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Abstract: The immune system contributes to maintaining the body’s functional integrity through its
two main functions: recognizing and destroying foreign external agents (invading microorganisms)
and identifying and eliminating senescent cells and damaged or abnormal endogenous entities (such
as cellular debris or misfolded/degraded proteins). Accordingly, the immune system can detect
molecular and cellular structures with a spatial resolution of a few nm, which allows for detecting
molecular patterns expressed in a great variety of pathogens, including viral and bacterial proteins
and bacterial nucleic acid sequences. Such patterns are also expressed in abnormal cells. In this
context, it is expected that nanostructured materials in the size range of proteins, protein aggregates,
and viruses with different molecular coatings can engage in a sophisticated interaction with the
immune system. Nanoparticles can be recognized or passed undetected by the immune system. Once
detected, they can be tolerated or induce defensive (inflammatory) or anti-inflammatory responses.
This paper describes the different modes of interaction between nanoparticles, especially inorganic
nanoparticles, and the immune system, especially the innate immune system. This perspective should
help to propose a set of selection rules for nanosafety-by-design and medical nanoparticle design.

Keywords: nanoparticles; immune system; innate immunity; inflammation; tolerance

1. Introduction

The immune system of higher vertebrates encompasses a collection of different special-
ized cells and specialized soluble molecules distributed throughout the body, being present
in all organs and tissues, circulating in blood and lymph (to reach every corner of the body
in case of need), and concentrated in some lymphoid organs (lymph nodes, spleen, bone
marrow, where hematopoiesis takes place in adult life). These cells have been classified into
two functional branches, namely innate and the adaptive immunity, which have different
roles, complementing each other very efficiently in complex organisms such as mammals
(simpler organisms such as invertebrates only display a perfectly efficient innate immunity).
The innate immune system’s role is to scan the body to remove apoptotic bodies, cell debris,
and protein aggregates; recognize and eliminate pathogens or abnormal cells; and keep
commensals outside tissues. Additionally, it promotes the repair of damaged tissue and is
involved in the control of embryogenesis and delivery. We can say that the innate immune
system is the actual immune system, active throughout evolution with conserved and very
efficient defensive mechanisms. The other system, adaptive immunity, developed much
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later as a complement of innate immunity, providing slower but more specific protective
responses, good for long-living and mobile organisms that do not stably reside in the same
environment [1]. The adaptive immune responses are tools for the innate immune system
with subordinated or programmed functions—tools because they develop without making
any decision [2]. It is the innate immune system that detects, categorizes, and triggers the
immune response and, in the case of additional needs, calls for adaptive immunity to come
in when the innate activation has reached a certain threshold level indicative of excessive
danger and the need for more specific defensive tools.

These complex defensive actions that body tissues perform in response to harmful
stimuli, such as pathogens or damaged cells, are described as inflammation. Inflammation
requires an excess biological workout and therefore it is closely related to metabolism.
Immunometabolism has become increasingly popular since the publication of Mathis and
Shoelson’s perspective in 2011 [3]. This is crucial in the context of interactions with nanopar-
ticles (NPs), since they have been observed to have the capacity to increase or decrease
reactive oxygen species (ROS), which directly correlates with the onset or remission of
inflammation [4]. ROS are free radical molecules resulting from natural metabolism, which,
when excessive and unregulated, may contribute to cell damage and aggravate human
pathologies such as cancer [5], neurodegeneration, and stroke, among others [6].

Following the great oxidation event some 2.3 billion years ago, oxidation has been the
leading force of metabolism. A delicate equilibrium between heat generation (enthalpy)
and biological organization (entropy) was established, which allowed natural systems
to decrease their free energy in a particular controlled fashion [7]. Deregulation of a
living system, for instance, in the case of a disease, increases enthalpy generation at the
expense of entropy. The system over-burns, which in biological terms is described as
inflammation (literally setting in flames). Inflammation is correlated with a particular
metabolic pathway, anaerobic glycolysis, providing higher energy power output, in which
cells defend themselves from aggression. Furthermore, aerobic glycolysis, with a broken
Krebs cycle, provides important metabolic intermediates and ROS [8]. Inflammation
provokes the unbalance between endogenous production of free radicals and antioxidant
defenses, resulting in oxidative stress [9]. While this metabolic defense mechanism is an
ability of all eukaryotic cells, it is reasonable to imagine that, through evolution, some
cells adapted the unbalanced energy equation to becoming professional defensive cells
forming a whole discontinued system distributed across the body and responsible for the
maintenance, defense, and repair of our biological tissues. In normal conditions, these cells
have a patrolling role based on scanning and surveying tissues to eliminate senescent or
damaged cells and become aggressive when encountering some possible dangers, capable
of initiating, developing, and controlling inflammation.

The innate cell response is different, depending on the type of stimulus or combination
of stimuli, the stimulus intensity (quantitative and temporal), the location of the innate
cells (the tissue and its specialization), and the microenvironmental conditions. All these
cues trigger a defined activation profile in innate cells, which is different based on the
combination of microenvironmental conditions that have triggered it. Engineered NPs
may share several characteristics of microbial agents, such as size and ordered molecular
surface patterns, presenting “eat-me” or “eat-me-not” surface signals that favor or prevent
macrophages from engulfing them. Thus, they are expected to develop complex and
intense interactions with immunity. Bachmann et al. [10] showed that the immune system
readily recognized antigen repetitive organization on the surface of viral particles.

