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A B S T R A C T

Objective: This study aims to evaluate the effectiveness of various COVID-19 response policies in the United Sates 
that facilitated rapid virus transmission suppression and promoted quick return to normalcy during the first three 
years of the pandemic.
Method: We constructed comprehensive and unique time-to-event panel data that tracks the timeline of all policy 
implementations, and transmission waves, specifically measuring the duration from peak transmission to the 
desired suppression level, over 157 weeks. We then conducted a survival analysis to estimate the effectiveness of 
COVID-19 response policies in relation to the virus transmission dynamics. Our analysis focuses on the ten most 
populous U.S. states, representing diverse geographic, cultural, and political landscapes across the country. The 
survival analysis leverages the extensive time-to-event panel data collected from multiple sources.
Results: Our findings indicate that not all policies were equally effective in facilitating rapid transmission and 
promoting swift suppression return to normalcy. Containment or closure policies, such as school closures and 
stay-at-home orders, are associated with a shorter duration for returning to normalcy, highlighting their effec
tiveness in curbing COVID-19 transmission. In contrast, health system policies and vaccine policies showed 
mixed results.
Conclusion: The findings from our survival analysis of the novel data set provide practical insights for prioritizing 
policy measures among various options to effectively and timely suppress the transmission of highly contagious 
diseases. These insights can also enhance resource utilization and allocation within and across public health 
systems, while minimizing restrictions on people’s daily lives.

1. Introduction

Understanding the complex relationship between the pandemic and 
policy interventions is crucial for effective public health crisis man
agement at global, national, and local levels [1–4]. Over the course of 
the COVID-19 pandemic, the severity and uncertainty surrounding the 
disease—including its symptoms, fatality rates, transmission dynamics, 
and long-term effects—made controlling transmission the top policy 
priority [5–10]. However, public health systems and policy makers 
faced significant challenges in identifying and implementing effective 
response measures due to limited information and resources [2,11–13]. 
Moreover, policies designed to curb disease transmission often imposed 
additional restrictions on daily life and societal functions, which, in 
some cases, inadvertently delayed a return to normalcy [4,14]. To pre
pare for future public health crises, it is essential to examine the impact 

of these policies. Such understanding can refine strategies for rapid 
disease suppression, optimize resource utilization, and facilitate effec
tive policy implementation while minimizing unnecessary disruptions to 
society.

However, our understanding of which policies were effective in 
suppressing transmission in different contexts over extended periods 
remains limited. While previous studies have provided valuable insights 
into the impact of response policies on reducing COVID-19 incidence, 
mortality, and transmissions across various settings—such as U.S. states 
and counties, as well as countries [9,15,16]—much of this research has 
focused on specific policies or measures (e.g., face covering, hand
washing, social distancing, or closures), contexts and settings (i.e., 
schools, elderly, and hospitals), or short observation periods—typically 
up to six months during the early outbreak phase [3,17]. There is, 
therefore, a pressing need for evidence on effective policy measures that 

* Corresponding author at: School of Public Administration, University of Central Florida, Dr. Phillips Academic Commons, Room 446, 528 W Livingston St, 
Orlando, FL 32801, USA.

E-mail addresses: hanvit.kim@ucf.edu (H. Kim), kyungmin.lee@ucf.edu (K. Lee), Jungwon.Yeo@ucf.edu (J. Yeo). 

Contents lists available at ScienceDirect

Health Policy OPEN

journal homepage: www.elsevier.com/locate/hpopen

https://doi.org/10.1016/j.hpopen.2025.100140
Received 1 October 2024; Received in revised form 18 November 2024; Accepted 17 March 2025  

Health Policy OPEN 8 (2025) 100140 

Available online 20 March 2025 
2590-2296/© 2025 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

https://orcid.org/0000-0002-4991-7026
https://orcid.org/0000-0002-4991-7026
mailto:hanvit.kim@ucf.edu
mailto:kyungmin.lee@ucf.edu
mailto:Jungwon.Yeo@ucf.edu
www.sciencedirect.com/science/journal/25902296
https://www.elsevier.com/locate/hpopen
https://doi.org/10.1016/j.hpopen.2025.100140
https://doi.org/10.1016/j.hpopen.2025.100140
http://creativecommons.org/licenses/by-nc-nd/4.0/


can sustain rapid disease suppression over longer health crises while also 
ensuring the effective functioning of public health systems and society at 
large in a long term.

