is shown in the yellow

bars. For around 62% of all DAGs a splice labeled PRINCIPAL:1 is present (violet bars).

(B) Checking APPRIS scores on the a/p conditional independencies. The median APPRIS score of the s that lead to a a/p conditional independence

(green) is compare to the median APPRIS score of all the s on the DAG (yellow). Dot size is proportional to fraction (gray circle is 100%). As can be seen

on the red dots, the median APPRIS score of the observed s is systematically higher than the median APPRIS score of the corresponding DAG,

meaning that in general s with high APPRIS scores (and, in particular, PRINCIPAL:1 splice variants) are more reliable predictors of a conditional

independence a/p.

(C) Dominant splice variant and APPRIS score. Green disks: APPRIS classification of the dominant splice for each DAG. Red disks: distribution of the dominant

splice (according to conditional independence) based on the median APPRIS score for the splices of the corresponding DAG. Yellow disks: median APPRIS

score per DAG.

(D) Comparing the number of putative TF binding sites on the splice variants involved in verified and non-verified conditional independencies of s� s type.
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Bayesian network but rather a mixed directed/undirected (acyclic) graph (Koller and Friedman, 2009), but

for our purposes we can treat it in an analogous way.

To analyze this form of interaction, we have downloaded the list of protein complexes from the database

CORUM (Giurgiu et al., 2019), which contains 4274 manually annotated protein complexes from mamma-

lian organisms. Out of these, 1175 complexes correspond to at least a pair of proteins in our data. What we

observe is a strong dependence at protein level. For example, proteins that belong to the same complex

display a significantly higher correlation compared to random protein pairs, see Figure S4C. This is not un-

expected, as subunits of a protein complex should be expressed in fixed stoichiometric ratios.

Moreover, proteins that belong to the same complex rarely satisfy the conditional independence of type

p1 t p2jS1: in only 14% of pairs the condition is satisfied (compared to 20% for random pairs). Even

more, when we select only proteins that belong to a protein complex and also share a common peak,

only two out of 28 pairs are conditionally independent.

However, the same dependence observed for subunits of a protein complex does not seem to exist at

splice level, where we observe correlation values similar to random pairs of splices, see Figure S4C. This

observation suggests that the abundance of proteins in the same complex may not always be regulated

at the level of transcription, but could be rather due to post-translational modifications, as already

described in Eisenberg et al. (2018); Ross et al. (2021).

Balance as a proxy for conditional independence

It is intriguing to try to understand if there is also any property of Bayesian networks that can be exploited to

predict success or failure in our empirical verification of conditional independences. In order to do so, we

need to introduce the concept of balance of the signed graph GðRÞ induced by the sample correlation R on

a set of nodes, see STAR Methods.

If we classify the� 4,105 partial correlations required for checking all Markov conditions into balanced and

unbalanced according to the corresponding correlation graph, then we see a striking difference: the partial

correlations Rxy:C taken from unbalanced graphs tend systematically to stay away from 0, a pattern not

visible in those taken from balanced correlation graphs, see Figure 6A. Consequently, unbalanced graphs

seldom lead to verification of conditional independencies (i.e., to
��Rxy:C

��<q), and in fact in the vast majority

of cases (82.5%), verification of a Markov condition is associated with balance of the correlation graph

formed by the corresponding variables, see Table 3.

Inverse balance as a more stringent proxy for conditional independence

If instead of the sample correlation matrix R we consider the corresponding sample concentration matrix

J = R�1, then an analogous notion of balance can be set up also for GðJÞ. We call this inverse balance, see

STAR Methods for details. If we compare the statistics of verified conditional independencies for balance

and inverse balance (Table 3), then we see that while balance is able to capture a larger fraction of verifi-

cations, and in fact the number of confirmed conditional independencies associated with unbalanced GðRÞ
is low (‘‘false negatives’’, 17.5%), it is also producing a large number of ‘‘false positives’’ i.e., balancedmotifs

that do not lead to verifications of a conditional independence. On the contrary, inverse balance can verify

around half of the conditional independencies confirmed by balance, but the number of concentration

graphs that are inverse balanced and that are not verified is around a third of the balanced cases, see

Table 3. Treating balanced + non-verified and unbalanced + verified as ‘‘errors’’, then inverse balance pro-

duces around 7% less errors than balance. This is confirmed by the ROC-like curves we obtain if instead of

keeping a fixed threshold q for acceptance of a verification we vary it continuously (a more thorough expla-

nation is in the STAR Methods), see Figure 6E. AUC for balance is 0.64, while for inverse balance it is 0.69.

However, if we look at the Precision-Recall curve built in an analogous way, Figure 6F, we see that now the

AUC for balance is 0.81, while that for inverse balance is only 0.45.

In short, balance is less restrictive but also less precise (it has lower positive predictive value but higher

negative predictive value) than inverse balance in verifying the conditional independencies predicted by

the DAGs structures associated with the protein-coding units. Both concepts are however extremely useful

in screening large sets of dependencies, and in checking the presence of edges in the corresponding

Bayesian networks.
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DISCUSSION

The multiple high-throughput omics data we have available for this study allow us to characterize with

reasonable precision several of the crucial steps of the complex process that leads to the synthesis of pro-

teins in higher organisms: ATAC-seq data allow to estimate the chromatin accessibility state in the area of

the DNA surrounding the gene of interest, RNA-seq data provide us a quantification of gene expression at

the level of alternative splice variants, and mass spectrometry based proteomics can measure the abun-

dance of the corresponding gene products. Combining together these measurements means looking at
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Figure 6. Balance as a proxy for conditional independence. Balance and inverse balance

(A) Distribution of the sample partial correlations Rxy:C , classified according to the balance or unbalance of the corresponding sample correlation graph. The

vertical dotted lines correspond to Gq (significance threshold). Balanced Rxy:C tend to be concentrated around 0, while unbalanced Rxy:C tend to stay away

from 0.

(B) Sample density heatmap of the pair ðRxy ; Rxy:CÞ for the balanced (left) and unbalanced (right) cases. In the balanced cases, normally it is
��Rxy:C

��< ��Rxy

��, while
no such rule holds in the unbalanced cases.

(C) Same histogram as in (A), but now classified according to inverse balance. The pattern is similar to (A), but now the fraction of inverse balanced cases is

lower and that of the inverse unbalanced cases higher.

(D) Same density plot as in (B), but for inverse balance. The inequality
��Rxy:C

��<��Rxy

�� is now obeyed systematically in the inverse balanced cases, i.e.,

conditioning always leads to contraction.

(E) ROC curves for balance and inverse balance, as the threshold q is varied. The square marker corresponds to the threshold for q chosen in the article. AUC

for balance is 0.64, while for inverse balance it is 0.69.

(F) Precision-recall curves for balance and inverse balance, as the threshold q is varied. AUC for balance is 0.81, while for inverse balance it is 0.45.
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a fine-graded description of the transcriptional/translational events that lead to the synthesis of a protein. A

key contribution of this article is to show that the combination of these multi-omics data can give rise also to

novel high-resolution mathematical models.

Importantly, the physical interactions used in these models have a natural DAG structure, suited to be

modeled using tools such as Bayesian networks. Even more importantly, the resulting Bayesian networks

have a manageable size, and the regime in which they are placed is not the highly unconstrained one

(more degrees of freedom than data) normally needed in gene regulatory network inference (Schäfer

and Strimmer, 2005; Soranzo et al., 2007), but its opposite. In fact, in our case, each variable is measured

and we do not need to learn the graph, as the topology of the Bayesian network itself is available

through gene sequence annotation: the ATAC-seq peaks can be assigned with reasonable accuracy

to specific splice variants of a gene based on the transcript start site of each splice, and the alternative

splicings of a gene are also well characterized. The translation from alternative splices to proteins is

perhaps the step that carries the most uncertainty, the limiting factor being the low precision and the

limited coverage of current mass spectrometry proteomics. In particular, the limited sensitivity of

this technique does not allow in general to identify protein isoforms (Blencowe, 2017; Tress et al.,

2017), hence making it impossible to associate the protein signals we have with the specific transcript

isoforms.