In contrast, poor antigen organization does not induce an immune response. The same
holds for complement (in particular C1q, an ancient version of immunoglobulins) [11],
which recognizes ordered antigenic structures as those present on microorganisms but do
not react to disordered patterns as those present in mammalian cell surfaces. The same has
been observed with NP coatings [12]. These interactions mainly concern innate immunity,
as responsible for detecting and categorizing foreign matter inside the body.
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In order to navigate the described interactions between NPs and the immune system,
it is recommendable to remember the different type of immune cells and their different
functions (Figure 1). A major role in the innate immune system is played by macrophages,
which in mammals develop some specialized functions depending on the tissue where they
reside and are named accordingly: Langerhans cells in the skin, Kupffer cells in the liver,
osteoclasts in the bone, microglia in the brain. Other innate immune cells are the innate
lymphoid cells (ILCs), such as natural killer cells. ILCs contribute to patrolling tissues (abun-
dant in the barrier tissues such as mucosal surfaces), identifying and killing/eliminating
abnormal cells and microorganisms, and contributing to tissue development and home-
ostasis. Contrary to macrophages, they cannot phagocytose, but they are endowed with
cytotoxic tools that literally kill the target. Similarly, mast cells are highly efficient defensive
cells, abundant in all barrier tissues, endowed with an array of pre-formed proteolytic en-
zymes and other bioactive substances, which they release upon challenge and can detoxify
snake and bee venoms, release factors that initiate/enhance a tissue-localized protective
inflammatory reaction against parasites, and contribute to tissue repair and remodeling.
Other important innate cells are neutrophils (short-lived, very abundant in the blood,
highly phagocytic and inflammatory, strong producers of reactive oxygen species (ROS)
in response to microbes), basophils (functionally similar to mast cells but residing in the
blood), and eosinophils (with partially overlapping functions with mast cells and basophils,
involved in response to multicellular parasites). Moreover, cells of adaptive immunity
include T and B lymphocytes, which develop membrane receptors or antibodies able
to recognize different pathogenic molecules/antigens specifically. In between, there are
dendritic cells, which share with macrophages the capacity of taking up, processing, and
presenting pathogen-derived antigens to adaptive immune cells, thereby enabling T and B
cells to develop their antigen-specific membrane receptors and antibodies.
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Figure 1. Representative classification of the most common mammalian immune cells.

The majority of the works on NP and immune system interactions [13] have focused on
circulating blood monocytes (macrophage precursors) and tissue-resident macrophages [14].
Blood monocytes come from the bone marrow, while tissue macrophages can be a mixture of
self-replicating cells that have populated the tissue during embryogenesis (developed from
precursors in the yolk sac or fetal liver) and cells developed from blood monocytes that enter
the tissue for replenishing the resident macrophage pool [15]. Macrophages present higher
phagocytic activity than monocytes and can be easily identified based on size (monocytes
are smaller than macrophages) and some biochemical markers (e.g., esterases) and surface
molecules (e.g., CD14, CD16, CD68, CD11b, MAC-1) that are differentially expressed between
the two cell types. The functional profile of monocytes and macrophages is exceptionally plas-
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tic, as the role of these cells is that of rapidly reacting to different microenvironmental signals
by adopting an appropriate activation profile, which will contribute to danger elimination
and, eventually, instructing the subsequent adaptive immune responses.

2. The NP-Immune System Interactions

It is essential to realize that inorganic matter is commonly nanostructured and that NPs
and nanostructures have naturally occurred on the planet’s surface since its origin before
life emerged. This suggests that the immune system of living organisms has developed in
an environment rich in such structures and substances, and therefore it should know how
to deal with them. However, since the advent of nanotechnology, we are building more
artificial nanostructures and artificial combinations of nanostructures and molecules, which
may result in stronger interactions with the immune system, beneficial or detrimental. They
depend on the nature of the employed material and its evolution in the environment before
encountering the immune cell. The observed interactions between NPs and the immune
system can be classified as in Figure 2. It is essential to understand that the interaction of
NPs and the immune system can be multifactorial; size, shape, and surface state (including
composition, structure, charge. and hydrophilicity) are primary factors, together with
the presence of bioactive moieties in the sample, or the promotion of chemical reactions
resulting in immune activation. These factors are closely related to the NP evolution in
different media, which may result into aggregation, dissolution, or associate with by-
stander (bio)molecules. All these factors should be taken into account to develop safe NPs
and functional NPs.

Nanomaterials 2021, 11, 2991 4 of 20 
 

 

based on size (monocytes are smaller than macrophages) and some biochemical markers 
(e.g., esterases) and surface molecules (e.g., CD14, CD16, CD68, CD11b, MAC-1) that are 
differentially expressed between the two cell types. The functional profile of monocytes 
and macrophages is exceptionally plastic, as the role of these cells is that of rapidly react-
ing to different microenvironmental signals by adopting an appropriate activation profile, 
which will contribute to danger elimination and, eventually, instructing the subsequent 
adaptive immune responses. 

2. The NP-Immune System Interactions 
It is essential to realize that inorganic matter is commonly nanostructured and that 

NPs and nanostructures have naturally occurred on the planet’s surface since its origin 
before life emerged. This suggests that the immune system of living organisms has devel-
oped in an environment rich in such structures and substances, and therefore it should 
know how to deal with them. However, since the advent of nanotechnology, we are build-
ing more artificial nanostructures and artificial combinations of nanostructures and mol-
ecules, which may result in stronger interactions with the immune system, beneficial or 
detrimental. They depend on the nature of the employed material and its evolution in the 
environment before encountering the immune cell. The observed interactions between 
NPs and the immune system can be classified as in Figure 2. It is essential to understand 
that the interaction of NPs and the immune system can be multifactorial; size, shape, and 
surface state (including composition, structure, charge. and hydrophilicity) are primary 
factors, together with the presence of bioactive moieties in the sample, or the promotion 
of chemical reactions resulting in immune activation. These factors are closely related to 
the NP evolution in different media, which may result into aggregation, dissolution, or 
associate with by-stander (bio)molecules. All these factors should be taken into account to 
develop safe NPs and functional NPs. 

