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Abstract: Mobility of eukaryotic transposable elements (TEs) are finely regulated to avoid an excessive
mutational load caused by their movement. The transposition of retrotransposons is usually regulated
through the interaction of host- and TE-encoded proteins, with non-coding regions (LTR and 5′-UTR)
of the transposon. Examples of new potent cis-acting sequences, identified and characterized in
the non-coding regions of retrotransposons, include the insulator of gypsy and Idefix, and the
enhancer of ZAM of Drosophila melanogaster. Recently we have shown that in the 5′-UTR of the
LTR-retrotransposon ZAM there is a sequence structured in tandem-repeat capable of operating as
an insulator both in Drosophila (S2R+) and human cells (HEK293). Here, we test the hypothesis that
tandem repeated 5′-UTR of a different LTR-retrotransposon could accommodate similar regulatory
elements. The comparison of the 5′-UTR of some LTR-transposons allowed us to identify a shared
motif of 13 bp, called Transposable Element Redundant Motif (TERM). Surprisingly, we demonstrated,
by Yeast One-Hybrid assay, that TERM interacts with the D. melanogaster ribosomal protein RpL22.
The Drosophila RpL22 has additional Ala-, Lys- and Pro-rich sequences at the amino terminus, which
resembles the carboxy-terminal portion of histone H1 and histone H5. For this reason, it has been
hypothesized that RpL22 might have two functions, namely the role in organizing the ribosome, and a
potential regulatory role involving DNA-binding similar to histone H1, which represses transcription
in Drosophila. In this paper, we show, by two independent sets of experiments, that DmRpL22 is able
to directly and specifically bind DNA of Drosophila melanogaster.

Keywords: ribosomal protein; Rpl22; Drosophila; DNA-protein interaction; transposable elements;
histone 1-like

1. Introduction

Transposable elements (TE) are DNA sequences which are able to move throughout
the host genome. These elements were first identified more than 60 years ago by the
geneticist Barbara McClintock [1].

TEs constitute a large fraction of the eukaryotic genome (i.e., up to 45% of the human
genome and at least 50% of the maize genome [2,3]). The activity of these elements has
been linked to more than 75 human diseases including hemophilia A, breast cancer, col-
orectal cancer, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration [4–8].
In addition, TEs contribute to both neurodevelopment and neurological diseases and
disorders [9,10]. Thus, it is important to understand how TEs transpose and how their
mobilization is regulated in eukaryotic organisms. While most TEs in the human genome
are completely inactive, the thirty percent of the elements in the Drosophila melanogaster
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genome are intact and active [11,12]. As such, D. melanogaster has always been considered
a model organism for the study of eukaryotic TEs.

TEs are divided into two major classes based on their mechanism of transposition:
DNA transposons and retrotransposons.

The elements of class I, also known as retrotransposons, are mobilized through a “copy
and paste” mechanism according to which an intermediate of RNA is reverse transcribed
into a cDNA copy and it is integrated elsewhere in the genome [13].

Retrotransposons include Long Terminal Repeat (LTR) retrotransposons, non-LTR
retrotransposons (LINEs and LINE-like elements), and short interspersed nuclear elements
(SINEs) [14].

The genome may be viewed as an ecosystem inhabited by diverse communities of
TEs, which seek to propagate and multiply through sophisticated interactions with each
other and with other components of the cell [15].

The transposition of class I TEs and its control take place thanks to the interactions
between specific non-coding regions of TEs, tRNAs, self-encoded, and host-encoded
molecules, including tRNAs and proteins [16].

These non-coding regions are able to control the transcription of the ORFs present in
the transposon, and this determines the regulation of their life cycle itself.

Along with these regulatory elements, mostly located in the LTRs, new classes of
functional elements have been identified and characterized, the most important of which is
called “insulator”. The characterization of TE-related regulatory sequences can also boost
the development of new biotechnological tools [17,18].

One of the first TEs where a potent regulatory element has been characterized was
gypsy, which harbors an insulator in their 5′-UTR. In a previous article, we have shown
that also the 5′-UTR of the LTR-retrotransposon ZAM acts as an insulator both in Drosophila
(S2-R+) and human cells (HEK293) [19].

Notably, ZAM’s insulator has the same tandemly repeated structure and the same
localization (5′-UTR) like gypsy’s insulator.