In response to this need for understanding the effectiveness of 
COVID-19 response policies, this study examines the impact of various 
policy measures implemented across the United States during the first 
three years of the pandemic. We focus specifically on state-level varia
tions, which provides a unique context for evaluating policy effective
ness. Constructing a novel time-to-event panel dataset, we track the 
timeline of policy implementations and transmission waves as well as 
measure the duration from peak transmission to the point of baseline 
suppression over a span of 157 weeks. Through survival analysis, we 
assess the effectiveness of COVID-19 policies in relation to the temporal 
dynamics of virus transmission, i.e., rapid transmission suppression and 
return to normalcy, across the states that adopted different response 
measures.

Our findings suggest that not all policies were equally effective in 
rapid return to normalcy over time. Based on the findings we discuss 
policy implications that can guide public health professionals and policy 
makers in designing targeted interventions that not only reduce virus 
transmission, facilitate rapid return to normalcy, but also ensure the 
ongoing effectiveness of public health systems.

The following section details the methods used in this study, 
including descriptions of the study design, data, variables, and model 
specifications. Subsequently, we will present the results, discuss the 
findings and limitations, and conclude with a summary and policy 
implications.

2. Methods

2.1. Data

We created a comprehensive and unique ‘time-to-event’ panel 
dataset that tracks the timeline of policy implementations, and trans
mission waves during the first three years of the pandemic. In our 
dataset, an “event” refers to the suppression of virus transmission, 
operationalized as the transition from the peak transmission referred to 
as (“peak”) to the desired transmission level of a specific wave (referred 
to as “normalcy”). Specifically, “peak“ denotes the highest number of 
confirmed cases during a wave, while “normalcy” represents the point at 
which transmission levels return to or are closely align with, those 
observed at the onset of the wave and are sustained for at least two 
weeks. Our time-to-event data captures the duration of this transition 
within each wave of COVID-19 transmission, with the durations influ
enced by implemented policy measures and other covariates [18].

Our time-to-event dataset is derived from the Oxford COVID-19 
Government Response Tracker (OxCGRT) [19] and the U.S. Census. 
OxCGRT is an open-source initiative that monitors COVID-19 policies 
and transmission data across 180 counties using publicly available 
sources such as news articles, official government reports, and press 
releases. The OxCGRT data has been widely regarded for its validity, 
having undergone systematic reviews [19,20]. From the source, we 
extracted information on the independent variables—COVID-19- 
response policy measures—and the dependent variable, policy effec
tiveness. Additionally, we collected covariate data from the U.S. Census, 
which may influence the variation in our dependent variables.

We consolidated our time-to-event dataset from the aforementioned 
sources into a panel dataset covering the ten most populous states in the 
U.S., which together represent diverse geographical, cultural, and po
litical landscapes. Our rationale for focusing on these ten states is 
threefold. Frist, while our sample includes ten out of the 50 U.S. states, it 
accounts for 59.2 % of the total US population [21]. Given that popu
lation density and urban play a crucial role in the transmission of highly 
infectious viruses [11,22], focusing on densely populated states en
hances the efficacy of data collection and reliability of our findings [23]. 
Second, these ten states span a range of geographic, cultural, political, 

and climate landscapes (see Table 1). Additionally, the sample states 
represent diverse distribution of vulnerable population (% elderly and % 
poverty). This diversity likely influenced the variation in response policy 
measures adopted during the observation period as well as the duration 
for transmission suppressions. Lastly, data availability constraints led us 
to select these ten states, allowing for construction of a comparable 
dataset across states. The dataset includes various policy measures, 
transmission waves, transition from peak to normalcy, and other cova
riates observed weekly from January 1, 2020, to December 31, 2022 (a 
total of 157 weeks). By focusing on these ten states, we captured a sig
nificant portion of the U.S. population, ensuring robust and reliable 
findings while enabling a nuanced analysis of the effects of different 
policies over the time.