 
Figure 2. NP-immune system interactions. NPs can be undetected or detected by cells of the immune system, depending 
on different parameters such as their size, surface charge, and hydrophobicity/hydrophilicity of the surface coating. If 
detected, NPs can be either tolerated (either ignored or eliminated in a silent fashion, i.e., without inducing an inflamma-
tory reaction) or generate an inflammatory response allowing for resolution of inflammation and tissue regeneration or 
an anti-inflammatory. With a proper NP design, these responses can be harnessed for developing different immunomod-
ulating activities for medical exploitation (e.g., self-adjuvanted vaccines based on virus-like particles (VLPs), or outer 
membrane vesicles (OMVs), etc.). 

  

Figure 2. NP-immune system interactions. NPs can be undetected or detected by cells of the
immune system, depending on different parameters such as their size, surface charge, and hy-
drophobicity/hydrophilicity of the surface coating. If detected, NPs can be either tolerated (either
ignored or eliminated in a silent fashion, i.e., without inducing an inflammatory reaction) or generate
an inflammatory response allowing for resolution of inflammation and tissue regeneration or an
anti-inflammatory. With a proper NP design, these responses can be harnessed for developing
different immunomodulating activities for medical exploitation (e.g., self-adjuvanted vaccines based
on virus-like particles (VLPs), or outer membrane vesicles (OMVs), etc.).

2.1. When NPs Are Not Detected by the Immune System

The first scenario is when the NPs can escape from immune system detection. Indeed,
the progress in the construction of synthetic nanostructures as delivery vehicles, contrast
agents, or medical devices has allowed for the development of NPs able to escape the
immune system and reach their target without inducing an undesirable inflammatory reac-
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tion. In order to escape from pattern recognition receptors inserted in the cell membrane
of immune cells, or opsonization by complement molecules or antibodies (which mark
foreign/dead cells for recycling, thereby enhancing phagocytosis), the use of polymers to
camouflage the NP surface has been thoroughly developed. In pharmacology, polyethy-
lene glycol (PEG) and polyvinylpyrrolidone (PVP) have been the most used polymers to
stealthily NPs from the immune system [13,16,17], historically developed together with
the liposomal formulation of antineoplastic drugs, such as in the case of Doxil® and, more
recently, mRNA vaccine platforms [16]. Studies showed that these polymer function-
alized NPs may appear invisible (stealth) to the immune system [17,18] by mimicking
non-dangerous biological structures. As a consequence, the PEG coating increased the half-
life of organic and inorganic NPs in the bloodstream from minutes to hours [19,20], similar
to previous observations with PEGylated proteins [21]. Similarly, oligosaccharide- and
peptide-derived NP coatings seem to afford escape from the immune system and allow for
longer circulation times. Nevertheless, these coatings can reduce/delay opsonization and
phagocytosis, but they do not completely prevent it. Thus, for example, the development
of anti-PEG antibodies has been reported in several patients, which led to faster clearance
of subsequent doses of PEG-coated formulations [22–24]. To circumvent these problems,
researchers have explored the possibility of coating NPs with natural substances that can
more finely deceive the immune system, for instance, by coating NPs with albumin or
serum mixtures. As far as proteins are not denatured, and the resulting object is not too
big, NPs seem to pass undetected [25].

The different coatings employed to escape immune system detection are listed in
Table 1.

Table 1. Coatings employed to avoid immune detection.

Surface Coating Nanoparticle Core References

Albumin (rat, mouse, or human) CeO2 NPs as an anti-inflammatory mineral substance [26–29]
Abraxane as an albumin-based nanoparticle for
chemotherapeutic delivery [30]

Polyethylene glycol (PEG)
Au NPs for tumor targeting [19]
SiO2 NPs for evasion of phagocytic clearance [20]
Polystyrene NPs for evasion of phagocytic clearance [31]

Retinol Polyethylenimine (PEI) NPs for drug delivery [25]
CD47 Polystyrene NPs for evasion from phagocytic clearance [31,32]
Erythrocyte membrane fragments Poly(lactic-co-glycolic acid) (PLGA) NPs for drug delivery [33]

Another way of camouflaging NPs from immune elimination is using coatings with
proteins that are downregulatory immune signals. This is the case of the CD47 protein, a
marker of “self” and “eat-me-not” that is expressed on all cell membranes [34]. In the work
of Rodriguez et al. [32], the attachment of “self” peptides computationally designed from
human CD47 protein onto polystyrene NPs achieved a delayed macrophage-mediated
clearance of NPs in mice. In addition, this increased the circulation time of the NPs and
enhanced the drug delivery to lung adenocarcinoma xenografts. Likewise, Hu et al. [33]
coated PLGA NPs with a red blood cell (RBC)-membrane shell. These RBC-based poly-
meric NPs also showed a longer circulation half-life and sustained in vivo drug release
compared with that achieved by using PEG-coated NPs. The coating with specific “self”
molecules can also be used for the opposite reason, i.e., to induce an immune system
activation by coating NPs with endogenous danger-associated molecular patterns. As an
example, Aldossari et al. [35] coated AgNPs with high-density lipoprotein (HDL), which is
recognized by scavenger receptors (SR-B1) expressed by macrophages. Once administered
to mice, HDL-coated AgNPs provoked the recruitment of inflammatory cells, whereas SR-
B1-deficient mice showed reduced cell recruitment. This strategy allowed the antimicrobial
activity of AgNPs to be enhanced by targeting delivery. This indicates how important the
NP coating is to escape the immune system, where a large body of knowledge has been
developed to allow NPs to serve as drug delivery vehicles.
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2.2. When NPs Are Detected by the Immune System and Tolerated

When the immune system detects NPs, they can be tolerated or induce an activation.
Being tolerated means that NPs are silently removed, without inducing inflammation, as
if they were protein aggregates, apoptotic cells, or cellular debris. This can be controlled
mainly by modulating NP size, surface charge, and hydrophobicity/hydrophilicity of their
surface [13,16,17,32,33], where small sizes, hydrophilicity, and negative surface charges
often result in tolerable NPs [36]. In general, one can say that NPs below 4–6 nm can pass
undetected and undergo rapid renal clearance after i.v. administration [37]. As the NP
diameter increases, NPs become the target of the different immune cells. NPs of virus-
like size (a few tens to a few hundreds of nm) can be endocytosed without triggering
inflammation [12]. Larger objects, of micrometric size, like bacteria, are phagocytosed,
while for sizes larger than 10–20 microns, objects are encapsulated [38].