These observations led us to formulate the hypothesis that the tandem repeat re-
gions present in the 5′-UTR of some other retrotransposons (RTs) could accommodate
similar regulatory elements. In a previous paper, we grouped the D. melanogaster LTR-
retrotransposons into three distinct subsets, based on the presence and the complexity of
the repeats in the 5′-UTR [20]. Among the retrotransposons with complex repeats in the
5′-UTR, Tirant [21,22], accord [12], and ZAM [23] were selected due to the greater linguistic
complexity and lower AT/GC ratio in their tandem-repeat sequences. In the tandemly
repeated region of ZAM’s 5′-UTR, we had previously identified for the first time the DNA
binding site of the HP1 protein [20]. The binding of HP1 to the 5′-UTR of ZAM could
have a repressive role, inhibiting the retrotransposition of ZAM, possibly by recruiting
chromodomain-containing proteins, such as protein of the Polycomb group, and thus bury-
ing the TE in a heterochromatic domain. The ability to bind the 5′-UTR of a retrotransposon
could then represent a generalized defense mechanism of the genome to keep certain
species of retrotransposons under control. With the aim to test this hypothesis, we have
identified in the 5′-UTR of ZAM, accord, and Tirant a shared motif of 13 bp that we have
called TERM (Transposable Element Redundant Motif).

“In vivo” and “in vitro” experiments demonstrated that TERM specifically interacts
with the RpL22 protein. We demonstrate here that the peculiar H1/H5-like N-terminal
domain of RpL22 of D. melanogaster [24,25] is responsible for binding to the TERM motif.
We propose that the nuclear localization of RpL22, demonstrated by immunofluorescence
experiments, could be supportive of a possible role of Rpl22 as a candidate for the role of
controller of the activity of a restricted group of retrotransposons carrying TERM.
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2. Materials and Methods
2.1. In Silico Analysis

Multiple alignments were performed using Multalin [26]. The TERM motif has been
detected by using DNA pattern discovery programs which use either enumerative algo-
rithms to examine all oligomers of a given length, reporting those that occur more often
than expected as output, or alignment methods to identify unknown signals by local multi-
ple alignment of submitted sequences. We used both approaches to analyze 5′-UTRs of the
RTs accord, Tirant, and ZAM using the programs oligo-analysis [27], and MEME [28]. The
analyses resulted in similar patterns that can be suitably described by the TERM position
weight matrix.

Pattern search. DNA pattern search programs are based on a positional weight
matrix (PWM) description of the pattern to be searched. The weight score associated with
each examined DNA segment represents a measure of its similarity to the collection of
sequences that constitute the PWM—the more a given DNA segment matches the PWM,
the higher its weight score. We used the Matrix-scan program [29] to scan the comparable
random sequences, generated using D. melanogaster as background model with TERM
PWM. Analyses were performed with a weight score threshold of 5.29, established as the
lower value that is associated with a conserved TERM element in the 5′-UTR of ZAM,
accord, and Tirant.

2.2. Plasmid Construction and Sequencing

The yeast integration and reporter vector used to produce the one-hybrid reporter
plasmid was pHISi-1 (Clontech, Palo Alto, CA, USA). The reporter plasmid (pTERM3-
HISi-1) was constructed by cloning the couple of annealed anticomplementary primers,
containing TERM3, into EcoRI/XbaI sites of pHISi-1.

TERM3-F→5′-aattcATCAAtcgctgaTATCAAtcgctgaTATCAAtcgctgaTg-3′

TERM3-R→3′-gTAGTTAGCGACTATAGTTAGCGACTATAGTTAGCGACTA agatc-5′

Plasmid’s map and corresponding nucleotide sequence are available from the authors.

2.3. Yeast One-Hybrid Assay

One-hybrid selection was performed according to the manufacturer’s protocol (Clon-
tech’s MATCHMAKER One Hybrid System) as already depicted in Minervini et al. 2007 [20].

2.4. Expression and Purification of RpL22 Protein and RpL22/H5 RpL22/L22 Polypeptides

The full-length cDNA of RpL22 gene was amplified by High-Fidelity PCR using primer
pair pETup/pETlow from one of the Yeast One-Hybrid assay positive clones (Figure 1).
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The purified PCR product was cloned into the pET-200 expression vector (Invitrogen,
USA) to obtain the pET-200/RpL22 plasmid. This plasmid was transformed into the E. coli
BL21 Star™ expression host. RpL22 gene was expressed in BL21 Star ™ following the
manufacturer’s instructions (Invitrogen, Waltham, MA, USA). His6-Rpl22 protein was
purified from harvested cells using the Ni-NTA Fast Start kit (Qiagen, Hilden, Germany)
under native conditions following the manufacturer’s instructions. The molecular mass
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of the protein was determined by SDS-PAGE (12% (w/v) after staining with Coomassie
brilliant blue R-250 The concentrations of the purified protein were determined by the
Bradford method [30].

