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Abstract
There has been much interest in studying evolutionary games in structured populations,

often modeled as graphs. However, most analytical results so far have only been obtained

for two-player or linear games, while the study of more complex multiplayer games has

been usually tackled by computer simulations. Here we investigate evolutionary multiplayer

games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact

analytical condition for cooperation to be favored by natural selection, given in terms of the

payoffs of the game and a set of structure coefficients. For regular graphs of degree three

and larger, we estimate this condition using a combination of pair approximation and diffu-

sion approximation. For a large class of cooperation games, our approximations suggest

that graph-structured populations are stronger promoters of cooperation than populations

lacking spatial structure. Computer simulations validate our analytical approximations for

random regular graphs and cycles, but show systematic differences for graphs with many

loops such as lattices. In particular, our simulation results show that these kinds of graphs

can even lead to more stringent conditions for the evolution of cooperation than well-mixed

populations. Overall, we provide evidence suggesting that the complexity arising from

many-player interactions and spatial structure can be captured by pair approximation in the

case of random graphs, but that it need to be handled with care for graphs with high

clustering.

Author Summary

Cooperation can be defined as the act of providing fitness benefits to other individuals,
often at a personal cost. When interactions occur mainly with neighbors, assortment of
strategies can favor cooperation but local competition can undermine it. Previous research
has shown that a single coefficient can capture this trade-off when cooperative interactions
take place between two players. More complicated, but also more realistic, models of coop-
erative interactions involving multiple players instead require several such coefficients,
making it difficult to assess the effects of population structure. Here, we obtain analytical
approximations for the coefficients of multiplayer games in graph-structured populations.
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Computer simulations show that, for particular instances of multiplayer games, these
approximate coefficients predict the condition for cooperation to be promoted in random
graphs well, but fail to do so in graphs with more structure, such as lattices. Our work
extends and generalizes established results on the evolution of cooperation on graphs, but
also highlights the importance of explicitly taking into account higher-order statistical
associations in order to assess the evolutionary dynamics of cooperation in spatially struc-
tured populations.

Introduction
Graphs are a natural starting point to assess the role of population structure in the evolution of
cooperation. Vertices of the graph represent individuals, while links (edges) define interaction
and dispersal neighborhoods. Classical models of population structure, such as island models
[1, 2] and lattices [3, 4], often developed before the current interest in complex networks [5, 6],
can all be understood as particular instances of graphs [7, 8]. More recently, the popularity of
network theory has fueled a renewed interest in evolutionary dynamics on graphs, especially in
the context of social behaviors such as cooperation and altruism [7–21].

When selection is weak on two competing strategies, such that fitness differences represent
only a small perturbation of a neutral evolutionary process, a surprisingly simple condition for
one strategy to dominate the other, known as the “sigma rule”, holds for a large variety of
graphs and other models of spatially structured populations [22]. Such a condition depends
not only on the payoffs of the game describing the social interactions, but also on a number of
“structure coefficients”. These coefficients are functions of demographic parameters of the spa-
tial model and of its associated update protocol, but are independent of the payoffs. In the case
of two-player games, the sigma rule depends on a single structure coefficient σ. The larger this
σ, the greater the ability of spatial structure to promote the evolution of cooperation or to
choose efficient equilibria in coordination games [22]. Partly for this reason, the calculation of
structure coefficients for different models of population structure has attracted significant
interest during the last years [8, 21–27].

Despite the theoretical and empirical importance of two-player games, many social interac-
tions involve the collective action of more than two individuals. Examples range from bacteria
producing extracellular compounds [28–31] to human social dilemmas [32–36]. In these situa-
tions, the evolution of cooperation is better modeled as a multiplayer game where individuals
obtain their payoffs from interactions with more than two players [37–43]. An example of such
multiplayer games is the volunteer’s dilemma, where individuals in a group must decide
whether to volunteer (at a personal cost) or to ignore, knowing that volunteering from at least
one individual is required for a public good to be provided [44–46]. Importantly, such a multi-
player interaction cannot be represented as a collection of pairwise games, because changes in
payoff are nonlinear in the number of co-players choosing a particular action.