This has critical consequences for the biodistribution of NPs inside the body. NPs
are transported and accumulated in different organs depending on the administration
route, their physicochemical properties, and their detection by the immune system. Ac-
cordingly, after intravenous (i.v.) injection, common NPs are often filtered in the liver
by hepatocytes [17,18] or eventually Kupffer cells (the liver macrophages) depending on
if they are detected or pass undetected by the immune system [31]. The first studies of
biodistribution of colloidal particles (a few hundred nm) were reported in the 1970s in the
Journal of the Reticuloendothelial Society (now Journal of Leukocyte Biology). Singer et al. [39]
and Adlersberg et al. [40], by treating mice with i.v. and i.p. colloidal Au, found that after
one hour, 90% of the administered dose was accumulated in the liver and 10% in the rest
of the body (mainly kidneys). Subsequent histological studies with similar colloidal gold
particles i.p. administered found them in the liver and lymph nodes primarily localized
inside macrophages [41]. These results were later confirmed by numerous studies of the
pharmacokinetic and biodistribution of different NPs. Sadauskas et al. [42], using AuNPs
of different sizes (below 40 nm), showed that Kupffer cells were central in accumulating
NPs once they entered the body. Similar results were also obtained with metal oxides,
quantum dots, carbon nanostructures, etc. [43]. Yokel et al. [44] administered citrate capped
nanoceria (5, 15, 30, and 55 nm) at 50 and 100 mg/kg bw i.v. into Sprague-Dawley rats
and measured Ce content over time (1 h, 20 h, and 30 days). Remarkably, in all these
works and many others, no inflammation or systemic injury was observed, except at larger
doses (>100 mg/kg bw). Accordingly, we have observed by mass spectroscopy that after
i.v. administration of albumin-conjugated nanoceria (CeO2) at low doses (0.1 mg/kg bw),
twice a week during two weeks, in control and fibrotic Wistar rats, that most of the Ce
is in the liver (84% of the administered dose after one hour and 75% eight weeks after
administration) [26].

This non-inflammatory capture of NPs can be exploited for harnessing these phago-
cytic immune cells to transport NPs towards the target area, be it a wound, an infection,
or a tumor. For such delivery, circulating monocytes have been proposed as a sort of
Trojan Horse or Cellular Shuttle, since they naturally migrate from the blood to the sites
of damage and disease. Hence, they can be loaded with NPs to be transported through
the body [45,46]. Thus, Choi et al. [47] explored the use of monocytes containing AuNPs
for transport into tumor regions for subsequent photothermal therapy. This study showed
the phagocytosis of AuNPs by both monocytes and macrophages and their recruitment
into the tumor. Oude-Engberink et al. [48] showed the accumulation of monocytes laden
with iron oxide NPs (30 nm) in the affected cerebral sites in a rat model of experimental
neuroinflammation. More recently, Moore et al. [49], using a microfluidic in vitro model,
showed increased activity of monocytes/macrophages to transport NP across a confluent
endothelial cell layer, advancing in the design of cellular shuttles loaded with NPs. This
tolerated elimination of NPs may limit the dispersibility of NPs inside the body. However,
the immune system is by itself an important therapeutic target where nanocarriers can
efficiently transport drugs assisting immunotherapy.
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2.3. When NPs Are Detected by the Immune System and Not Tolerated

Many reports show that NPs may induce harmful immune responses and toxicity. NPs
can induce an inflammatory immune activation because of aggregation or dissolution or
because they accidentally carry immune-activating moieties (such as endotoxin, detergents,
allergens, or cationic molecules). These biological effects are rather independent of the
composition, size, or shape of the individual NP, described as extrinsic factors of NP
toxicity [4]. Similarly, the organization of molecular epitopes in a non-conventional form
(upon adhesion of the NP surface) may generate new antigens or allergens. The activation
of the immune system induced by NPs can be classified as follows:

2.3.1. NP-Induced Oxidative Stress

The more universal inflammatory reaction to NPs corresponds to the most non-specific
and rapid defense mechanism of macrophages, the overproduction of reactive oxygen
species (ROS), which results in oxidative stress, responsible of lipid oxidation and DNA
damage and, eventually, structural alterations, DNA mutations, and cell death. ROS refers
to biogenic free radical molecules resulting from natural metabolism characterized by being
highly oxidant. These free radicals are involved in different critical physiological processes,
such as gene expression, signal transduction, growth regulation, and, significantly, inflam-
mation, where high ROS concentrations are needed to sustain the energetic demands of a
proinflammatory immune response [50].

Accordingly, independently of composition, large aggregates of TiO2 [51], Al2O3 [52],
and Fe2O3 [53] NPs showed a similar capacity to increase oxidative stress. Moreover, the
corrosion process of metallic NPs itself produces a high concentration of free radicals, which
may trigger an inflammatory immune response [54–56]. These processes are often neglected
in NPs made up of bulk non-biodegradable materials. However, biodegradation of Ag,
Fe3O4, and CdSe/ZnS NPs due to enzymatic or hydrolytic activities in lysosomes [57,58]
have been described. Even the physiological disintegration of AuNPs through oxidative
etching by cysteine and chlorine has been described [59–61]. Similarly, carbon nanotubes
(CNTs) have been observed to dissolve in vivo through enzymatic catalysis [62]. Subse-
quently, an increased number of reports has established relationships between observed
inflammatory effects after NP exposure and NP disintegration [63–66]. Related to that, it is
worth mentioning the works of Burello et al. [67] and Zhang et al. [55]. They developed
theoretical and experimental models to predict the oxidative stress potential of oxide NPs
by looking at their bandgap energy and their ability to perturb the intracellular redox
state. Note that NP dissolution may become a source of toxic cations. For instance, in
the early 2000s, the studies of Derfus et al. [68] and Kirchner et al. [69] showed that the
released Cd ions were responsible for the intracellular oxidation and toxicity caused by
CdSe NPs. Similar effects were found later when comparing the toxicity of Ni NP and ions
as a function of time [70].