The Histone-like domain and the Ribosomal domain of the RpL22 gene were amplified
by high-fidelity PCR using, respectively, the primer pair pETup/H5low and pETlow/L22up
and cloned the PCR products into pET200 vector to obtain the plasmid pET-200/RpL22_H5,
and pET-200/RpL22_L22. Next, the pET plasmids were transformed into E. coli BL21
Star™. To obtain the purified RpL22/H5 and RpL22/L22 polypeptides we followed the
same procedures described above.

pETup 5′-CACCATGGCTTACCCATA-3′

pETlow 5′-ATAAAAGAAGGCAAAACGATG-3′

H5low 5′-CTAACGCAGCACGTTCTTCTT-3′

L22up 5′-CACCAAGGTGGTCAAGAAGAA-3′

2.5. DNA-Binding Assays

Gel mobility shift assays were performed essentially as previously described [31].
Unspecific λ-DNA was sonicated to obtain DNA of average fragments size comparable to
that of TERM3.

2.6. Production of Antibody Anti RpL22/H5

Detection of RpL22/H5 polypeptides in Sodium Dodecyl Sulfate-Polyacrylamide Gels
was performed as previously described [32].

Briefly, the preparation of RpL22/H5 polypeptide from BL21 lysates has been per-
formed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
After electrophoresis, the band of RpL22/H5 polypeptide has been located in the gel by
light staining of the gel with 0.05% Coomassie Brilliant Blue R-250 prepared in water. After
10 min of staining the gel has been washed with numerous changes of water over the next
few hours. Once the appropriate band was visible, it has been excised with a scalpel.

Preparation of RpL22/H5 polypeptides from Sodium Dodecyl Sulfate-Polyacrylamide
Gels for Immunization was performed as previously described [33].

Briefly, after removing the RpL22/H5 band from a polyacrylamide gel, it needs to
be fragmented into small pieces before being injected into animals, making it more easily
phagocytized and presented to cells of the immune system. We removed the plungers
from the barrels of two 5-mL syringes and place the gel fragment into one of the barrels.
Afterwards we replaced the plunger and place the syringe outlet in the barrel of the second
syringe. Using firm and rapid pressure on the plunger, we pushed the gel into the second
syringe. We repeated the process five times, passing the gel fragments back and forth
between the two syringes. Finally, we placed 21-gauge needles onto the outlet of the
syringes and repeat the process a couple of times. After preparing the antigen (RpL22/H5
polypeptide) we sent it to Invitrogen Custom Polyclonal Antibody Service to obtain the
production and purification of the Anti-RpL22/H5 antibody from rabbit.

2.7. Immunofluorescence and Immunocytochemistry

Immunofluorescence (IF) and immunocytochemistry (ICC) were performed as follows.
Cells were fixed with 4% paraformaldehyde (PFA) for 10 min at room temperature and
permeabilized with 0.2% Triton X-100 before immunostaining. The cells were washed
in PBS and blocked for 1 h in blocking buffer (10% goat serum in PBS). Samples were
incubated with Anti-Fibrillarin antibody (G-8) (sc-374022_Santa Cruz Biotechnology), Anti-
Ribosomal ProteinL28 (A-16) (sc-14151_Santa Cruz Biotechnology), Anti-Histone H1 (AE-4)
(sc-8030_Santa Cruz Biotechnology), and our Anti RpL22/H5 for 1 h at r.t., washed three
times in PBS and incubated with Alexa Fluor 488 goat anti-rabbit secondary antibody (Life
Technologies Carlsbad, CA, USA, 1:200 dilution) and Alexa Fluor 488 goat anti-mouse
secondary antibody (Life Technologies, Carlsbad, CA, USA 1:200 dilution) for 1 h at r.t. for
detection. Counterstaining was done with DAPI. Images were acquired using a Leica IL
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MD LED inverted fluorescence microscope. To ensure the validity and specificity of the
anti RpL22/H5 antibody, we conducted IF and ICC experiments using the pre-immune
serum under the same experimental conditions described above without obtaining any
signal on the tested cells or tissues.

3. Results
3.1. Search for Shared Motifs

In a previous work, we published the comparative analysis of the 5′-UTR of the
known LTR-retrotransposons of D. melanogaster [19]. This analysis revealed that 19 out of
49 5′-UTRs tested (39%) have a tandemly repeated organization and that it was possible
to cluster them based on their linguistic complexity and A/T content. It was possible to
cluster accord, Tirant, and ZAM into the same group, that share very complex and extended
tandemly repeated regions in the 5′-UTRs.