Multiplayer games such as the volunteer’s dilemma can also be embedded in graphs, assum-
ing, for instance, that nodes represent both individuals playing games and games played by
individuals [47–49]. Most previous studies on the effects of graph structure on multiplayer
game dynamics have relied on computer simulations [49]. However, similar to the two-player
case, some analytical progress can be made if selection is assumed to be weak. In the multi-
player case, the sigma rule depends no longer on one, but on up to d − 1 structure coefficients,
where d is the number of players [50]. Although exact formulas for structure coefficients of
multiplayer games can be obtained for relatively simple models such as cycles [51], analysis has
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proved elusive in more complex population structures, including regular graphs of arbitrary
degree. Indeed, extending analytical results on evolutionary two-player games on graphs to
more general multiplayer games is an open problem in evolutionary graph theory [52].

Here, we contribute to this body of work by deriving approximate analytical expressions for
the structure coefficients of regular graphs updated with a Moran death-Birth model, and
hence for the condition of one strategy to dominate another according to the sigma rule. The
expressions we find for the structure coefficients suggest that regular graphs updated with a
Moran death-Birth model lead to less stringent conditions for the evolution of cooperation
than those characteristic of well-mixed populations. Computer simulations suggest that our
approximations are good for random regular graphs, but that they systematically overestimate
the condition for the evolution of cooperation in graphs with more loops and higher clustering
such as rings and lattices. In these cases, cooperation can be no longer promoted, but even be
hindered, with respect to the baseline case of a population lacking spatial structure.

Methods
We consider stochastic evolutionary dynamics on a graph-structured population of size N.
Each individual is located at the vertex of a regular graph of degree k. Individuals obtain a pay-
off by interacting with their k neighbors in a single d-person symmetric game (i.e., d = k+1). If j
co-players play A, a focal A-player obtains aj whereas a focal B-player obtains bj, as indicated in
Table 1.

We model the stochastic evolutionary dynamics as a Markov process on a finite space state.
More specifically, we consider a Moran death-Birth process [12, 14, 53] according to which, at
each time step: (i) a random individual is chosen to die, and (ii) its neighbors compete to place
a copy of themselves in the new empty site with probability proportional to 1 − w + w × payoff,
where the parameter wmeasures the intensity of selection. Without mutation, such a Markov
process has two absorbing states: one where all vertices are occupied by A-players and one
where all vertices are occupied by B-players. Let us denote by ρA the fixation probability of a
single A-player in a population of B-players, and by ρB the fixation probability of a single B-
player in a population of A-players. We take the comparison of fixation probabilities, i.e.

rA > rB; ð1Þ
as a measure of evolutionary success [54] and say that A is favored over B if condition (1)
holds.

Under weak selection (i.e., w� 1) the condition for A to be favored over B holds if the
sigma rule for multiplayer games [50] is satisfied, i.e., if

Xd�1

j¼0

sj fj > 0; ð2Þ

where σ0, . . ., σd−1 are the d structure coefficients (constants that depend on the population
structure and on the update dynamics), and

fj ¼ aj � bd�1�j; j ¼ 0; 1; . . . ; d � 1; ð3Þ

Table 1. Payoffs to A-players andB-players.

Opposing A-players 0 1 . . . j . . . d − 1

payoff to A a0 a1 . . . aj . . . ad−1
payoff to B b0 b1 . . . bj . . . bd−1

doi:10.1371/journal.pcbi.1005059.t001
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are differences between payoffs, which we will refer to in the following as the “gains from flip-
ping”. The gains from flipping capture the change in payoff experienced by a focal individual
playing B in a group where j co-players play A when all players simultaneously switch strategies
(so that A-players become B-players and B-players become A-players). It turns out that the
payoffs of the game only enter into condition (1) via the gains from flipping Eq (3), as the
structure coefficients are themselves independent of aj and bj.