2.3.2. When Phagocytosis Is Not Sufficient

When the immune system detects a foreign object, phagocytosis is the first mechanism
for elimination that comes into play. However, when the object is too big (usually larger
than 10–20 µm), rather than engulfing it, the immune cells start spreading on it to form
a layer of cells that secludes the object from the rest of the tissue and initiate a chemical
defense against the material that, if not non-biodegradable, is permanently kept secluded
into a fibrous capsule or granuloma.

Historically, chronic inflammation has been observed in the case of penetration of
non-biodegradable (persistent) large size (micrometric) particles in the lungs, as the well-
known cases of particle-induced granulomatosis such as silicosis and asbestosis [71]. This
is because when a phagocytic cell fails to digest these particles, phagolysosomal rup-
ture, the release of lysosomal enzymes and particles, and subsequent activation of the
inflammasome and other cytoplasmic sensing mechanisms may happen, thereby triggering
inflammation. This may lead, as the material persists, to chronic inflammation, perma-
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nent oxidative stress, tissue damage, and alterations that favor tumorigenesis in the long
term. Brandwood et al. [72] found that murine macrophages phagocytosed inert carbon
fiber-reinforced carbon particles up to 20 microns in diameter, but larger particles were
not engulfed and became surrounded by aggregations of macrophages. This reaction
may have pathological aspects; fibromas and granulomas are non-functional neo-tissues,
similar to scars, that may hamper the organ functions and be active, i.e., growing, for
a long time. In some instances, the reaction can be overtly pathological, as in the case
of long fibrous materials. Accordingly, when Poland et al. [73] instilled high doses of
multiwalled carbon nanotubes between the membranes lining the lungs and abdominal
organs in mice, they found that long straight nanotubes caused inflammation and lesions
in membrane cells similar to those leading to cancer, just like asbestos fibers [74]. Similarly,
Ag nanospheres did not elicit any immune response or toxicity, while Ag nanowires can
elicit a high inflammatory response, directly correlated to nanowire length, in murine
macrophages [75]. The same effects were observed by Ji et al. [76] in THP-1 cells when
comparing nanoceria nanorods and high aspect ratio nanoceria nanowires at high doses
and aggregation states. This suggests that the needle-like shape of NPs is prone to provoke
inflammation. It has been observed that macrophages engulfing needle-shaped crystals
and fibers end up getting pierced by the needle-like structures and, consequently, start
inflammation [77]. Parental NPs usually are never grown to these sizes, but uncontrolled
aggregation can transform objects of tens of nm to tens of µm.

2.3.3. NPs, Intendedly or Accidentally, Can Display Antigens, Allergens, or Toxins

The unintended or accidental absorption of biomolecules onto the NP surface may
be a cause of concern. NPs may associate with specific bio-molecules, toxic by-standers,
or pollutants, and present them to the immune system in an ordered pattern, thereby
mimicking microorganisms and triggering the innate immune reaction of the host.

It is important to note that NPs have a strong tendency to adsorb many different
molecules (hetero-aggregation) at their surface due to their high surface energy. Conse-
quently, they are usually surrounded by a molecular coating, either provided intentionally
(NP functionalization) and/or spontaneously by molecules present in the environment,
forming the NP biocorona. These coatings also take part in the NP morphology and func-
tions. The consequences of this are diverse; NPs can be good molecular aggregators and
substrates for molecules to be presented to the immune system.

Among essential immunoactive biomolecules present in the environment, bacterial en-
dotoxin is one of the most common and abundant. Endotoxins (also known as lipopolysac-
charides (LPSs)) are large molecules present in the outer membrane of Gram-negative
bacteria, able to elicit strong innate/inflammatory immune responses. Endotoxin is a
ubiquitous environmental contaminant and can be present in all chemicals and glassware
used in laboratories, even after sterilization (depyrogenation is needed to get rid of it). The
presence of endotoxin, if not recognized, can be responsible for many of the in vitro and
in vivo effects attributed to NPs [78]. Our study [79] showed that the endotoxin present
on AuNPs turned those NPs from inactive to highly inflammatory and able to induce
secretion of IL-1β in human primary monocytes. This could be an underlying factor in
inflammatory responses and toxic effects associated with other metallic NPs and carbon
nanomaterials [80,81]. Hence, special attention is needed to avoid endotoxin contamination
when preparing NPs, which includes working in endotoxin-free conditions and glassware
depyrogenation [82].

In other cases, the toxic ingredient may come from the formulation or derived chemi-
cals employed during NPs preparation. If the synthesis process does not involve proper
purification steps, the use of such NP samples may entail deleterious responses due to
excess surfactants or unreacted precursors. This is the case of PEI molecules, a common NP
stabilizer to enhance NP endocytosis, but with safety concerns due to the attachment to the
negatively charged cell membranes that modify permeability and compromise viability [83].
Indeed, it is well-established that positively charged macromolecules can cause higher
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toxicity and immune activation than their neutral or negatively charged counterparts, as in
the case of monolayer-coated silicon nanoparticles [84]. Similar is the case of amphipathic
molecules such as cetyltrimethyl ammonium bromide (CTAB), employed in preparing Au
nanorods [85], which act as a detergent to lyse cell membranes. Another example is in the
work of Dowding et al. [86]. These authors prepared different nanoceria NPs using the
identical precursor (cerium nitrate hexahydrate) through a similar wet chemical process but
using other bases: NH4OH, which yields negatively charged nanoceria, or hexamethylenete-
tramine (HMTA), which yields positively charged nanoceria at neutral pH. Results showed
that HMTA-nanoceria NPs were readily taken into endothelial cells and reduced cell viability
at a 10-fold lower concentration than the other NPs, which showed no toxicity.