2.2. Variables

Dependent variable. Our dependent variable is the effectiveness of 
response policies, operationalized as the duration of COVID-19 trans
mission suppression during each wave. This variable was measured by 
the time it takes for the transition from peak to normalcy, based on the 
weekly confirmed case data for each sample state. Table 2 provides the 
details of the variables.

The process of computing the values for the variable involves two 
main steps: identifying distinct waves and calculating the duration of 
transmission suppression within each wave. First, we identified the 
distinct waves for each sample state by analyzing the natural pattern of 
peaks and valleys in the weekly confirmed case data [5]. Specifically, a 
wave was defined as a period characterized by a significant increase in 
cases, followed by a substantial decline, with the decrease sustained for 
at least two weeks. For example, as shown in Fig. 1, which presents a 
trend of weekly confirmed cases, 6 distinct waves can be identified. Each 
wave consists of a peak followed by a return to normalcy (baseline 
levels)–defined as the level of cases at the start of the wave, which re
mains stable for at least two weeks.

Second, we calculated the duration (in weeks) of transmission sup
pression within each wave. As presented in Fig. 2 (Example of New York 
state), spaces between two red-dotted lines indicate the duration for 
each wave. For example, during the first wave, we identified the 13th 
week as the peak and the 17th week as the return to normalcy. Based on 
this, we coded the duration of the transmission suppression in the first 
wave as four (4) weeks as for New York state.

Independent variable. Our independent variables are the COVID-19 
response policy measures, operationalized as the intensity of the pol
icies. Using information from the OxCGRT, we identified 17 policy 
measures implemented by U.S. state governments. However, we focused 
on 14 specific policy indicators, which were grouped into three cate
gories that targeted virus transmission suppression: (1) containment or 
closure policies, (2) health system policies, and (3) vaccine policies.

First, containment and closure policies include measures such as 
school closure, workplace shutdowns, the cancellation of public events, 
restrictions on gatherings, suspension of public transport, stay-at-home 
orders, and controls on international travel. For example, the intensity 
of school closures, which involves the shutdown of schools and uni
versities, was measured on a four-level scale. 0 indicates no measures 
have been implemented. 1 reflects state governments recommending 
closure or allowing schools to remain open with modifications. 2 sig
nifies that state governments have mandated partial closures, affecting 
specific categories or education levels (e.g., high schools or public 
schools). Finally, 3 denotes full-scale school closures at all educational 
levels.

Second, health system policies encompass public information cam
paigns, testing protocols, contract tracing, facial coverings, and the 
protection of vulnerable populations, such as the elderly. These vari
ables were measured on an ordinal scale. For instance, public informa
tion campaigns are assessed based on their level of implementation, with 
three values: 0 indicates no COVID-19 public information campaign, 1 
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indicates public officials urged caution regarding COVID-19, and 2 in
dicates implementation of a coordinated public information campaign 
across both traditional and social media platforms.

Third, vaccine policies include eligibility, financial support, and 
mandates for vaccinations. All of these variables were measured on an 
ordinal scale. For example, the mandate for vaccination is a binary 
variable, where a value of 1 indicates that the state government required 
the vaccine at that time, and a value of 0 indicates that no vaccine 
mandate was in place at the time.

Additionally, Fig. 3 visualizes how the intensity of these policy 
measures was incorporated into our time-to-event dataset. It shows the 
timeline of COVID-19 policy implementation alongside the transmission 
waves in New York. The blue lines represent the initial week of each 
policy’s implementation, while the red lines indicate the week of its 
withdrawal. Thicker lines represent weeks when multiple policies were 
introduced simultaneously. As illustrated, most COVID-19 policies were 
implemented at the onset of the first wave and were withdrawn as the 
waves had stabilized.

Covariates. We included three state-level characteristics as control 
variables to account for factors that could influence our dependent 
variable: population size, population density, and the proportion of in
dividuals aged 65 and older in each state. Population size and density 
were particularly important to control due to their potential impact on 
COVID-19 transmission rate [24]. Additionally, because older adults are 
more vulnerable to severe outcomes from the virus, we also controlled 
for the proportion of the population aged 65 and older.