Structure coefficients are uniquely determined up to a constant factor. Setting one of these
coefficients to one thus gives a single structure coefficient for d = 2 [22]. For d> 2, and in the

usual case where structure coefficients are nonnegative, we can impose
Pd�1

j¼0 sj ¼ 1 without

affecting the selection condition (2). For our purposes, this normalization turns out to be more
useful than setting one coefficient to one, as it allows us to rewrite the sigma rule Eq (2) as

Xd�1

j¼0

Bj fj ¼ E f ðJÞ½ � > 0; ð4Þ

where f(j)� fj, and J is the random variable with probability distribution prescribed by the

“normalized structure coefficients” Bj ¼ sj=
Pd�1

i¼0 si. In light of condition (4), the sigma rule

can be interpreted as stating that strategy A is favored over B if the expected gains from flipping
are greater than zero when the number of co-players J is distributed according to the normal-
ized structure coefficients. From this perspective, different models of population structure lead
to different normalized structured coefficients and hence to different expected gains from flip-
ping, which in turn imply different conditions for strategy A to be favored over B in a given
multiplayer game [51]. For instance, a well-mixed population with random group formation
updated with either a Moran or a Wright-Fisher process leads to normalized structure coeffi-
cients given by [39, 40]:

BWj ¼

N
dðN � 1Þ if 0 � j � d � 2

N � d
dðN � 1Þ if j ¼ d � 1

8>>><
>>>:

: ð5Þ

A normalized sigma rule such as the one given by Eq (4) holds for many spatial models and
associated updating protocols [50, 51]. Here, we focus on the case of regular graphs updated
with a Moran death-Birth process. We provide exact expressions for the case of cycles for
which k = 2. For k� 3, we bypass the difficulties of an exact calculation by using a combination
of pair approximation [55, 56] and diffusion approximation [14]. Our approach implicitly
assumes that graphs are equivalent to Bethe lattices (or Cayley trees) with a very large number
of vertices (N� k). In addition, weak selection intensities (wk� 1) are also required for an
implicit argument of separation of timescales to hold. In order to assess the validity of our ana-
lytical approximations, we implemented a computational model of a Moran death-Birth pro-
cess in three different types of regular graphs (rings, random graphs, and lattices) with
different degrees and estimated numerically the fixation probabilities ρA and ρB as the propor-
tion of realizations where the mutant succeeded in invading the wild-type.

Results

Exact structure coefficients and sigma rule for cycles
Going beyond the complete graph representing a well-mixed population, the simplest case of a
regular graph is the cycle, for which k = 2 (and consequently d = 3). In this case, we find the
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following exact expressions for the structure coefficients (S1 Text, Section 1):

BG0 ¼ 1

2ðN � 2Þ ; BG1 ¼ 1

2
; BG2 ¼ N � 3

2ðN � 2Þ : ð6Þ

For large N, the structure coefficients reduce to BG0 ¼ 0, BG1 ¼ BG2 ¼ 1=2 and the sigma rule
Eq (4) simplifies to

a1 þ a2 > b1 þ b0: ð7Þ

This is also the condition for the boundary between a cluster of A-players and a cluster of B-
players to move in favor of A-players for weak selection [57] (Fig 1). Condition (7) implies that
A can be favored over B even if A is strictly dominated by B (i.e., aj < bj for all j) as long as the
payoff for mutual cooperation a2 is large enough so that a2 > b0+(b1 − a1); a necessary condi-
tion for this inequality to hold is that A strictly Pareto dominates B (i.e., a2 > b0). Such a result
is impossible in well-mixed populations, where the structure coefficients Eq (5) prevent strictly
dominated strategies from being favored by selection. Condition (7) provides a simple example
of how spatial structure can affect evolutionary game dynamics and ultimately favor the evolu-
tion of cooperation and altruism.

Approximate structure coefficients and sigma rule for regular graphs of
degree k� 3
For regular graphs of degree k� 3, we find that the structure coefficients can be approximated
by (S1 Text, Section 2)

BGj ¼ ðk� 2Þk�1�j

ðkþ 2Þðkþ 1Þk2
Xk�1

‘¼0

ðk� ‘Þ k2 � ðk� 2Þ‘½ �u‘;j;k þ 2kþ ðk� 2Þ‘½ �t‘;j;k
n o

; ð8Þ

where

u‘;j;k ¼
k� 1� ‘

k� 1� j

 !
1

ðk� 1Þk�1�‘
þ ‘

k� j

 !
k� 2

ðk� 1Þ‘ ; ð9Þ

and

t‘;j;k ¼
k� 1� ‘

k� j

 !
k� 2

ðk� 1Þk�1�‘
þ ‘

k� 1� j

 !
1

ðk� 1Þ‘ : ð10Þ

These expressions are nontrivial functions of the degree of the graph k and thus difficult to

interpret. For instance, for k = 3, we obtain BG ¼ 7
144

; 31
144

; 61
144

; 45
144

� �
.