Another type of immunoactive molecule that NPs can adsorb is allergens. This is
unlikely to happen in the case of NPs since the concentration of allergens in the envi-
ronment is very low, and the NP surface would be passivated before encountering them.
However, it must be taken into account. Note that it has been reported that car combustion
emission microparticles, when coated by pollen grains, enhance allergenic responses [87].
Radauer et al. [88] observed the formation of a stable allergen coating around NPs when
exposed to different types of allergens (Der p1 and Bet v1), enhancing allergic responses
against them. A recent review about the potential of NPs to trigger allergies via adsorption
of allergens can be found in reference [89]. Here, it is essential to remark that allergy,
understood as an anomalous immune response towards substances that are generally
tolerated, has never been observed for engineered nanomaterials per se.

Regarding immune effects induced by biomolecules adsorbed on the NP surface,
another possible source of inflammation comes from the potential modification of the
structure of proteins upon adsorption at the NP surface [90]. Lynch et al. [91] pointed out
how partial protein misfolding at the NP surface may result in the exposure of protein
fractions usually buried in the core of the native structure. These cryptic epitopes may be
recognized by immune cells and trigger inappropriate defensive reactions. Accordingly,
in the work of Falagan [92], such modifications of the adsorbed proteins structure have
been indicated as responsible for the long-term toxicity observed after a single low-dose
exposure of AuNPs.

2.3.4. NPs Presenting Vaccine Antigens and Working as Vaccine Adjuvants

Regarding the intentional use of NPs for vaccination, conjugation of antigens to NPs
can help both attain a more efficient presentation of poorly immunogenic soluble antigens
and provide an adjuvant effect targeted to innate immunity (the NP as a foreign agent) [12].
An interesting example is the development of AuNP-based virus-like particles (VLPs),
where the NP replaces the virus core, which scaffolds the proteic capsid structure [93].
Typically, capsid proteins need the highly negatively charged dense core of DNA/RNA to
self-assemble properly. This core can be replaced by dense and highly negatively charged
AuNPs. Nikura et al. [93] demonstrated that the size and shape of AuNP-VLPs allowed
for shaping of the in vitro and in vivo immune response in terms of the production of
antibodies against West Nile virus. This implies that by modulating the NP size and shape,
and consequently the arrangement of viral proteins on the NP surface, it could be possible
to obtain highly effective and efficient vaccines. NPs can also be employed as vaccine
adjuvants by exploiting their capacity to target and modulate the activity of innate immune
cells. For a long time, vaccines were prepared by precipitation of antigens within some
matrix, initially bread crumbs (in the XIX century), and currently alum powder, where the
antigens are absorbed, forming aggregates that vary in size from 1 to 20 µm, acting as an
antigen depot [94]. In this way, slow release of antigens is achieved, prolonging antigen
presence, improving its processing and presentation. Other NP aggregates have been
used as adjuvants. Skarastina et al. [95] used silica NPs (10–20 nm) as adjuvants for the
hepatitis B vaccine in a mouse model. The monodisperse silica NPs formed heterogeneous
aggregates larger than 1 µm after formulation, resulting in the same IgG2a/IgG1 ratios
as in the case of immunization with alum as an adjuvant. Other nanostructure used as
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vaccine adjuvants are nano-sized emulsions (sometimes called lipidic NPs). This is the
case of the oil-in-water MF59 emulsion, which is used as an adjuvant, mainly for influenza
vaccines (Flaud®, Novartis) and has been licensed in more than 20 countries. The MF59
adjuvant allows for significant cross-reactivity against viral strains and reduces antigen
concentration to 50–200-fold lower doses [96].

The induction of inflammatory responses with non-pathogenic triggers has also been
proposed as a preventive approach against exposure to unknown pathogens. Behind
this concept, preventive activation of the innate immunity, there is the capacity of innate
immune cells to develop a different response to a challenge as a consequence of previous
contact with a different threat, a capacity known as innate memory [97,98]. All innate
immune cells are able to develop a long lasting memory, despite their short lifespan in
circulation. The reason lies mainly on the fact that the precursors in the bone marrow can
be primed by a trigger and generate circulating immune cells with a different capacity
to react against threats, as currently shown in monocytes/macrophages. Thus, after
having previously experienced an inflammatory activation, the innate immune system
becomes more efficient in preventing the rooting of newly incoming pathogens. For
instance, this has been observed in the case of the administration of bacille calmette-
guerin (BCG), the vaccine for tuberculosis, which increases resistance to other diseases [99].
The generation of innate memory thus represents an alternative, or better a complement,
to the highly specific adaptive memory induced by vaccines. The strategy of innate
memory induction leads to outcomes (enhanced protection) that have advantages (wider
range of protection) and disadvantages (more unpredictable and less controllable side
effects). Despite the controversy regarding safety, NPs can be used as adjuvants for the
non-specific amplification of immune responses, and, even more, they can be excellent
tools for generating or modulating innate memory [100]. In this regard, administration
of AuNPs alone was observed to have little/no impact on the subsequent capacity of
human monocytes to mount an innate/inflammatory response to a microbial challenge
(LPS) [101]. However, the co-administration of AuNPs, or Fe3O4NPs, with memory-
inducing microbial agents (e.g., LPS, BCG, muramyl dipeptide (MDP), Helicobacter pylori)
led to a modulation of the innate memory response induced by the microbial agents
depending on the priming stimulus and the NP type, shape, and size [102]. The implication
is that vaccination with antigens and NPs could bring about a protective specific immunity
based on adaptive immune memory and a non-specific innate memory induced by the
antigen-NP combination.