2.3. Model specification

This study employed survival analysis to evaluate the effectiveness of 
COVID-19 response policies on public health outcomes. Survival anal
ysis is particularly useful for examining the relationship between risk 
factors or exposures and survival time [25]. To assess goodness of fit and 
compare different model specifications, we used the Akaike Information 
Criterion (AIC), a common method for model selection. The AIC helps 
identify the model that best balances fit and complexity, with a lower 
AIC indicating a better fit to data [32]. We compared the parametric and 
semi-parametric survival analysis models, including the exponential, 
Weibull, Log-normal, and Cox proportional hazards model. Based on the 
AIC results, we selected the Weibull model, as it produced the lowest AIC 
and Bayesian Information Criterion (BIC) values.

The Weibull model was particularly suited to our data for several 
reasons. Firstly, it offers flexibility in modelling hazard functions that 
can either increase or decrease over time, depending on the value of its 
shape parameter (γ). This allows the model to both monotonically 
increasing and decreasing hazard rates [26]. In the context of COVID-19, 
the hazard rate is likely to fluctuate over time in a non-linear fashion, 
reflecting the dynamic nature of the pandemic and varying policy 

interventions. Second, The Weibull distribution is well-equipped to 
capture this variability. The parametric Weibull distribution provides 
explicit estimates of the hazard rates, allowing for a more precise 
interpretation of how different policies impact outcomes over time [26]. 
This is particularly useful for estimating the time until states return to 
normalcy following the varying intensities of implementation of specific 
intervention [27].

Using the Weibull model, we estimated the probability of returning 
to normalcy and identified the most influential policies affecting this 
likelihood. To address potential confounding from both observed and 
unobserved time-invariant state characteristics, we incorporated state 
fixed-effects into the model. To account for the potential correlation of 
errors within states over time, given the presence of time-varying 
covariates and multiple events in our data structure, we applied clus
tering at the state level. This approach accounts for the interdependence 
of observations within states, ensuring robust standard errors in our 
estimates.

The model is specified as follows: 

t = exp[b1x1 + b2x2 +⋯+bkxk]

t ≥ 0, k = 1, 2,⋯n (1) 

H(t) = γλγ(t)γ− 1exp[b1x1 + b2x2 +⋯+ bkxk]

γλ > 0 and t ≥ 0 (2) 

H(t) denotes, effectiveness of response policies, which is estimated as a 
hazard function of time t. bk denotes the coefficient, and xk denotes the 
covariates: COVID-19 response policies, while controlling for multiple 
underlying state factors.

Our model calculates the hazard ratio (HR), a key metric in survival 
analysis that quantifies the relative probability of experiencing the event 
of interest, i.e., returning from a peak to normalcy in our case, across 
different groups or levels of a categorical variable, while accounting for 
the time it takes for the event to occur. In survival analysis, a HR of 1 is 
considered the baseline, indicating no difference in the likelihood of the 
event between different groups [26]. A HR greater than 1 suggests an 
increased likelihood of the event between groups, while HR less than 1 
indicates a decreased likelihood [26]. For example, if the HR for school 
closure is 1.5, it means that for each unit increase in the policy’s in
tensity, the time to return to normalcy is reduced by 50 %, reflecting 
faster/effective transmission control. In our model, HR greater than 1 
indicates the effectiveness of a COVID-19 response policy. Specifically, it 
suggests that the policy has contributed to more rapid suppression of 
disease transmission, resulting in a steeper negative slope in the tra
jectory of the pandemic waves.

We estimated two Weibull models applying time lags—one-week and 
two-week–for our dependent variable to account for potential delays 

Table 1 
Sample State Characteristics (2020–2022).