Fig 1. Payoffs at the boundary of two clusters in the cycle.Under weak selection, the cluster of A-players
expands if the sigma rule a1+a2 > b1+b0 holds. As a player is never paired with two players of the opposite
strategy, neither a0 nor b2 enter into this expression. This provides an intuition behind our analytical results in
the simple case when the graph is a cycle.

doi:10.1371/journal.pcbi.1005059.g001
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Promotion of multiplayer cooperation
The previous results hold for any symmetric multiplayer game with two strategies. To investi-
gate the evolution of multiplayer cooperation, let us label strategy A as “cooperate”, strategy B
as “defect”, and assume that, irrespective of the focal player’s strategy, the payoff of a focal
player increases with the number of co-players playing A, i.e.,

ajþ1 � aj and bjþ1 � bj for all j: ð11Þ

This restriction on the payoffs is characteristic of “cooperation games” [51] in which playing
A is beneficial to the group but might be costly to the individual. Well-known multiplayer
games belonging to this large class of games include different instances of volunteer’s dilemmas
[44, 46], snowdrift games [58], stag hunts [59], and many other instances of public, club, and
charity goods games [43].

We are interested in establishing whether graph-structured populations systematically lead
to structure coefficients that make it easier to satisfy the normalized sigma rule Eq (4) than
well-mixed populations (the baseline case scenario of a population with no spatial structure)
for any cooperation game satisfying condition (11). In other words, we ask whether a graph is
a stronger promoter of cooperation than a well-mixed population. Technically, this is equiva-
lent to asking whether the set of games for which cooperation is favored under a graph con-
tains the set of games for which cooperation is favored under a well-mixed population, i.e.,
whether a graph is greater than a well-mixed population in the “containment order” [51]. A
simple sufficient condition for this is that the difference in normalized structure coefficients,
BG − BW, has exactly one sign change from − to + [51]. This can be verified for any N> 3 in
the case of cycles (k = 2) by inspection of eqs (5) and (6). For large regular graphs of degree
k� 3 and hence multiplayer games with d� 4 players, we checked the condition numerically
by comparing eqs (5) and (8) for k = 3, . . ., 100. We find that BG − BW always has a single sign
change from − to + and hence that, in the limit of validity of our approximations, regular
graphs promote more cooperation than well-mixed populations for all games fulfilling
Eq (11) (Fig 2). In the following, we explore in more detail the sigma rule for particular exam-
ples of multiplayer games.

Examples
Collections of two-player games. As a consistency check, let us consider the case where

individuals play two-player games with their k neighbors and collect the payoffs of the different
interactions. The two-player game is given by the payoff matrix

A B

A

B

a b

g d

0
@

1
A

:

ð12Þ

The payoffs for the resulting multiplayer game, which are just the sum of payoffs of the pair-
wise games, are then given by aj = jα + (k − j)β and bj = jγ + (k − j)δ. The sigma rule Eq (4) can
hence be written as

k b� gð Þ þ a� bþ g� dð Þ
Xk

j¼0

BGj j > 0: ð13Þ
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We can show that (S1 Text, Section 2.9)

Xk

j¼0

BGj j ¼ E½J� ¼ kþ 1

2
; ð14Þ

so that condition (13) is equivalent to

kþ 1ð Þaþ k� 1ð Þb� k� 1ð Þg� kþ 1ð Þd > 0; ð15Þ

i.e., the sigma rule previously established for pairwise games in regular graphs [cf. Eq (24) in
the Supplementary Material of Ref. [14]]. For a pairwise donation game (for which a ¼ B � C,
b ¼ �C, g ¼ B, δ = 0, where B and C are respectively the benefit and cost of donation) this
reduces to the well-known B=C > k rule [7, 14, 16].