It is therefore quite remarkable that with no other information than conditional independence relation-

ships among the alternative splice variants of a gene, in around 25–30% of the cases we can determine

the splice variant which is classified as principal according to the current annotation of structure, functions

and conservation of each transcript isoform. In other words, principal splice variants tend to explain a

considerable fraction of the expression of the alternative splices, even though this explanation is not

related to abundance, and it is not directly visible in the splice-splice correlation, nor in the splice-protein

correlation, but rather at the partial correlation level (i.e., in the conditional dependencies among the vari-

ables). In fact, when we classify the correlations between s and p according to the APPRIS scores, then no

particular trend emerges. In Figure S2B, the histogram for PRINCIPAL:1 splice variants is not distinguish-

able from the others. The splice variants classified as dominant according to our conditional information

approach have some overlap with the most abundant splice in our sample, see Figure S2A. Since corre-

lations and partial correlations are invariant to amplitude rescaling, this provides (at least to some extent)

a cross-validation of the idea that the most abundant splice isoform is also the most relevant one for trans-

lation (Ezkurdia et al., 2015). This appears to be especially true for the protein-coding units containing a

low number of splice variants, see Figure S2C. In 23.8% of the DAGs, the dominant splice isoform corre-

sponds also to the splice having the highest correlation with the corresponding protein, see Figure S2B.

However, a straightforward relationship (like the one provided by RNA-seq abundance) between a single

splice isoform and the corresponding protein appears to be missing for the remaining 70–80% of the pro-

teins we have analyzed. For them, no single feature of the transcript and of its annotation appears to be

enough to determine which splice variant is playing the most important role in protein synthesis. Here our

approach may provide a novel way to infer the importance of splicing events on translation and protein

synthesis.

When we zoom in on the protein-coding units directly involved in TH1 differentiation, then, apart from

proteins having a trivial DAG (e.g., IFNG [Interferon-g, the main product of TH1 cells] and IL27RA

Table 3. Classification of conditional independencies into balanced and inverse balanced

Markov c.i Total Balance Inverse balance

balanced unbalanced balanced unbalanced

Total 151,362 106,022 45,340 47,055 104,307

Verified 66,264 54,657 11,607 30,868 35,396

Non-verified 85,098 51,365 33,733 16,187 68,911

Both balance and inverse balance help in verifying conditional independencies. Balance is broader and less selective (many

more ‘‘true positives’’ than ‘‘false negatives’’, but also many ‘‘false positives’’. Inverse balance is more selective, but has lower

inference power (less ‘‘false positives’’ and many ‘‘true negatives’’ but also less ‘‘true positives’’). Overall, inverse balance is

slightly more accurate: 7% less ‘‘errors’’ (‘‘false positives + false negatives’’) than balance.
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[Interleukin-27 receptor a chain, involved in TH1 differentiation], both having a single transcript isoform,

which is of course also principal), we can find several cases of interest. For instance, of the 11 splice iso-

forms of STAT4 (a key regulator of T-helper cell differentiation), only four are retained in the DAG after

filtering out transcripts that lack ATAC peaks and/or those labeled as non-coding in APPRIS. All of these

four transcripts have similar expression, but only two are labeled as PRINCIPAL:1 in APPRIS. One of the

two corresponds to the dominant splice we identify through conditional independence analysis. In several

examples the various classification criteria that we are discussing (RNA-seq abundance, APPRIS score and

our test for dominance) are all consistent. Consider for instance the gene TBX21, a Tbox transcription fac-

tor thought to be the main driver of TH1 differentiation. Of the two transcript isoforms of TBX21, one

(ENST00000177694) has consistently higher expression than the other (ENST00000581328). The first

also has a higher APPRIS score (PRINCIPAL:1) and is also selected as the dominant isoform by us. Similar

considerations hold for (among other) IL18R1, JAK2, ZAP70, LCK (for the latter our analysis is able to pick

out as dominant a PRINCIPAL:1 transcript out of 14 splice variants). Even when a gene lacks a principal

isoform, abundance alone can be a proxy for dominance, as in the case of GATA3 (an early regulator

of T-cell differentiation), where one of the two isoforms showing high expression, ENST00000379328

and ENST00000346208, is selected as dominant (the first, which happens to coincide with the highest

APPRIS score for this gene, a PRINCIPAL:4). For other genes, instead, abundance is not a useful indicator.

For instance, for the ITK gene (IL2 inducible tyrosine kinase, expressed in T-cells and playing a role in TH
differentiation), none of the nine transcript isoforms that survive our filtering has an expression

significantly higher than the others. Nevertheless our algorithm is able to identify the only isoform labeled

PRINCIPAL:1 as the dominant isoform for that gene. Another example of the same type is HMGB1, whose

(equally abundant) multiple transcript variants are said to encode for the same protein (see GeneCards

PAGE, accessed April 2021).

Another key feature of our approach is that each Bayesian network can be treated independently, as it cor-

responds to a model of the protein-coding unit associated with a gene/protein. Hence our > 4000 Bayesian

networks can be run in parallel, which breaks down the complexity to a manageable size, and enables the

systematic in-depth analysis carried out in the article. Of course, in reality, the protein-coding units are

coupled, for instance through the sharing of chromatin peaks or the association in protein complexes,

as we have analyzed in the Results section, or through the action of transcription factors, through the con-

centration of polymerases, through the ribosomal machinery, etc. All of these latter factors must however

be treated as unmodeled hidden variables, as we lack any specific measurement for their quantification.

Some of these factors (most probably TF) are likely responsible for the limited validation percentage of

certain types of conditional independencies, in particular for the s� s conditional independences. For

this case, for instance, we have managed to show that verification of the s� s conditional independences

grows with the number of TF potentially associated with the splices involved. This results may be reflecting

the fact that a more (complex and hence) precise regulation is less prone to noisy measures of expression,

and hence lead to more clear s� s interactions.

If for s� s conditional independencies the percentage of success is only 33.8%, it grows to 57.9% for a� a

conditional independencies. It is worth noticing that none of these two classes lead to modifications of

the DAG that are justifiable physically or mathematically. From a physical point of view, having a direct

dependence between two s or between two a does not seem to be a realistic assumption. From a

mathematical modeling point of view, s� s and a� a pairs are so-called ‘‘moral edges’’ (see STAR

Methods for details on this terminology), and it is known that for Bayesian networks a probability distri-

bution that factorizes over a DAG factorizes also over the graph obtained adding the moral edges to

the DAG.

When instead we look at independence relationships between different ‘‘layers’’ (the most important types

of conditional independencies when it comes to structure validation), then the percentages of confirma-

tions are significantly higher: 74.1% for a/p conditional independencies, and 97.5% for a/s conditional

independencies. The latter are the only independencies that may lead to a straightforward modification of

the DAG, meaning that when a conditional independence a/s cannot be confirmed, then the presence of

an extra edge a/s in the DAG cannot be ruled out. In summary, our validation analysis of the predicted

conditional independencies largely confirms the factorization of the probability density functions deter-

mined by the DAGs, and suggests the addition of extra 415 causal dependencies of type a/ s, i.e., a

mere 2.5% of the already existing edges.
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The idea that balance can be of importance in biological networks is not new, and was observed for

instance in gene regulatory networks in Alon (2007) under the name of coherence, as well as in other clas-

ses of biological networks in Iacono and Altafini (2010); Sontag (2007); Torres and Altafini (2016). The role

it plays for our Bayesian networks is however novel to the best of the authors’ knowledge. It is related

to the already mentioned facts of working in a over-constrained regime (more data than degrees of

freedom) and of making use of a symmetric similarity measure, like correlation. In fact, R symmetric leads

to the presence of cycles in GðRÞ, whose nodes are all experimentally sampled. When evaluated on a cycle,

the sample correlations provide an intrinsic test of consistency for the values of the variables involved in

the cycle.