State Percentile Elderly population Rate Percentile Poverty rate Cultural & Geographic Region Political Environment Temperate Climate zone

California Low Med West Democratic Hot
Texas Low High Southwest Republican Mixed
Florida High High-Med Southeast Republican Hot
New York Med Med Northeast Democratic Cold
Pennsylvania High Low-Med Northeast Democratic Cold
Illinois Med-Low Low-Med Midwest Democratic Cold
Ohio Med-High High-Med Midwest Republican Cold
Georgia Low High Southeast Democratic Mixed
North Carolina Med-Low High-Med Southeast Republican Mixed
Michigan Med-High Med Midwest Democratic Cold

Sources: U.S. Census data on elderly populations (https://www.census.gov/topics/population/older-aging/data.html); U.S. Census poverty data (https://www.census. 
gov/topics/income-poverty/poverty.html); U.S. Census regions and divisions (https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf); party 
affiliation by state from Pew Research Center (https://www.pewresearch.org/religious-landscape-study/database/compare/party-affiliation/by/state/); and U.S. 
climate regions data from the National Centers for Environmental Information (https://www.ncei.noaa.gov/access/monitoring/reference-maps/us-climate-regions).
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between policy implementation and its effects on the return to 
normalcy. The two different time lag applications also correspond to 
typical delays in COVID-19 test confirmation following infection. Ac
cording to the U.S. Centers for Disease Control and Prevention (CDC), 
the average incubation period for COVID-19 is 5 days, with a range of 2 
to 14 days [28]. This suggests that confirmation of COVID-19 infections 
would be delayed by approximately one to two weeks.

3. Results

3.1. Descriptive statistics

Table 3 provides descriptive statistics for all variables used in our 
analysis. On average, the duration from peak to normalcy was 49.5 
weeks across multiple waves. California, New York, Georgia, and North 
Carolina experienced shorter-than-average durations, while Texas, 
Pennsylvania, and Michigan were close to the average. Florida, Illinois, 
and Ohio had longer-than-average durations. Notably, California 
recorded the shortest duration from peak to normalcy, while Florida and 
Illinois had the longest.

In terms of policy responses, California consistently scored higher 
across all policy categories, suggesting a more aggressive and compre
hensive approach to COVID-19 response. In contrast, Florida scored 
lower across all policy categories, indicating a less stringent response. 
Overall, the data shows significant variation in both the durations for 
transmission suppression and the intensity of policy measures across 
states during the observation period.

Table 2 
Variable description.

Variable Values

States’ COVID-19 response 
policy effectiveness

Duration of a state’s COVID-19 transmission 
suppression for each wave(Number of weeks)

Containment and closure policy
School closure 0 = no measures 

1 = recommend closing or all schools open with 
alterations resulting in significant differences 
compared to non-Covid-19 operations 
2 = require closing (only some levels or categories, 
e.g., just high school, or just public schools) 
3 = require closing all levels

Workplace shutdowns 0 = no measures 
1 = recommend closing (or recommend work from 
home) or all businesses open with alterations 
resulting in significant differences compared to 
non-Covid-19 operation 
2 = require closing (or work from home) for some 
sectors or categories of workers 
3 = require closing (or work from home) for all- 
but-essential workplaces (e.g., grocery stores, 
doctors)

Cancellation of public events 0 = no measures 
1 = recommend cancelling 
2 = require cancelling

Restrictions on gatherings 0 = no restrictions 
1 = restrictions on very large gatherings (the limit 
is above 1000 people) 
2 = restrictions on gatherings between 101–1000 
people 
3 = restrictions on gatherings between 11–100 
people 
4 = restrictions on gatherings of 10 people or less

Suspension of public transport 0 = no measures 
1 = recommend closing (or significantly reduce 
volume/route/means of transport available) 
2 = require closing (or prohibit most citizens from 
using it)

Stay-at-home orders 0 = no measures 
1 = recommend not leaving house 
2 = require not leaving house with exceptions for 
daily exercise, grocery shopping, and ’essential’ 
trips3 = require not leaving house with minimal 
exceptions (e.g., allowed to leave once a week, or 
only one person can leave at a time, etc.)