The proinflammatory activation effects are listed in Table 2. In all these aspects, the
uncontrolled proinflammatory activation of the immune system is, in principle, a common
source of NP toxicity. In contrast, controlled activation can be employed for vaccination
and other modes of defense against pathogens.

Table 2. Inflammatory activation induced by NPs.

NPs That Cause Inflammation

Category Surfactant References

Inflammation induced by by-standers Cetyltrimethyl ammonium bromide (CTAB) [85]
Hexamethylenetetramine (HMT) [103]

Inflammation induced by pollutants Bacterial endotoxin (LPS) [78,79]
Allergens [88,89]

Category Mechanism References

Inflammation induced by the core
Non biocompatible size/shape [72–76]
Excess of aggregation/agglomeration [51–53,96,102,104]
Chemical transformations and corrosion [54–70,102]

Category Surfactant References

Inflammation induced by the coating
(bioactive molecules, VLPs. . . )

Virus like particles (VLP) [93]
Antigen/ordered peptides/proteins coatings [91,92,100,105]
Cationic polymers [83]
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2.4. When NPs Act as Enzymes and in This Way Can Modulate Immune Reactions

Rare-earth oxide NPs have been found to be biocompatible antioxidants able to buffer
excess ROS in physiological conditions, showing powerful anti-inflammatory effects. Min-
eral antioxidants may offer superior activity to currently available substances due to their
enhanced bioavailability and stability, longer tissue residence time, and resistance to bi-
ological degradation [106]. These features can be exploited in many diseases based on
excessive immune/inflammatory activation, such as autoimmune diseases, chronic inflam-
mation, organ rejection, asthma and other allergic diseases, neurodegenerative pathologies
(Alzheimer’s disease, Parkinson’s disease), and aging [106]. They have been described
as engineered inorganic materials with enzyme-like activities, especially cerium oxide
NPs, nanoceria [106,107]. Nanoceria has been reported to display superoxide dismutase
(SOD)-like activity (conversion of superoxide anion into hydrogen peroxide and finally
oxygen) [108], catalase-like activity (conversion of hydrogen peroxide into oxygen and
water) [109,110], peroxidase-like activity (conversion of hydrogen peroxide into hydroxyl
radicals) [111], as well as NO scavenging ability [103]. Consequently, nanoceria has been
shown to safely down-regulate oxidative stress by scavenging the excess of ROS in dis-
eases such as retinal degeneration [112,113], neurological disorders (including Alzheimer’s
disease, Parkinson’s disease, and ALS) [114–116], ischemia [117], cardiopathies [118], dia-
betes [119], gastrointestinal inflammation [120], liver diseases [26–28], and cancer [121,122],
as well as in regenerative medicine [123] and tissue engineering [124], with better per-
formance than other antioxidant substances in both efficacy and efficiency. Interestingly,
nanoceria become active at high ROS concentrations. Otherwise, at homeostatic ROS levels,
the NPs become inactive. This is because several free radicals have to be simultaneously
absorbed onto the NP surface in order to be recombined into non-radical adducts, a condi-
tion that only happens for high ROS concentrations. In other words, the ROS scavenging
capacities of nanoceria are ROS concentration dependent. With time, these NPs dissolve
into innocuous ions, which are excreted via the urinary route [19]. The solid NPs have been
observed to be excreted through the hepatobiliary route [26,125].

This aspect is significantly different from the previous ones, where activation of the
immune system results in inflammatory responses. In this case, the enzyme-like catalytic
activity of rare earth NPs results in anti-inflammatory activity. The different observed
responses are listed in Table 3.

Table 3. Immune responses to NP exposure.

Category Nanoparticle Core Surface Coating References

NPs that pass unnoticed

Au NPs Polyethylene glycol (PEG) [19]

SiO2 NPs Polyethylene glycol (PEG) [20]

Polyethylenimine (PEI) NPs Retinol [25]

Polystyrene NPs
CD47 or PEG [31,32]

Bovine serum albumin (BSA) [46]

Polymeric NPs Erythrocyte membrane fragments [33]

Abraxane Human serum albumin (HSA) [30]

NPs that are tolerated

Au NPs
Sodium citrate [42,92]

Disordered peptidic coatings [47]

CeO2 NPs Rat serum albumin (RSA) [44]

Polystyrene NPs Poly-L-lysine [46]

Fe3O4 NPs Dextrane [48]

SiO2 NPs 3-Aminopropyltriethoxysilane (APTES) [49]
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Table 3. Cont.

Category Nanoparticle Core Surface Coating References

Immunoactive NPs with
inflammatory activity

Au NPs

Peptides/proteins [55,58,93,105]

Bacterial endotoxin (LPS) [78]

Cetyltrimethyl ammonium bromide (CTAB) [85]

Allergens [88]

Poly(acrylic acid) (PAA) [92]

Polyethylene glycol (PEG) [92]

Ag NPs
High-density lipoprotein (HDL) [35]

Sodium citrate [58,65,74]

Alumina NPs Fetal bovine serum (FBS) [52]

CeO2 NPs
Hexamethylenetetramine (HMT) [86]

Polyethylenimine (PEI)-polyethylene glycol (PEG) [122]

Gadolinium endohedral
metallofullerenols Polyhydroxy [80]

Silica NPs Hepatitis B virus core protein [104]

Immunoactive NPs with anti-
inflammatory activity CeO2 NPs

Murine serum albumin [26–29]

Polyethylene glycol (PEG) [117]

Gelatin [124]