To understand the origin of this consistency, it is useful to look at the smallest possible nontrivial correlation

graph, a triangle, formed by the variables x;y, and z obtained from a fork or chain motif in a DAG (see Fig-

ure 1C), and yielding a 333 correlation matrix R. When GðRÞ is balanced, the patterns of signs of Rxy , Rxz and

Ryz are always compatible with each other, and never contradict each other. For instance, if x and y are

negatively correlated and so are y and z, then x and z must be positively correlated (in structural balance

theory: ‘‘the enemy of my enemy is my friend’’, see Facchetti et al. (2011)). Internal consistency in a triangle

of correlations means that the empirical trends we have obtained from our data for x, y, and z confirm each

other. On the other hand, on an unbalanced cycle the opposite happens: the data for x, y and z are guar-

anteed to contradict each other. One consequence of such inconsistency is that the data become unreli-

able when used for learning (or confirming) conditional independences, meaning that balance gives us a

way to label certain interaction patterns as ‘‘more plausible’’ or as ‘‘less plausible’’ based on the samples.

The generalization from a triangle to any arbitrary correlation graph (and to a concentration graph) can be

done along similar conceptual lines.

To understand the mechanism by which balance and inverse balance lead to confirmation of conditional

independencies in such a systematic way, it is useful to observe what happens to the correlation between

x and y upon conditioning. If we compare Rxy and Rxy:C, then we see that for most balanced sample corre-

lations graphs it is ��Rxy:C
��%��Rxy

��; (Equation 1)

meaning that conditioning on a balanced graph normally leads to a contraction, that reduces the depen-

dency between the variables x and y, see Figure 6A. The contrary often (but not always) happens on unbal-

anced GðRÞ. This contraction property can be made intuitively clear if we look at the formula for partial cor-

relations on a triangle

Rxy:z =
Rxy � RxzRyzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
xz

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

yz

q :

For all possible sign combinations in a balanced triplet, the second term of the numerator has opposite

sign to the first term, meaning that in most cases Rxy:z obeys to the heuristic (1). There are however excep-

tions, as can be seen in the density plots of Figure 6B. In the case of inverse balance, the contraction law (1)

is obeyed systematically. For covariances, the equivalent of (1) can be shown to be rigorously true, see

STAR Methods.

The consistency of signs in a balance graph can be interpreted as solving a system of equations over a bi-

nary field, with constraints given by the signs. In statistical physics, it is well-known that checking balance

(i.e., checking the absence of frustration in a signed graph) can be mapped into a so-called XORSAT

constraint satisfaction problem, see Facchetti et al. (2011); Mezard and Montanari (2009). Such problem

either has a unique solution, when the graph is balanced, or has no solution at all, when the graph is un-

balanced. The test is akin to a ‘‘parity check’’ used in error-correcting codes in information theory (Cover

and Thomas, 2006). What is novel in our approach is the observation that balance and inverse balance pro-

vide good heuristics for reduction of correlation upon conditioning, and hence for verification of condi-

tional independencies.

While such tests are in our knowledge novel for balance, somewhat related ideas have been developed

in the field of Gaussian graphical models for inverse balance. In particular in Lauritzen et al. (2019); Slaw-

ski and Hein (2015), it is shown how a (signed) MTP2 distribution (see STAR Methods) imposes constraints

on the possible sign pattern of the correlation matrix, thereby allowing to reconstruct such matrix even
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when data on some of the variables are missing. The underlying principle in this literature is the

following: a property of the multivariate joint probability distribution provides constraints that must be

obeyed also by the empirical sample probability distribution if the latter is indeed drawn from the

former.

The underlying principle in our approach is instead the following: a sample probability distribution pro-

vides constraint for its own consistency. These constraints do not require us to make any assumption on

the ‘‘true’’ multivariate joint probability distribution from which the data are drawn. The constraints are

nevertheless useful in practice in situations in which all variables are measured, as they provide a sort of

‘‘parity check’’ on the sampled data. We expect this type of reasoning to be applicable also in other con-

texts in which Bayesian networks are of relevance.

Limitations of the study

Several limitations have already been discussed above, notably the fact that the protein coding units are

in reality not independent, but coupled by unmeasured quantities (TF, shared transcriptional/translational

machinery etc.). Another limitation comes from the fact that the data we have available correspond to

time series, for which the assumption of stationarity is not rigorously true. Using dynamical correlation

partially, but not completely, eliminates the issue. Other potential limitations come from the data we

are using, in particular the fact that mass-spec is not sensitive enough to detect protein isoforms is a sig-

nificant bottleneck of the current study. Similarly, the uncertainty in how the RNA sequences are assigned

to the various splice variants of a gene is of great relevance in our approach, as it may lead to a bias in the

analysis.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further questions should be directed to the lead contact, Prof. Claudio Altafini (claudio.altafini@liu.se).

Materials availability

This study did not generate new data.

Data and code availability

d RNA-seq data: available at EMBL-EBI sequencing archive ArrayExpress (https://www.ebi.ac.uk/

arrayexpress/) under accession number E-MTAB-7775 (Magnusson et al., 2020).

d Mass spectrometry data: available at EMBL-EBI proteomics repository PRIDE (https://www.ebi.ac.uk/

pride/) under accession number PXD013361 (Magnusson et al., 2020).

d ATAC-seq data: available at ArrayExpress with accession number E-MTAB-10444 (Rundquist et al., 2022).

The data and the code used in this article will be shared upon request to the corresponding author.

METHODS DETAILS

Isolation of CD4+ T helper (TH) cells and TH1 polarization

Peripheral blood mononuclear cells (PBMC) were isolated from blood donor derived buffy coats through

gradient centrifugation (Lymphoprep, Axis shields diagnostics, Dundee, Scotland). Naive CD45RA +

CD4+T-cells were subsequently isolated with magnetic bead separation using the ‘‘Naive CD4+T-cell

Isolation Kit II, human’’ (Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were then activated

and polarized toward TH1 using Dynabeads�. Human T-Activator CD3/CD28 (1 bead/cell) (Dynal AS,

Lillestøm, Norway), 5 ng/ml recombinant human IL-12p70, 10 ng/ml recombinant human IL-2 and 5 mg/ml

anti-IL-4 antibodies (clone MAB204) (all three from, Bio-Techne, Minneapolis, USA), in RPMI 1640 media

(Gibco, Paisley, United Kingdom). A portion of T-cells used for RNA and protein isolation was obtained

at baseline and after 0.5 h (only RNA), 1 h, 2 h, 6 h, 24 h and 5 days (only protein; point not used in the anal-

ysis). The cells were washed twice in PBS, snap frozen in a dry ice ethanol bath and stored at�80�C until use.

During the protein and RNA extractions, multiple samples were pooled from twelve different individuals to

reach the necessary amount of material for the subsequent analysis steps.

RNA-seq sample preparation

RNA was isolated using a ZR-Duet DNA/RNA kit (Zymo Research, Irvine, USA) and stored at �80�C. RNA

library preparation and the subsequent RNA-sequencing were carried out by the Beijing Genomics Insti-

tute (https://www.bgi.com/global/). Library preparation was performed using the TruSeq RNA Library

Prep Kit v2 (Illumina, San Diego, USA). Each sample was sequenced to the depth of 40 million reads per

samples with pair end sequencing and a read length of 100bp on an Illumina 2500 instrument.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq data Magnusson et al., 2020 E-MTAB-7775

Mass-spectrometry data Magnusson et al., 2020 PXD013361

ATAC-seq data Rundquist et al., 2022 E-MAT-10444

Software and algorithms

MatLab MathWorks https://www.mathworks.com/login
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ATAC-seq sample preparation

The ATAC.seq sample preparation was carried out in accordance with the OMNI-ATAC-seq protocol in

Corces et al. (2017), modified to incorporate the Nextera tagmentation reagents (Zuberbuehler et al.,

2019).