Controls on international 
travel

0 = no restrictions 
1 = screening arrivals 
2 = quarantine arrivals from some or all regions 
3 = ban arrivals from some regions 
4 = ban on all regions or total border closure

Health system policy
Testing policy 0 = no testing policy 

1 = only those who both (a) have symptoms AND 
(b) meet specific criteria (e.g., key workers, 
admitted to hospital, came into contact with a 
known case, returned from overseas) 
2 = testing of anyone showing Covid-19 symptoms 
3 = open public testing (e.g., “drive through” 
testing available to asymptomatic people)

Contact tracing 0 = no contact tracing 
1 = limited contact tracing; not done for all cases 
2 = comprehensive contact tracing; done for all 
identified cases

Facial coverings 0 = No policy 
1 = Recommended 
2 = Required in some specified shared/public 
spaces outside the home with other people present, 
or some situations when social distancing not 
possible 
3 = Required in all shared/public spaces outside 
the home with other people present or all 
situations when social distancing not possible 
4 = Required outside the home at all times 
regardless of location or presence of other people

Protection of elderly people 0 = no measures 
1 = Recommended isolation, hygiene, and visitor  

Table 2 (continued )

restriction measures in LTCFs and/or elderly 
people to stay at home 
2 = Narrow restrictions for isolation, hygiene in 
LTCFs, some limitations on external visitors and/ 
or restrictions protecting elderly people at home 
3 = Extensive restrictions for isolation and hygiene 
in LTCFs, all non-essential external visitors 
prohibited, and/or all elderly people required to 
stay at home and not leave the home with minimal 
exceptions, and receive no external visitors

Vaccine policy ​
Eligibility for vaccination 0 = no categories are receiving vaccines 

1 = vaccines are available to some categories 
2 = vaccines are available to anyone over the age 
of 16 yrs. 
3 = vaccines are available to anyone over the age 
of 16 yrs. PLUS one or both of 5–15 yrs. and 0–4 
yrs.

Financial support for 
vaccination

0 = no availability 
1 = full cost to the individual for all categories 
identified in V2 
2 = full cost to the individual for some categories 
identified in V2, some subsidy for other categories 
3 = partial funding by the government for all of the 
categories identified in V2 
4 = partial funding by the government for some 
categories identified in V2, full funding for other 
categories 
5 = all categories fully funded by the government

Mandate for vaccination 0 = no requirement to be vaccinated 
1 = requirement to be vaccinated is in place for 
one or more groups

State-level characteristics
Population Population/1,000
Population density Population per square mile
Ratio of aged 65 and older Aged 65 and older/Population

Note. Data of state policies is derived from Oxford COVID-19 Government 
Response Tracker (OxCGRT), and data of state-level characteristics is derived 
from the U.S. Census.
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3.2. Findings and discussions

Table 4 presents the findings from the survival analysis, which 
evaluates how effective response policies are facilitating a swift transi
tion from peak to normalcy, incorporating two distinct time lags.

First, most containment or closure policies, except for workplace 
shutdowns and suspension of public transportation, appear to be effec
tive, as evidenced by a HR greater than 1. However, only the effects of 

school closure and stay-at-home orders are statistically significant at the 
0.1 % significance level (p < 0.001). The results align with existing 
research suggesting that nonpharmaceutical interventions—particularly 
those aimed at reducing mass contact among populations—have been 
effective in controlling transmission [10,16,29,30]. Our findings 
contribute to this body of knowledge by demonstrating that, among 
many nonpharmaceutical measures, school closures and stay-at-home 
orders not only have a significant impact on controlling transmission 

Fig. 1. Number of Covid-19 cases.

Fig. 2. Number of Covid-19 cases in New York.
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but also help facilitate a faster return to normalcy, with their effect 
persisting over time.

Second, mixed effects of health system policies have been observed. 
Among these policies, only the one aimed at protecting elderly pop
ulations shows a HR greater than 1, which aligns with public health 
recommendations to prioritize more vulnerable groups, especially 
elderly population, during the pandemic [7]. However, the policy did 
not reach statistical significance at the 5 % significance level in either 

Fig. 3. Covid-19 policy timeline in New York.

Table 3 
Descriptive statistics.