3. NP Evolution and Transformations in the Exposure Media

The interaction between NPs and the immune system strongly depends on the condi-
tions in which such interaction occurs (route of exposure, co-exposure with other agents)
and on the characteristics of both NPs and the host immune system. Here we have pre-
sented the variety of immune responses to NPs and how these responses can help us
design immuno-active and immune-benign NPs, which could either avoid immune recog-
nition and activation in order to persist in the body long enough for completing their
theranostic tasks or directly interact with immune cells for triggering inflammatory or
anti-inflammatory responses as desired for therapeutic purposes. Indeed, the scientific
community is still struggling with the apparent contradiction of similar materials being
toxic and non-toxic (even beneficial) at the same time. This paradox can be attributed to
undescribed effects of NP modifications during their dispersion in the working media,
such as aggregation and corrosion. The main modifications NPs may suffer during their
dispersion in different media are shown in Figure 3. Basically, NPs can be coated with
molecules (e.g., hydrophilic polymers) to both pass undetected by the immune system and
avoid aggregation (1). They can also be coated with soluble antigenic molecules to induce
a response against them (2). In the opposite direction, when dispersed in physiological
media, NPs can aggregate (3) and adsorb other molecules present in the medium (e.g.,
protein corona) (4) or both (5). In addition, depending on the core composition, NPs can
be used as ROS scavengers, thereby down-regulating inflammatory responses (6), or they
can dissolve and act as an ion reservoir that may increase the level of oxidative stress and
generate an inflammatory response (7).

NPs have different ways to minimize their high surface energy, basically aggregation
and corrosion. These are common phenomena in nature, widely studied by geochemistry,
where a NP is an intermediate state between a micrometric particle and the dissolved ions.
Thus, NPs may aggregate or associate with coating molecules in different media. They
may also disintegrate through corrosion (defined as the chemical degradation of a solid
material) and dissolution.
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Aggregation deserves particular attention. NPs are colloidally stable by repulsive
electrostatic or steric forces or a combination of both. Aggregability depends on intrinsic NP
parameters such as morphology, surface coating, and charge, and extrinsic parameters such
as electrolyte concentration, pH, presence of organic matter, etc. Aggregation is common
in physiological environments where NPs aggregate to submicrometric or micrometric
sizes when not properly stabilized. To avoid it, one has to provide repulsive forces to the
NP surface, either by electrostatic (high surface charge) or steric (entropic) means, usually
provided by large soluble molecules associated with the NP surface; otherwise, they will
aggregate and their unique physicochemical properties that arise at the nanoscale (quantum
confinement, superparamagnetism, extreme catalytic activity, etc.) progressively lost. Note
that aggregation entails modifications in terms of specific surface area, concentration,
mobility, and dosing. Protein adsorption, the formation of a protein corona, is a particular
aggregation phenomenon between NPs and proteins present in the dispersion media. It is
a dynamic process in which, initially, proteins adsorb and desorb at the surface, followed
by a set of re-organizational arrangements, which make this absorption more stable and
finally irreversible [126,127]. This depends on NP size, surface state, type of protein, and
protein-NP incubation media and conditions, where sophisticated functional patterns can
be obtained [128]. The most straightforward strategy to cope with this issue is to passivate
the NP surface in a controlled manner, e.g., by albuminization, PEGylation, or addition
of PVP. These strategies usually decrease aggregation, even in high salt media, and the
adsorption of microenvironmental biomolecules on the NP surface.

In addition to aggregation, chemical transformations, corrosion, and dissolution can
also be a cause of immune activation via the alteration for the cellular redoxome, and
the delivery of toxic cations. In this regard, the nanochemist or nanoengineer needs to
control the redox potential (and the oxidative/reductive environment) where the NP will
be stored, employed, and disposed of. In this regard, using NPs at their higher valence
state is recommendable when possible [14] (passivating the surface with a continuous layer
of oxide is sometimes an alternative). The chemical transformation and dissolution of NPs,
which can cause immune activation or toxicity, is fundamental to determine NP fate and
reduce its presence and persistence in the environment.

4. Concluding Remarks

After considering the different interactions NPs may have with the immune system,
one can draw indications on how NPs have to be designed to control these interactions and
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consequent responses. Indeed, while many NP functions can be attributed to their core
structure, the surface coating defines much of their bioactivity. By controlling the nano-bio
interface, NPs can be designed to be safe and innocuous or active and have therapeutic
benefits. From the NP point of view, and for the nanochemist and the nanoengineer, the
NP immunological properties can be summarized as depicted in Figure 4. The composition
of the NP core determines its chemical potential and catalytic activity, while the surface
coating largely determines its bioactivity. NPs can aggregate, either with other NPs or with
macromolecules present in the physiological media (e.g., biocorona), or they can dissolve,
being redox-active and acting as an ion reservoir, consequently increasing the levels of
oxidative stress.
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In order to address the NP immune interactions, one has first to deal with the instability
of the NP surface, and it should be passivated before introduction into biological systems.
Otherwise, they may spontaneously aggregate, resulting in objects of increased size and
decreased dose. Polymeric coatings have traditionally been the most commonly employed
materials for such purposes. However, this surface engineering is sometimes costly and
involves multi-step synthesis approaches, sometimes in the organic phase. One simple
and effective solution could be to promote NP solubility in physiological media by pre-
albuminization during the preparation process [118,119,128], a similar approach employed
by Abraxane®, one of the first approved nanomedicines [30]. In addition to providing
colloidal stability and avoiding opsonization, NP coatings can be designed to directly
interact with the immune system, such as CD47 [32] for avoiding complement activation,
LPS for inducing innate/inflammatory activation [79], or viral proteins for vaccination [95].
Finally, NPs that belong to the family of natural antioxidants, such as nanoceria that
catalytically scavenge free radicals (ROS in the context of inflammation), provide powerful
immunomodulatory effects.

Thus, by mainly playing with surface characteristics, it is possible to adjust the NP
physicochemical characteristics (aggregation, surface display of given biomolecules, chemi-
cal stability) and consequently their modes of interaction with the immune system.
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