Isolation of CD4+ T helper cells and TH1 polarization

Naı̈ve T-cells were isolated and differentiated towards TH1 for ATAC-seq as described above and sampled

at the time points of 0.5, 1, 2, 6 and 24 h (same as the RNA-seq). The naı̈ve T-cells were differentiated on a

96-well plate with 50,000 cells per differentiation reaction (each time points was its own differentiated re-

action), in biological triplicate. All time points were from the same individual for each replicate.

Nuclei extraction

For nuclear extraction, at each time point the cells were transfer to DNA low-binding tubes (Eppendorf,

Hamburg, Germany) and washed with 1ml PBS by centrifugation at 500g for 5 min. After centrifugation

the supernatant was discarded by pipette and the cells resuspended in 50 ml ATAC-seq RSB buffer

(10 mM Tris-HCl pH 7.4, 10 mM NaCl and 3 mM MgCl2) containing 0.1% NP40, 0.1% Tween-20 (all from

Sigma-Aldrich, St. Louis, MO) and 0.01% digitonin (Promega, Madison, WI) and incubated for 3 min.

Then, 1 ml ATAC-seq RSB containing 0.1% Tween 20 was added and the nuclei were pelleted by centrifu-

gation at 500g for 10 min and the supernatant discarded. All steps for the nuclei extraction were carried out

on ice and all buffers were pre-cooled to 4�C.

Sequencing library preparation and sequencing

ATAC-seq library preparation was carried out immediately by resuspending the nuclei pellet in 50 ml trans-

position mix (25 ml 2X TD buffer, 2.5 ml transposase (both from Illumina, San Diego, CA), 16.5 ml PBS, 0.5 ml

digitonin, 0.5 ml 10% Twenn-20 and 5 ml Milli-Q water). The reaction mix was then incubated for 30 min at

37�C in a Eppendorf themomixer comfort (Eppendorf, Hamburg, Germany) at 1000 rpm and the reaction

subsequently stopped by the addition of 250 ml DNA binding buffer from a Zymo-clean and concentrator kit

(Zymo-Research, Irvine, CA) and the DNA purified using said Zymo kit. The ATAC-seq DNA libraries were

then amplified and indexed with a NEBNext index kit (NEB, Ipswich, MA) by PCR with the following cycling

conditions: 98�C 30 s, 72�C 5 min, followed by 5 cycles of 98�C 10 s, 63�C 30 s, 72�C 1 min. Following PCR

DNA concentration was assayed by qPCR as described in Buenrostro et al. (2015) and additional PCR cycles

were added as necessary. After PCR the samples were once again purified using the Zymo-clean and

concentrator kit. Library quality was assessed by fluorimetry with a Qubit dsDNA HS Assay Kit (Thermo

Fisher Scientific, Waltham, MA) and gel electrophoresis using a Fragment Analyzer (Thermofisher

Scientific). Sequencing of the libraries was carried out on an Illumina NovaSeq 6000 instrument by the

National Genomics Infrastructure of Sweden (https://www.scilifelab.se/facilities/ngi/).

Chemicals

Urea, Ammonium bicarbonate (ABC), Triethylammonium bicarbonate (TEAB), Iodoacetamide (IAA),

Ammonium formate, Trifluoroacetic acid (TFA) and formic acid were purchased from Sigma-Aldrich

(St. Louis, MO). Dithiothreitol (DTT) were purchased from Roche (Hoffmann, Switzerland). Protein assay

kit (# 23235) and TMT 6 plex isobaric labeling kits were purchased from Thermo Scientific (MA, USA) and

MS grade Trypsin was purchased from Promega (Madison, WI).

Cell lysis

The isolated cells from patients were resuspended in 100 ml of 8 M Urea in 40 mM Tris-HCl (pH 7.6) and

pooled with a similar number of total cells between biological replicates. The suspension was sonicated

using focus sonicator (Sonic Dismembrator 500, Fisher Scientific) for 3 cycles of 10 s pulse with 10 s intervals

at 10% of power. After sonication, a magnetic rack was used to remove the T-Activator beads used for the

polarization. Protein concentration was measured using BCA assay and 40 mg of each sample was digested

with trypsin using In-solution digestion.

In solution digestion

First reduction and alkylation of disulfide bonds on proteins were carried out using 1 M DTT, final sample

concentration 10 mM, for 45 min and 1 M IAA, final sample concentration 30 mM, for 30 min in the dark,

respectively. Following alkylation and reduction the samples were diluted with ammonium bicarbonate
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buffer (pH 8.0) until the urea concentration was 1 M. The proteins were digested with trypsin overnight at

37�C at an enzyme to protein ratio of 1:20. Finally, the peptides were acidified with 100% trifluoroacetic acid

(TFA) to a final concentration of 1% TFA and then desalted using macro spin columns (Harvard apparatus,

USA).

TMT labeling

Peptides were labeled with 6-plex TMT reagent usingmanufacturer’s protocol with somemodification. The

six peptide samples from each time series was resuspended in 100 ml of 100 mM TEAB buffer (pH 8.0) and a

unit of each TMT reagent was resuspended in 40 ml of acetonitrile. Subsequently, the prepared TMT re-

agent was transferred to the peptide sample and then vortexed. Next, the samples were incubated for

2 h at room temperatures. Finally, all of the labeled peptide samples from each time series were pooled

and concentrated by vacuum centrifugation. The labeled sample was resuspended 100 ml with 10 mM

ammonium formate in water (pH 10) and subjected to high-pH reverse-phase liquid chromatography

fractionation.

High pH fractionation

The TMT labeled peptides were fractionated into 24 fractions. Peptide samples were separated using an

analytical column (Xbridge, C18, 5 mm, 4.6mm3 250mm) on the Agilent 1200 series HPLC system. Peptides

were eluted using following gradient over 115 min: 0–10 min, 0% B, 10–20 min, 5% B, 20–80 min, 35% B,

80–95 min, 70% B, 95–105 min, 70% B, 105–115 min, 0% B; 10 mM ammonium formate (pH 10) was mobile

phase A, and 10 mM ammonium formate with 90% ACN (pH 10) was mobile phase B. The 96 fractions were

added up into 24 fractions by combining Fraction 1 - Fraction 25 - Fraction 49 - Fraction 73, Fraction 2 -

Fraction 26 - Fraction 50 - Fraction 74 . Fraction 24 - Fraction 48 - Fraction 72 - Fraction 96. All fractions

were vacuum dried and stored at �80�C after the desalting step.

LC-MS analysis

The fractionated peptides were analyzed on an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (source)

coupled with the Easy-nLC 1200 nano-flow liquid chromatography system (Thermo Fisher Scientific). The

peptides from each fraction were reconstituted in 0.1% formic acid and loaded on an Acclaim

PepMap100 Nano-Trap Column (100 mm 3 2cm, Thermo Fisher Scientific) packed with 5 mm C18 particles

at a flow rate of 5ml per minute. Peptides were resolved at 250-nl/min flow rate using a linear gradient of

10%–35% solvent B (0.1% formic acid in 95% acetonitrile) over 95 min on an EASY-Spray column

(50 cm 3 75 mm ID), PepMap RSLC C18 and 2 mm C18 particles (Thermo Fisher Scientific), which was fitted

with an EASY-Spray ion source that was operated at a voltage of 2.3 kV. Mass spectrometry analysis was

carried out in a data-dependent manner with a full scan in the mass-to-charge ratio (m/z) range of 350

to 1,800 in the ‘‘Top Speed’’ setting, 3 s per cycle. MS1 and MS2 were acquired for the precursor ions

and the peptide fragmentation ions, respectively. MS1 scans were measured at a resolution of 120,000

at an m/z of 200. MS2 scan was acquired by fragmenting precursor ions using the higher-energy collisional

dissociation method and detected at a mass resolution of 30,000, at an m/z of 200. Automatic gain control

for MS1 was set to one million ions and for MS2 was set to 0.1 million ions. A maximum ion injection time

was set to 50 ms for MS1 and 100 ms for MS2. Higher-energy collisional dissociation was set to 35 for MS2.