State Duration 
from Peak to 
Normalcy

Containment and 
Closure Policies

Health 
System 
Policies

Vaccine 
Policies

Average 49.5 1.03 1.98 1.82
California 35 1.19 2.11 1.90
Texas 49 1.00 1.83 1.58
Florida 61 0.98 1.76 1.75
New York 41 1.09 2.11 1.91
Pennsylvania 51 1.04 2.04 1.89
Illinois 61 0.93 2.04 1.90
Ohio 56 0.98 2.03 1.80
Georgia 46 0.98 1.91 1.76
North 

Carolina
45 1.00 1.87 1.90

Michigan 50 1.06 2.11 1.80

Note. Duration (in weeks) from peak to normalcy refers to the total number of 
weeks from the peak point to normalcy of transmission. Among policies, a higher 
value indicates a more intensive policy.

Table 4 
Survival analysis on duration from peak to normalcy.

Hazard Ratio 
(robust std. err)

Model 1 (1-week lag) Model 2 (2-week lag)

Containment or closure policy ​
School closure 6.343 (2.845) *** 6.960 (3.067) ***
Workplace closure 0.550 (0.376) 0.421(0.337)
Cancellation of public events 2.100 (1.441) 3.534 (2.277)
Restrictions on gatherings 1.373 (0.510) 1.165 (0.423)
Public transport closure 0.624 (0.761) 1.067 (1.322)
Stay-at-home order 27.732 (24.750) *** 30.721(30.337) ***
International travel control 1.590 (1.758) 1.235
Health system policy ​
Testing policy 0.382(0.277) 0.172 (0.138) *
Contact tracing 0.433(0.224) 0.474(0.246)
Facial coverings 0.645(0.182) 0.777(0.250)
Protection of elderly people 1.936 (1.107) 1.711(0.987)
Vaccine policy ​
Vaccine eligibility 3.215 (1.281) ** 2.566 (1.049) *
Financial support 0.086 (0.029) *** 0.100 (0.030) ***
Vaccine mandate 1.515(1.010) 1.843 (1.252)
State-level characteristics ​ ​
Population 0.998 (0.001) ** 0.998 (0.001) **
Population density 1.067 (0.136) 1.109 (0.128)
Ratio of aged 65 and older 0.000 (0.001) * 0.000 (0.000) **
State fixed effect Yes Yes
Observations 495 495

Note. Hazard Ratio > 1 indicates the event is more likely to occur. Robust 
standard errors in parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05.
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time-lag model.
In contrast, policies related to testing, contact tracing, and face 

covering all yielded HRs of less than 1, but they were not statistically 
significant at the 5 % level, suggesting their limited effectiveness in 
facilitating a rapid return to normalcy. These findings imply that the 
impact of health system policies, regardless of their directions, may be 
overshadowed by the stronger influence of containment or closure 
policies that target broader transmission control.

Lastly, we observed mixed effects across different vaccine policies. 
Both vaccine eligibility and vaccination mandates resulted in a HR 
greater than 1, suggesting that these policies have a positive impact on 
rapid transition to normalcy. This finding aligns with studies that assess 
the transmissibility of infectious diseases, particularly through control
ling reproduction rates [4,8,10]. Expanding eligibility and enforcing 
mandates for vaccination can increase the vaccinated population, 
thereby slowing the virus’ reproduction and curbing further trans
mission of infectious diseases [24,31,32]. However, our results show 
that only vaccine eligibility was statistically significant in both models at 
the 5 % significance level (p < 0.05), suggesting that broadening eligi
bility contributes more substantially to quicker return to normalcy than 
intensifying vaccination mandates.

In contrast, financial support for vaccination shows a HR smaller 
than 1 and was statistically significant in both models at the 0.1 % 
significance level (p < 0.001). Traditionally, financial support has been 
considered a key strategy to improve vaccine access and address equity 
issues [33–36]. However, our findings suggest that greater financial 
support may actually delay the return to normalcy. This counterintuitive 
result can be explained by the relationship between vaccine hesitancy, 
the strategies used to address it, and limited resources in public health 
systems. In the U.S., vaccine hesitancy has been prevalent even before 
the pandemic [6,37,38]. Studies show that incentive-based in
terventions, such as financial support, are among the least effective 
vaccine strategies to overcome vaccine hesitancy compared to other 
measures, such as expanding target groups, enforcing stricter mandates, 
or investing in public awareness campaign and dialogues [39]. 
Furthermore, it is possible that states providing greater financial support 
for vaccination may have allocated fewer resources to more effective 
policy measures, such as expanding vaccine eligibility, or enforcing 
containment or closure policies.