Linear games. Suppose now that aj and bj are both linear functions of j. We can thus write
aj ¼ �C þ ðB þDÞj=k, bj ¼ Bj=k for some parameters B, C, andD. When B > C � 0, such a

game can be interpreted in terms of a social dilemma as follows. Cooperators each pay a cost C
in order to provide a benefit B=k to each of their co-players; defectors receive the benefits but
pay no cost. In addition to the benefit B=k, cooperators also get an additional bonusD=k per
other cooperator in the group. This bonus can be positive or negative.

For such linear games, and by making use of Eq (14), the sigma condition simplifies to
2B þDðkþ 1Þ > 2Ck. When there is no bonus (D ¼ 0) the game is an additive prisoner’s

Fig 2. Structure coefficients and containment order of cooperation. Approximated (normalized) structure coefficients
ςj for large regular graphs of degree k = 5 updated with a Moran death-Birth process (BGj ) and large well-mixed populations
where groups of d = 6 players are randomly matched to play a game (BWj ). Since ςG − ςW has one sign crossing from − to +,
the graph is greater in the containment order than the well-mixed population (denoted by BG�conB

W). Consequently, if the
sigma rule holds for a well-mixed population with coefficients ςW, then it also holds for a graph-structured population with
coefficients ςG, for any cooperation game.

doi:10.1371/journal.pcbi.1005059.g002
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dilemma [60] and we recover the condition B=C > k. In the limit of large k, the sigma condi-
tion becomesD > 2C.

Volunteer’s dilemma. As an example of a nonlinear multiplayer game satisfying condition
(11), consider the volunteer’s dilemma [44, 45]. In such a game, one cooperator can produce a
public good of value B at a personal cost C; defectors pay no cost and provide no benefit. Pay-
offs are then given by aj ¼ B � C for all j, b0 = 0, and bj ¼ B for j> 0. The sigma rule, Eq (4),

for the volunteer’s dilemma hence reduces to

B=C > 1=Bd�1: ð16Þ

For the cycle, we thus find

B=C >
2ðN � 2Þ
N � 3

; ð17Þ

which in the limit of large N reduces to B=C > 2. For large regular graphs of degree k� 3, our
approximations lead to

B=C >
kðkþ 1Þðk� 2Þ

ðk� 1Þ2 � ðk� 1Þ1�k : ð18Þ

These conditions contrast with that for a large well mixed population, which is given by
B=C > kþ 1.

Suppose now that the cost of producing the public good is shared among cooperators [46].
Payoffs are then given by aj ¼ B � C=ðjþ 1Þ, b0 = 0 and bj ¼ B for j> 0. In this case the

sigma rule simplifies to

B=C >
1

Bd�1

Xd�1

j¼0

Bj
jþ 1

: ð19Þ

This leads to

B=C >
5N � 6

6ðN � 3Þ ð20Þ

in the case of a finite cycle of size N and B=C > 5=6 for a large cycle. Contrastingly, in a well-
mixed population,