Precursor isolation window was set to 0.7 m/z. Dynamic exclusion was set to 35 s, and singly-charged ions

were rejected. Internal calibration was carried out using the lock mass.

Peptide and protein identification

The obtained data were analyzed using MaxQuant (v 1.6.0.1). MS raw data were searched using

Andromeda algorithm with matching to the Uniprot human reference (released in Nov, 2017). A specificity

of trypsin was determined at up to 2 missed cleavages. In modification, carbamidomethylation, TMT 6-plex

modification at lysine and N-termination were set as the fixed modifications, and oxidation of methionine

was set as a variable modification. The false discovery rate (FDR) for peptide level was evaluated to 0.01 for

removing false positive data. For highly confident quantifications of protein, protein ratios were calculated

from two or more unique quantitative peptides in each replicate. Data was normalized and removed

contaminant and razor peptide. To enrich differentially expressed proteins (DE-Ps), we analyzed the quan-

titative ratios (as the Log2 value). The fold-change ratio cut off was more than 2 or less than 0.5 based on

intensity of unstimulated sample. Searched data went through statistical process with Perseus (v 1.5.1.6).
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RNA-seq data processing

The RNA-seq data was processed using the following pipeline. Sample qualities were assessed with fastQC

and the mRNA reads were subsequently aligned using STAR Dobin et al. (2013) to the ‘‘Homo_

sapiens.GRCh38.dna.primary_assembly.fa’’ from Ensembl. The resulting read alignment bam files were

assembled into transcripts with StringTie Pertea et al. (2015) using the GRCh38.90 gtf annotation from

Ensembl. mRNA Transcripts were mapped to the mass spectrometry signal of protein abundance using

the Homo.sapiens and Mus.musculus package in R.

ATAC-seq data processing

General sample qualities were assessed as for the RNA-seq with fastQC. Transcriptional Start Site (TSS)

enrichment for the samples were calculated with tssenrich (https://pypi.org/project/tssenrich/) and found

to be acceptable at an average value of 5 (see https://www.encodeproject.org/atac-seq/ for ATAC-seq

quality standards). Sequencing adapters were trimmed using Trim-Galore (https://github.com/

FelixKrueger/TrimGalore), and the reads aligned to the ‘‘GCA_000001405.15_GRCh38_no_alt_analysis_

set.fna’’ from Refseq using Bowtie2 (Langmead and Salzberg, 2012). ATAC-seq signal peaks were called

using ‘‘Genrich’’ (https://github.com/jsh58/Genrich) and reads in peaks counted with ‘‘featurecounts’’

from the Rsubread package (Liao et al., 2019).Prior to counting of reads in peaks duplicate reads were

dropped with ‘‘Picard MarkDuplicates’’ and all alignments shifted with ‘‘alignmentSieve –ATACshift’’

from deeptools (Ramirez et al., 2016). Peaks were then assigned to the promoter of transcripts with a flank-

ing transcript distance of 5000bp, see Yu et al. (2015), by mapping the peaks to the promoter of transcripts

in the GRCh38.90 gtf annotation from Ensembl, performed in python. Promoters were defined asG 3000bp

from their TSS. This threshold is similar to the values found in the literature (Corces et al., 2016; Fullard et al.,

2018; Wu et al., 2018).

Data filtering and analysis

Our datasets consist of 41466 ATAC-seq time series, 147119 RNA-seq time series (of which 49890 are

labeled as ‘‘protein coding’’splice variants according to Ensembl Hg38) and 6909 proteins mass-spec

time series. The time series for ATAC-seq and RNA-seq consist of the following time points (in hours):

ta = ts = ½0 0:5 1 2 6 24� h , while for the protein datatp = ½0 1 2 6 24 120� h. The t = 120 h time point is disre-

garded in the following. All time series consist of 3 biological replicates. The data were interpolated using

cubic splines, to a resolution of 0:5h, meaning that after interpolation we have time series of 49 time points.

For 4797 of these proteins there exist an association with at least one ATAC-seq peak and a splice variant,

hence we have 4797 ‘protein-coding units’ represented as DAGs. These DAGs involve 8110 ATAC-seq

peaks and 27642 alternative splice variants, the latter after filtering for the ‘‘protein coding’’ annotation

in the Ensembl database, and after excluding time series missing too many points or not linked to any

ATAC-seq peak.

Functional annotation for splice variants of a gene

In the APPRIS database (Rodriguez et al., 2018), splice variants of a gene are labelled as PRINCIPAL:x, where

x is an integer running between 1 and 5 according to importance (1= most important), ALTERNATIVE:x,

with x = 1; 2, and MINOR. Other splice variants irrelevant for translation (retained introns, processed tran-

scripts, nonsense mediated decay, non-coding transcripts, etc.) are here classified as NON-CODING. A

few splice variants for which an APPRIS classification is missing are denoted as ABSENT. For the 27642

splice variants present in our DAGs, the distribution of APPRIS scores is shown in Figure 4A of the article,

yellow bars. In particular, around 62% of the 4797 DAGs have one splice which is labeled as PRINCIPAL:1 in

APPRIS (see violet bars in Figure 4A).

Compiling a TF - splice variant interaction map

A map of TF - binding sites was assembled, involving 656 TF and a total of around 6.5M potential interac-

tions with our 27,642 transcript isoforms. This was achieved in three steps. A chromatin peak - splice variant

interaction map results from the association procedure described above. ATAC-seq can also be used to

infer which TFs regulate gene transcription. In fact, TFs binding events leave behind a characteristic

mark: the sequence of DNA where the binding occurred presents a drop in the accessibility—these se-

quences are usually called footprints. By scanning each footprint for known TF motifs, using a TF binding

site database (HOCOMOCO v.11, see Kulakovskiy et al. (2018)), we have associated each peak to a list of

potential TFs. This constitutes the second interaction map, TF-peak.
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Lastly, we have combined the two interaction maps (i.e. peak-splice variant and TF-peak) to obtain a

TF-splice variant interaction map.

Sample dynamical correlation

Let the vector xðtÞ represent ATAC-seq, RNA-seq or mass-spec data, measured at a finite number of time

points t1<t2<.<tN. Themethod to compute sample dynamical correlations described in Opgen-Rhein and

Strimmer (2006) is based on computing a numerical approximation of the inner product

CxiðtÞ; xjðtÞD = 1

tN � t1

Z tN

t1

xiðtÞxjðtÞdt (Equation 2)

wherexiðtÞ and xjðtÞ are components of xðtÞ. To calculate (2) we assume xiðtÞ and xjðtÞ follow a linear approx-

imation between the sampling time points, yielding

CxiðtÞ; xjðtÞD =
XN
k = 1

xiðtkÞxjðtkÞ tk +1 � tk�1

2ðtN � t1Þ ;

where t0 = tN+ 1 = 0. Consider the averages over time of xiand xj , indicated with xi =
1
N

PN
k = 1xiðtkÞ and xj =

1
N

PN
k = 1xjðtkÞ, and the centered functions xCi = xi � xi and xCj = xj � xj. The sample dynamical covariance can

be obtained by taking the inner product between the centered functions xCi ðtÞ and xCj ðtÞ

Sxixj = CxCi ðtÞ; xCj ðtÞD;
while the corresponding sample dynamical correlation is

Rxixj = CxSi ðtÞ; xSj ðtÞD
where xSi ðtÞ= xCi ðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xiðtÞ�

p
and xSj ðtÞ= xCj ðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xjðtÞ�

p
are the standardized functions and Var½xiðtÞ� =

CxCi ;x
C
i D, Var½xjðtÞ�= CxCj ; x

C
j D the corresponding sample variances. Intuitively, this definition assigns a positive

(negative) correlation coefficient to time-series that appear mostly on the same (opposite) side of their time

average.