Overall, our findings suggest that not all policies were equally 
effective in facilitating a rapid return to normalcy. Additionally, the 
results indicate the potential for competition or trade-offs among 
different policy effects. These insights can help guide public health 
professionals and policy makers in prioritizing policy options and 
designing more targeted interventions that not only reduce virus 
transmission and promote quick return to normalcy, but also ensure the 
sustained effectiveness of public health operations during the crisis. 
Moreover, our results may inform more efficient resource allocation and 
utilization across health systems, enabling a focus on implementing the 
more effective policy measures. Evidence-based policy decisions such as 
these also can contribute to minimizing unnecessary restrictions on daily 
life, while supporting the continued functioning of society during future 
health crises.

4. Conclusions

This study examines the effectiveness of COVID-19 response policies 
in facilitating a rapid return to normalcy in the U.S. during the first three 
years of the COVID-19 pandemic. Using survival analysis and a novel 
time-to-event panel dataset, we identified policies that were particularly 
effective in achieving quicker suppression over an extended period. 
These findings offer valuable insights for public health professionals and 
policy makers, supporting evidence-based decisions on prioritizing 
relevant intervention measures. Additionally, the results have broader 

implications for optimizing resource allocation for crisis responses and 
minimizing unnecessary restrictions to daily life and societal functions 
during future public health crisis.

The contribution of this research is threefold, First, the primary 
contribution of this study is the construction and analysis of a unique 
time-to-event dataset that measures the interaction between diverse 
response policies and the duration of transition from peak to normalcy. 
This approach goes beyond existing studies, which typically focus on 
simple transmission trends (e.g., virus reproduction rates, transmission, 
mortality overtime) [3,4], by incorporating the temporal dynamics of 
transmission control. Second, by examining the impacts of all relevant 
policies over an extended period of the COVID-19 pandemic, this study 
identifies not only which policies were effective, but also which ones 
produced sustained effects over time, providing a more nuanced un
derstanding of policy effectiveness. Third, this study offers evidence that 
supports the design and implementation of more targeted and focused 
policies, which can effectively and efficiently save both lives and re
sources in future crisis. The findings contribute to a more robust 
discourse on how to select and implement policies that minimize 
physical contact while safeguarding individual rights, offering valuable 
insights for managing future public health emergencies.

Despite the contributions of this study, we acknowledge several 
limitations. First, our study is limited to the context of ten populous U.S. 
states during the COVID-19 pandemic. As such, the findings may not be 
directly applicable and generalized to other geographic, cultural, or 
public health contexts, particularly those involving different infectious 
diseases with distinct characteristics. To improve the limitations, future 
studies could replicate our study design in other countries, or in the 
context of different disease outbreaks, or expand our dataset to include 
all 50 U.S. states. Second, our study is observational in nature, while we 
controlled for potential confounding factors and considered time lags, 
unmeasured confounders may still influence the results. Future research 
employing experimental or quasi-experimental designs could provide 
stronger evidence for more rigorous causal relationships. Lastly, our 
study focuses on the duration of transmission suppression as a measure 
of policy effectiveness. Future studies may explore policy effectiveness 
in terms of the volume of transmission suppression, expanding the un
derstanding of policy impact.
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Appendix A 

A. Covid-19 cases in 10 States (2020–2022).

Fig. A1. California.

Fig. A2. Texas.

Fig. A3. Florida.
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Fig. A4. New York.

Fig. A5. Pennsylvania.

Fig. A6. Illinois.

Fig. A7. Ohio.

Fig. A8. Georgia.
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Fig. A9. North Carolina.

Fig. A10. Michigan.

Data availability

Data will be made available on request.
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