B=C >
Xd�1

j¼0

1

jþ 1
: ð21Þ

Computer simulations
To assess the validity of our approximations, we compare our analytical results with explicit
simulations of evolutionary dynamics on graphs (Fig 3, N = 100; S1 Fig, N = 500). We imple-
mented three different kinds of regular graphs: (i) random regular graphs, (ii) rings (general-
ized cycles in which each node is connected to k/2 nodes to the left and k/2 nodes to the right),
and (iii) lattices (a square lattice with von Neumann neighborhood with k = 4, a hexagonal lat-
tice with k = 6, and a square lattice with Moore neighborhood and k = 8). Analytical predic-
tions are in good agreement with simulation results in the case of cycles (i.e., rings with k = 2,
for which our expressions are exact) and for all random regular graphs that we explored. Con-
trastingly, for rings with k� 4 and lattices, our approximations tend to underestimate the
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Fig 3. Simulations of evolutionary game dynamics on graphs (difference in fixation probabilities,N = 100). The first row shows the type of (regular)
graph for the particular case of k = 4, i.e., each node has exactly four neighbors. The second and third rows show simulation results for the volunteer’s
dilemma without cost-sharing and with cost-sharing, respectively. Simulation data in the first column correspond to random regular graphs, in the second
column to rings, and in the third column to lattices. The fixation probability of cooperators, ρA (defectors, ρB) was calculated as the fraction of runs where a
single cooperator (defector) reached fixation out of 107 runs. Symbols show the difference between such fixation probabilities, as a function of the benefit-
to-cost ratio B=C, for different types and degrees of the graph. Lines indicate analytical predictions for the difference in fixation probabilities (left hand side
of Eq (4) with normalized sigmas given by Eqs (6) or (8)). Dashed vertical lines the critical benefit-to-cost ratios B=C above which we have ρA > ρB for well-
mixed populations (right hand side of Eqs (16) or (19) with normalized sigmas given by Eq (5)). Parameters: population sizeN = 100, intensity of selection
w = 0.01, payoff cost C ¼ 1.

doi:10.1371/journal.pcbi.1005059.g003
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critical benefit-to-cost ratio beyond which the fixation probability of cooperators is greater
than that of defectors. In other words, our analytical results seem to provide necessary but not
sufficient conditions for cooperation to be favored. Such discrepancies stem from the fact that
our analysis assumes graphs with no loops such as Cayley trees; the error induced by our
approximations is more evident when looking at the actual fixation probabilities (S2 Fig,
N = 100, S3 Fig, N = 500) and not just at their difference. As all graphs with k> 2 we consid-
ered do contain loops, such mismatch is expected—in particular for rings and lattices, which
are characterized by high clustering. Perhaps more importantly, our simulations suggest that
the critical benefit-to-cost ratio for the volunteer’s dilemma without cost sharing in rings and
lattices with k� 6 is greater than the corresponding values for random graphs and well-mixed
populations. This illustrates a case in which a graph-structured population updated with a
death-Birth process leads to less favorable conditions for the evolution of cooperation than a
well-mixed population.

Discussion
We studied evolutionary multiplayer game dynamics on graphs, focusing on the case of a
Moran death-Birth process on regular structures. First, we used a combination of pair approxi-
mation and diffusion approximation to provide analytical formulas for the structure coeffi-
cients of a regular graph, which together with the payoffs from the game determine when a
strategy is more abundant than another in the limits of weak selection and weak mutation.
Such a condition is valid for any symmetric multiplayer game, including the volunteer’s
dilemma [44–46] and other multiplayer social dilemmas discussed in the recent literature [38,
41, 58, 59, 61]. The condition can be used to determine the specific conditions (in terms of the
degree of the graph and the parameters of the game, such as payoff costs and benefits) under
which cooperation will thrive. The structure coefficients also provide a way of comparing the
graph with other population structures, such as the well-mixed population. In particular, and
to the extent that our approximations are valid, graphs updated with a death-Birth process are
more conducive to the evolution of cooperation than well-mixed populations for a large class
of games (see condition (11)).

Second, we used numerical simulations to estimate the fixation probabilities and the differ-
ence in fixation probabilities of different strategies for particular examples of games (volunteer’s
dilemma with and without cost sharing) and graphs (random regular graphs, rings, and lattices).
Although simulations agree very well with the analytical approximations in the case of random
regular graphs, discrepancies are evident in the case of rings and lattices, which are characterized
by higher clustering and for which pair approximation is not sufficiently accurate. In these
cases, the analytical approximations systematically overestimate the ability of a graph to pro-
mote the evolution of cooperation. Importantly, in the case of the volunteer’s dilemma without
cost sharing and for rings or lattices of relatively large degree, the critical benefit-to-cost ratio
above which cooperation is favored is greater, not smaller, than the corresponding value for a
well-mixed population. Even though detrimental effects of spatial structure on cooperation have
been previously noted in similar studies [62], our results are counterintuitive given the updating
protocol and the intensity of selection we explored. Indeed, a death-Birth Moran process under
weak selection would always favor cooperation (with respect to a well-mixed population of the
same size) for any linear cooperation game, including any collection of two-player cooperation
games. Our simulations show that this might not be the case when social dilemmas are instead
modelled as nonlinear games such as the volunteer’s dilemma.