In general, experiments are repeated multiple times, obtaining M replicates of each realization. We will

denote xikðtÞ, k˛1;.;M, the k-th replicate of xiðtÞ. In order to compute the dynamical correlation, as before

we start by calculating for each replicate xikðtÞ and xjkðtÞ their time averages xik and xjk . This leads to the

centered functions xCikðtÞ= xikðtÞ � 1
M

PM
r = 1xik and xCjkðtÞ= xjkðtÞ � 1

M

PM
r = 1xjk and the variance estimates

Var
�
xCik ðtÞ

�
=

1

M� 1

XM
r = 1

CxCik ðtÞ; xCik ðtÞD

Var
h
xCjk ðtÞ

i
=

1

M� 1

XM
r =1

CxCjk ðtÞ; xCjk ðtÞD:

Finally, the standardized functions xSikðtÞ= xCikðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xikðtÞ�

p
and xSjkðtÞ= xCjkðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xjkðtÞ�

p
can be used to

estimate the sample dynamical correlation

Rxixj =
1

M� 1

XM
r =1

CxSikðtÞ; xSjkðtÞD:

The corresponding sample dynamical covariance is of course given by

Sxixj =
1

M� 1

XM
r = 1

CxCik ðtÞ; xCjk ðtÞD:

A normality test for detrended data

As mentioned above, the data for ATAC-seq, RNA-seq and mass-spec correspond to time series, and do

not directly obey an assumption of stationarity nor of Gaussianity. The situation is however different for the

detrended data xSik described in the previous section. To check it, we used a Kolmogoron-Smirnov

normality test, with p value equal to 0.01. For ATAC-seq, none of the 8110 data series can reject the null

hypothesis of normality, while for the detrended data only 855 (i.e., 10.5%) can still reject the normality

null hypothesis. For RNA-seq, the corresponding numbers are 27,628 out of 27642 for the original data,
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and 9176 (i.e., 33.2%) for the detrended data. Finally, for the mass-spec data, if none of the 4797 original

data series can reject the normality null hypothesis, only 18 (i.e., 0.4%) can still reject it after detrending.

Protein-coding units as Bayesian networks

To each protein we can associate a protein-coding unit formed by the alternative splice variants of the gene

coding for that protein (according to the Ensembl classification, database build Hg38, Cunningham et al.

(2018)), and by the chromatin peaks associated to those splice variants. The protein-coding unit represents

the largest possible graph associated with the synthesis of a given protein for the data we have available.

Let a; s; and p denote the variables representing resp. chromatin site accessibility, splice variant expression,

and protein abundance. The causal dependencies we consider are a/s and s/p. Physically, these edges

are unambiguously directed, meaning that all paths of the graph are directed and of length at most 2 (a/

s/p). The graph is therefore a 3-layer DAG, and typically it looks like in Figure 1A. For each protein, the

corresponding DAG can be modeled as a Bayesian network with continuous random variables associated

to the nodes and joint probability distribution that factorizes into a product of conditional probabilities ac-

cording to the DAG. Overall, from our datasets we have 4797 DAGs of size that varies from 3 to 52 nodes,

see Figure 3A. Different protein-coding units involve different genes and proteins, while for chromatin

accessibility only a small fraction of peaks (8%) is shared by two or more genes. Since the node sets of

different DAGs are essentially non-overlapping, each DAG can be treated independently, leading to a

massively parallel set of Bayesian networks.

Computing conditional independencies

Roughly speaking, in Bayesian networks missing edges on a DAG correspond to pairs of variables that are

either independent or conditionally independent given some other variables, see e.g. Koller and Friedman

(2009). Let x and y be two variables corresponding to nodes of a DAG (i.e., x and y are any of the a, s and p

localized on a protein-coding unit). Independence between x and y is indicated x t y, while conditional inde-

pendence given a set C of variables is denoted x t yjC. For instance, choosing C = paðxÞ, the set of parent

nodes of x, Bayesian network theory predicts that x t yjpaðxÞwhenever y is a non-descendent of x. These con-
ditions are called local conditional independencies (or local Markov conditions). In general, the local Markov

conditions do not exhaust all conditional independencies encoded in a Bayesian network. Other, less straight-

forward, independencies are obtained by checking the so-called d-separation property, see Pearl (1988). The

resulting conditional independencies are referred to as global Markov conditions: x t yjS, where C = S is a

d-separation set for the pair x and y. For the class of DAGs discussed in this article, consisting of 3 clearly

defined layers (a, s, and p) and having edges only between adjacent layers (a/s and s/p), it is always

possible to order the nodes so that local and global Markov conditions coincide (Koller and Friedman,

2009; Lauritzen, 1996). These conditional independencies can be systematically computed from the topology

of our DAGs. Overall in the 4797 DAGs considered in the article there are more than 1:5 , 105 conditional in-

dependencies, split into four4 categories, a/s, a/p, a� a, s� s, see Table 1. A fifth possible category, s/p,

is empty, i.e., s and p are never considered conditionally independent, as by construction all s in a DAG are

connected with the corresponding protein p (i.e., all s are ‘‘causing’’p).

A correlation-based verification test for conditional independencies

The conditional independencies computed on the DAGs can be validated empirically via a correlation anal-

ysis. Since our time series represent a cellular dynamical process (cell differentiation), we decided to use the

dynamical correlation of Opgen-Rhein and Strimmer (2006) in place of ordinary correlation, because it can

account for longitudinal data that are not stationary, as observed above. In the article we always omit the

adjective ‘‘dynamical’’ when mentioning correlations and partial correlations.

Given x and y colocalized on the same DAG, let Rxy be the corresponding sample correlation. We say that

the independence condition x t y is verified (or validated) by the data if
��Rxy

��<q, where q is the threshold

provided by a Fisher z-test. Similarly, the conditional independence condition x t yjC is verified by the data

if
��Rxy:C

��<q, where Rxy:C is the partial correlation between x and y conditioned on C.

Bayesian networks and conditional independence

A Bayesian network is a probabilistic graphical model on a Directed Acyclic Graph (DAG) in which to each

node is associated a random variable Xi. The joint probability distribution that represents the DAG
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factorizes according to the structure of the DAG. For instance, for the DAG of Figure 1A of the article, of

variables Xi = fa1; a2; s1; s2; s3;pg, we have

P
�
a1; a2; s1; s2; s3;p

�
= Pða1ÞPða2ÞPðs1ja1ÞPðs2ja2ÞPðs3ja2ÞP

�
p
��s1; s2; s3�:

The topology of the DAG defines also a series of conditional independence relationships which are nor-

mally classified into local and global Markov independencies, see Koller and Friedman (2009). Local Markov

conditions are expressed as

Xi t XjjpaðXiÞ
wherepaðXiÞ are the parents of Xi, and Xj is a non-descendent node of Xi. Global Markov conditions are

instead obtained computing the so-called d-separation set (Pearl, 1988), S, i.e., the set isolating Xi from

the rest of the DAG: if Xj;S, then

Xi t XjjS:
If the nodes of the DAG are ‘‘well-ordered’’, i.e., if a topological order is chosen so that Xi˛paðXjÞ implies i<

j, then local and global Markov conditions coincide. For instance, for the DAG in Figure 1A of the article the

Markov conditions are:

a1 t a2; s1t s2ja1; a2; s1 t s3ja1; a2; s2 t s3ja2;
a1t pjs1; a2t pjs2; s3; s1t a2ja1; s2 t a1ja2; s3 t a1ja2

where some of the conditioning sets can be reduced (e.g., s1t s2ja1; a2 can be written as s1 t s2, etc.).

Moral edges and moral graphs

Starting from a DAG D, one can construct the so-called moral graph Dm obtained by adding to D the un-

directed edges connecting co-parents of a node (called moral edges), and dropping all edge arrows. By

construction, for our DAGs, all s� s edges are moral edges because all splice variants are connected to

the corresponding protein p, and the motif formed by s1 and s2 with p is always a so-called v-structure

s1/p)s2. The corresponding d-separating set between s1 and s2 never involves p, but only upstream

causes (i.e., one or more a, see example on the left in Figure 1C). Similar moral edges can occur also

when two a are connected to the same splice variant s. From the topology of the DAGs, these can only

be associated to marginal independencies, not to conditional independencies. Not all a� a indepen-

dencies we consider are however moral edges, see e.g. Figure 1A. None of these s� s or a� a edges is

part of the original DAG D, but they are of Dm. However, if a probability distribution factorizes over D it

factorizes also over Dm. Hence the conditional independencies associated to moral edges s� s or a� a

can be considered of ‘‘secondary importance’’ for what concerns the determination of the causal depen-

dency structure among the variables of a DAG.

Gaussian graphical models

The probability density function of a n-dimensional Gaussian distribution over X = fX1;.;Xng (denoted X

in vector form) is given by

f ðXÞ = 1

ð2pÞn=2
���Sj1=2 exp

�
� 1

2
ðX� mÞTS�1ðX�mÞ

	

where X � Nðm;SÞ. From now on we assume that m = 0, and that the covariance matrix S is symmetric, pos-

itive definite (p.d.). K = S�1is called the concentration matrix (or information matrix, or precision matrix) of

the multivariable distribution and is also a p.d. matrix. Just like the correlation matrix R is the normalization

of S by the diagonal matrix D1 = diagð ffiffiffiffiffiffiffiffi
S11

p
;.;

ffiffiffiffiffiffiffiffi
Snn

p Þ, i.e., R = D�1
1

P
D�1
1 , so we can consider the normal-

ization of K by D2 = diagð ffiffiffiffiffiffiffi
K11

p
;.;

ffiffiffiffiffiffiffiffi
Knn

p Þ: H : = D�1
2 KD�1

2 . Straightforward calculations give that H =

D�1
3 R�1D�1

3 where D3 = D1D2. Both R and H are obviously p.d. and have the same sign pattern as S resp.

K. Notice that in the article, for simplicity of notation, we use a concentration matrix J = R�1, which of

course corresponds to J = D3HD3.

The partial correlation between the variables Xi and Xj given the remaining n� 2 variablesX c = XyfXi;Xjg is
defined as
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Rij:Xc : = �
�
R�1

�
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

R�1
�
ii

�
R�1
�
jj

q ;

or, in matrix form, P = 2I�H. This formula shows that the concentration matrix H and the partial correlation

matrix P have the same nonzero pattern but with opposite signs. P is in general not p.d.

Balance and inverse balance on Bayesian networks

Consider the graph GðRÞ formed by taking the correlationmatrix R as adjacencymatrix. Because, in general,

R+0, GðRÞ is a signed graph. The signed graph GðRÞ is said to be balanced (or structurally balanced, see

Facchetti et al. (2011), or frustration-free in statistical physics language, see Mezard et al. (1986); Mezard

and Montanari (2009)), if all cycles of GðRÞ have positive sign, i.e., they contain an even number of negative

edges. Denote V the node set of GðRÞ. An equivalent condition to balance is that there exists a partition of V
into 2 sets V1, V2 such that V1XV2 =B and V1WV2 = V, for whichRijR0 for all vi; vj˛Vk and Rij% 0 for all vi˛
Vk and vj˛V[, ks[. Another equivalent condition is that there exists a diagonal signature matrix D =

diagðd1;.;dnÞ with di = G1, such that, after the change of basis with D =D�1 (also called a gauge trans-

formation), RD =DRD is nonnegative, and therefore GðRDÞ has all nonnegative edges. For Gaussian vari-

ables Xi and Xj, one says that Xi and Xj are positively associated if for all monotone functions f and g,

Rf ðXiÞgðXjÞR0, which in particular implies that RXiXj
R0. If a vector of Gaussian random variables X has a

balanced correlation graph GðRÞ, then the variables DX are positively associated (they have correlation

RD ). A consequence of positive association is that Xi and Xj are independent iff RXiXj
= 0 (Thm. 3.7 of Fallat

et al. (2017)).

In Gaussian graphical models, a concept stronger than positive association is often used, that of Multivar-

iate Total Positivity of order 2 (MTP2). In terms of the concentrationmatrix K =S�1 (or ofH = ðD3RD3Þ�1), X �
Nð0;SÞ is MTP2 if and only if K is an M-matrix, i.e., Kij%0cisj (and K is p.d., hence Kii>0). X being MTP2
is a sufficient but not necessary condition for X being positive associated (meaning that KM-matrix implies

S[and R] nonnegative, see Karlin and Rinott (1983)). In this article, we call inverse balanced a

Gaussian probability distribution X � Nð0;SÞ such that K =S�1 becomes an M-matrix after a gauge trans-

formation with a diagonal signaturematrixD, i.e., KD =DKD is anM-matrix. It is straightforward to show that

if D renders KD nonnegative, then it also renders DRD (and DSD) nonnegative, meaning that the same

change of ‘‘orthant order’’ induced by D that renders X MTP2 also renders X positively associated. The

sameD is also such thatDPD becomes nonnegative, as well as all partial correlations diRij:Cdj for any subset

C3XyfXi;Xjg. The notion of inverse balance is referred to as signed MTP2 in Lauritzen et al. (2019). Given a

p.d. covariance matrix S and its concentration matrix K = S�1, then checking inverse balance is a purely

graphical condition, better tested on the graph of the partial correlation matrix P = 2I� H: X is inverse

balanced if and only if GðPÞ is balanced. In fact by construction, the ‘‘dominance’’ of the diagonal part en-

coded in the definition of M-matrix is already ensured by the fact that H is p.d., hence, only the sign of the

off-diagonal entries must be checked, and having ½DHD�ij%0 for all isj for some D amounts to having DPD

nonnegative, i.e., GðPÞ balanced (or ‘‘non-frustrated’’, as it is called in Malioutov et al. (2006)). Since

MTP2
0
G

positive association

it is also

inverse balance
0
G

balance:

Using balance and inverse balance for checking sample data consistency

Consider a sample correlation matrix R. By construction, correlation matrices are symmetric Rij = Rji, while

the ‘‘true’’ interaction graph is a DAG, i.e., if an edge Xi/Xj exists, then Xj/Xi cannot be another edge of

the DAG. Since a correlation matrix is symmetric, its graph GðRÞ is always undirected. Any pairwise sample-

based measure of association between two variables (correlation, mutual information, entropy, etc.) is by

construction symmetric, hence so is the graph built on such measure. R symmetric reflects the fact that cor-

relation is not causation.

The sample correlation obtained from the data is also typically full, and so is GðRÞ. When applied to our pro-

tein-coding units, this implies that all variables pairs are connected by an undirected edge, even those that
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are not so in the underlying Bayesian network, like a and p, or pairs of a, or pairs of s. In particular, the cor-

relation graph GðRÞ does not normally coincide with the moral graph associated to the DAG, and does not

respect the Markov conditions of the original Bayesian network. It is this passage from the ‘‘true’’ topology

of the DAG to the undirected and fully connected topology of GðRÞ that provides an opportunity for check-

ing consistency of the data, as it induces the cycles whose balance helps us discriminate the reliable data

from the unreliable ones.