We used pair approximation and diffusion approximation to find approximate values for
the structure coefficients, but other approaches can be used to obtain better estimates of them.
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In particular, coalescent theory [63] allows us to write the sigma rule in terms of selection coef-
ficients (dependent on the payoffs of the game and the demographic parameters of the model)
and expected coalescence times under neutrality [64, 65]; however, such expected coalescence
times can be difficult to obtain exactly. Alternatively, for small graphs, the sigma rule and
hence the structure coefficients can be explicitly calculated from the transition matrix of the
evolutionary process (cf. Appendix C of Ref. [26]). Finally, we note that even in cases for which
the structure coefficients are difficult to obtain by purely analytical means, they can be esti-
mated numerically, either indirectly (by estimating the expected times to coalescence) or
directly (by computing and comparing fixation probabilities).

For simplicity, we assumed that a focal player obtains its payoff from a single multiplayer
game with its k immediate neighbors. Such assumption allowed us to consider multiplayer
interactions on graphs in a straightforward way. However, this is in contrast with a common
assumption of many studies of multiplayer spatial and network games in which a focal player’s
total payoff is the sum of payoffs obtained in k+1 different games, one “centered” on the focal
player itself and the other k centered on its neighbors [47–49]. As a result, focal players interact
not only with first-order but also with second-order neighbors, which would lead to more intri-
cate structure coefficients. For example, in this case the structure coefficients of a cycle are
given by [51, 66]

BG
	

0 ¼ N þ 1

3ð2N � 3Þ ; BG
	

1 ¼ 2N � 1

3ð2N � 3Þ ; BG
	

2 ¼ N � 3

2N � 3
: ð22Þ

These values are different from those we calculated under the assumption that individuals
play a single game with first-order neighbors, given by Eq (6). For N> 4, the structure coeffi-
cients fulfill BG�conB

G	
, meaning that our assumption of payoffs from a single game leads to less

restrictive conditions for cooperation to be favored by selection. This observation is in line
with previous results for pairwise games on graphs suggesting that the condition for the evolu-
tion of cooperation is optimized when interaction and replacement neighborhoods coincide
[67], which corresponds to our assumption of individuals playing a single game. Future work
should consider the calculation of structure coefficients for the cases where the payoff to a
player also depends on games centered on neighbors and how the condition for the promotion
of cooperation differs from the one resulting from our simplifying assumption.

We modelled social interactions as multiplayer matrix games with two discrete strategies (A
and B) and obtained our results by assuming that selection is weak (w is small). Alternatively,
one could model the same multiplayer game but assume instead that players can choose
between two similar mixed strategies z and z + δ, where z and z + δ refer to the probability of
playing A for each strategy, and δ is small [43, 68, 69]. In such a “δ-weak selection” scenario,
and for any number of players, only a single structure coefficient is needed to identify condi-
tions under which a higher probability of playing A is favored by natural selection. For transi-
tive graphs of size N and degree k, this structure coefficient is given by [7, 25]

s ¼ ðkþ 1ÞN � 4k
ðk� 1ÞN : ð23Þ

Exchanging the structure coefficient σ for the “scaled relatedness coefficient” κ of inclusive
fitness theory via the identity κ = (σ − 1)/(σ+1) [65], we obtain [16]

k ¼ N � 2k
kðN � 2Þ : ð24Þ
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With such a value, recent results on multiplayer discrete games in structured populations
under δ-weak selection [43] can be readily applied to show that, for all cooperation games as
we defined them and for a death-Birth protocol, A is favored over Bmore easily for a graph-
structured population than for a well-mixed population, as long as N> k+1. Such prediction
qualitatively coincides with the one obtained from our analytical approximations, but does not
capture our numerical results for the volunteer’s dilemma in rings and lattices.

To sum up, we have shown that even for multiplayer games on graphs, which are routinely
analyzed by simulation only, some analytical insight can be generated. However, fully account-
ing for the complexity of evolutionary multiplayer games in graphs with high clustering
remains a challenging open problem.
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