The simplest cycle on GðRÞ is a triangle of nodes Xi, Xj and Xk . On this triangle, if we associate an empirical

regulatory action to each edge of GðRÞby taking the corresponding value of R, then it is easy to realize that if

GðRÞ is balanced the 3 regulatory actions are compatible with each other, while if GðRÞ is not balanced, then
at least one of these empirical regulations is incompatible with the others. For instance, if in the data Xi and

Xj are positively correlated, but Xj and Xk are negatively correlated, then one expects that Xi and Xk should

also be negatively correlated (balanced case) while if instead Xi and Xk are positively correlated (unbal-

anced case) then the 3 time series of Xi, Xj and Xk are incompatible with each other and should not belong

to the same ‘‘true’’ regulatory graph. This test can be extended to an arbitrary sample correlation graph,

and gives us a way to label certain interaction patterns as ‘‘more plausible’’ (candidates to be true positives)

or as ‘‘less plausible’’ (candidates to false positives) based on the samples. On the original DAG of our pro-

tein-coding units we cannot have cycles, but whenever we consider two or more adjacent edges on the

DAG then the corresponding undirected graph GðRÞ has cycles, and a balance test naturally follows. For

instance, if Xi = a and Xj = s and Xk =p are linked by edges on a DAG, then it is possible to check if the reg-

ulatory pattern of the ‘‘true’’ path a/s/p, deduced by the correlations Ras and Rsp, is compatible with the

corresponding ‘‘nonphysical’’ branch a/p deduced by the correlation Rap, see Figure 1C of the article for

an illustration. The test is purely on the sample correlations and does not lead to any causality violation on

the corresponding DAG. A similar argument can be set up for any DAG, or subset of a DAG, involving at

least two adjacent edges.

Since inverse balance is computed from sample concentration matrices in an analogous way, inverse bal-

ance of a DAG can also be investigated using the same principles.

Sample correlation balance and verification of conditional independencies

The Markov independence conditions of a DAG can be checked for empirical validity using sample corre-

lations and sample partial correlations. In particular, we can say that

Xit XjjC 5 jRXiXj :Cj< q

whereC denotes the conditioning set and q is a significance threshold obtained by e.g. setting an hypoth-

esis test using a Fisher z-transform (Tong, 1990)

Z�Xi;Xj

��C� = 1

2
ln

 
1+RXiXj :C
1� RXiXj :C

!

and then choosing

q = argmax
���RXiXj :C

��� subject to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N� cardðCÞ � 3

p
,
���Z�Xi;Xj

��C����<F�1


1�a

2

�
where F is the cumulative probability distribution of the multivariate GaussianNð0;IÞ, N is the sample size,

and a= 0:05 is the significance level. See Kalisch and Bühlmann (2007) for an identical test. Typical values we

obtain for our sample size are q � 0:16 which is a reasonable threshold for our partial correlations.

What is shown in the article is that balance of GðRÞ leads to verification of conditional independencies much

more often than unbalance. This is a heuristic property, and indeed exceptions are visible in the data. Also

for the more strict property of inverse balance the same happens. What can be made rigorous is that for

inverse balance conditioning leads to an element-wise contraction towards 0 of the ‘‘residual’’ partial

covariance.

Even if the property ‘‘balance leads to decrease of correlation upon conditioning’’ cannot be turned into a

rigorous statement in the balanced case (not even for covariances), it is however empirically true in a large
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fraction of our sample data. This combines well with the previous observation that balance is an indication

of data compatibility (i.e., an intrinsic test of ‘‘true positivity’’ of the interactions).

Binary classification for balance and inverse balance under varying acceptance thresholds

A natural way to read Table 3 is to think of the ‘‘verified/non-verified’’ condition as the true condition,

and of ‘‘balance / unbalance’’ (or ‘‘inverse balance / inverse unbalance’’) as the prediction. This would

associate ‘‘False Positives’’ (FP) to the combination ‘‘non-verified + balanced’’, and ‘‘False-Negatives’’

(FN) to ‘‘verified + unbalanced’’. However, if we want to turn Table 3 into a binary classificator

depending on a threshold, then we have to invert the role of the two conditions, taking ‘‘balance / un-

balance’’ (or ‘‘inverse balance / inverse unbalance’’) as truth and ‘‘verified / non-verified’’ as prediction. In

fact, the latter pair is the only one depending on a threshold, here the value q associated to a Fisher

z-test (verification 5
��RXiXj :C

��<q). The only practical effect is to invert the roles of FP and FN, meaning

that the total amount of errors is unchanged. In this way we can evaluate the effect of continuously vary-

ing q on the accuracy of the reconstruction, for instance through Receiver-Operating Characteristic (ROC)

curves or Precision-Recall curves. A ROC curve plots False Positive Rates (FPR) vs True Positive Rate

(TPR), where

FPR=
FP

FP+TN
ðTN = True NegativesÞ

TPR=
TP

TP+ FN
ðTP = True PositivesÞ

while in a Precision-Recall curve

Precision=
TP

TP+ FP

Recall=TPR:

See Figures 6E and 6F for the results.

List of TH1 related genes

The following list of gene was compiled assembling the Gene Ontology annotation for the following

categories:

T-helper 1 type immune response

T-helper 1 cell differentiation

regulation of T helper 1 cell differentiation

IKBKB, JAK2, IFNG, ANXA1, JUN, LCK, HMGB1, VAV1, SPN, CREB1, PLCG1, NFKB1, BCL3, GATA3,

PIK3R1, MAPK1, PTPN6, MAP2K2, STAT5A, ZAP70, MAP2K4, RELB, MAP2K1, ITK, NFATC3, LCP2,

MAP3K1, IL18R1, STAT4, PDK1, CAMK4, IL27RA, MAP3K3, TBX21.

List of T-cell related genes

The following list of gene was compiled combining the list of TH1 related genes given above with the Gene

Ontology annotation for the following categories:

positive_regulation_Tcell_differentiation

negative_regulation_Tcell_differentiation

T_cell_activation

TESPA1, CCDC88B, PIK3CD, BTN3A1, AP3D1, IKBKB, RAB29, ZBTB7B, SART1, NCK2, JAK2, GRAP2,

SASH3, SOD1, PNP, ABL1, IFNG, IL2RA, CD4, TFRC, ANXA1, CD3D, HLA-A, HLA-DPB1, ICAM1, JUN,

CD5, LCK, CD2, CTSL, CD3E, LGALS1, HMGB1, CD7, CD3G, PRKAR1A, CD28, HSPD1, SRF, HLA-E,

LCP1, RAC2, VAV1, SPN, CREB1, NCK1, CTLA4, IL7R, CTPS1, LGALS3, EGR1, LAG3, PLCG1, NFKB1,

TNFRSF1B, ITGAL, BCL3, RPS3, GATA3, MSN, CD27, DPP4, PIK3R1, ITPKB, MAPK1, PTPN6, CD40LG,

SLC7A1, CORO1A, AKT1, PRDX2, TNFSF8, PTGER4, MYH9, MAP2K2, TGFBR2, DDOST, PSMB10, CSK,
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STAT5A, PIK3CA, WAS, ZAP70, TNFRSF4, MAP2K4, ZFP36L2, CD151, PIK3CG, RAB27A, AIF1, NCKAP1L,

B2M, RPS6, GRB2, RAC1, ADAM8, SMAD3, EFNB1, RELB, MAP2K1, PTPN11, ZFP36L1, ITK, NFATC3,

LCP2, FADD, PAK2, MAP3K1, IL18R1, TCIRG1, RUNX3, CBFB, FLOT2, FGL2, STAT4, CASP8, PDK1,

RHOH, BATF, CAMK4, ZC3H12A, TNFAIP8L2, IL27RA, APBB1IP, METTL3, RASAL3, ZFPM1, ZC3H8,

RSAD2, DOCK2, KAT2A, GLMN, DNAJA3, MAP3K3, NDFIP1, FANCD2, TWSG1, AZI2, VSIR, NHEJ1,

CD274, CHD7, STOML2, TBX21, SIT1, RIPOR2, RIPK3, SELENOK.
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