Using the software oligo-analysis, available in the RSATools package [27] (available
online: http://rsat.ulb.ac.be/rsat; accessed on 25 April 2018) we performed an analysis
to find shared motifs among all tandem repeats identified in the 5′-UTR of the retrotrans-
posons analyzed.

The output of oligo-analysis describes the consensus sequence of the motifs, their
position, and its score value representing the statistical significance of the motif and a
graphic representation (Figure 2A).

A 13 bp-long motif shared by the LTR-retrotransposons ZAM, accord, and Tirant
shows a very high score value. The consensus sequence of the motif is the following:
ATCCATCGCTGAT.

The analysis was repeated using an alternative tool (MEME 26), available in the MEME
Suite (available at: http://meme-suite.org/; last accessed 25 April 2018) which gave the
same. This motif has been called “TERM” (Transposable Element Redundant Motif).

To exclude that TERM was a pattern emerged by chance, we repeated the same
analyzes on a group of comparable random sequences, generated using D. melanogaster
as background model. The sequence generator used is available in RSATools. The TERM
matrix was used to scan the 5′-UTR-comparable random sequences using RSATools Matrix-
scan program [29]. This analysis did not produce any statistically significant results.
Furthermore, we have scanned the 5′-UTRs of all retrotransposons and we found TERM
just in ZAM, accord e Tirant. This data acquires further importance considering that in
D. melanogaster there are several hundred copies of the TERM motif, as highlighted by
genome to matrix-scan analysis of the genome. So, while it is a relatively common motif,
it is only present in the 5′-UTRs of ZAM, accord, and Tirant.

3.2. Identification of Proteins Able to Interact with TERM

One way to determine if a short DNA sequence may have a function is to identify
protein(s) interacting with it.

For this purpose, we performed a Yeast One-Hybrid assay using the TERM motif as
bait (see Material and Methods).

To carry out the One-Hybrid assay with TERM, we designed a pair of complementary
oligonucleotides in which the TERM element was repeated three times (TERM3). The
double stranded fragment obtained from the annealing of the two oligonucleotides was
cloned into the One-Hybrid vectors.

His− yeast mutant strain (YM427), bearing pTERM3-HISi-1, the reporter plasmid
carrying three TERM tandem-repeat copies cloned upstream of the HIS3 selectable marker,
was transformed with a cDNA recombinant plasmid library obtained from 0–21 h embryos
of D. melanogaster fused with yeast GAL4 activation domain.

The screening of approximately 8.3 × 105 yeast transformed cells led to the identifica-
tion of 51 full-length cDNA clones that reproducibly shown to restore the His+ phenotype
in yeast bearing the TERM3 reporter plasmid, whereas they failed to transform the yeast
cells bearing the parental reporter plasmid lacking TERM3 to His+ phenotype.

http://rsat.ulb.ac.be/rsat
http://meme-suite.org/
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Figure 2. Bioinformatics analysis of the 5′-UTRs of ZAM, Tirant, and Accord. (A) Feature map of
over-represented TERM in the 5-UTRs of the indicated RTs. The scale bar provides coordinates
relative to the first ORF (GAG) start of the retrotransposons. Note the regularity of the TERM motif
in the 5′-UTRs; (B) display of the logos of the TERM motif. The graphic representation was created
using WebLogo. Sequence logos are a graphical representation of an alignment of multiple nucleic
acid sequences (PWM) developed by Tom Schneider and Mike Stephens [34]. Each logo is made
up of stacks of symbols, one stack for each position in the sequence. The overall height of the
stack indicates the conservation of the sequence at that location, while the height of the symbols
within the stack indicates the relative frequency of each nucleic acid at that location; (C) positional
weight Matrix of TERM motif; (D) sequence of the tandem repeats present in the 5′-UTR of the RTEs
under examination. The single tandem repeats are in blue and red, while the TERM motifs are in
uppercase underscored.
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All the positive clones were then sequenced, and the identity of each insert was
obtained by a BLAST search of the D. melanogaster predicted genes databases.

The results showed that 35 independent clones (69% of the positive clones) correspond
to the gene CG7434 that encodes the Ribosomal protein L22 (RpL22) (see Table 1).

Table 1. Yeast One-Hybrid assay results.

Clone’s Name BLAST Results BLASTX Results Notes

L1 mitochondrial
sequence # #

L2 Grn GRN GATA trascription
factor

L3 CG7434 RpL22 Ribosomal protein
L4 CG7434 RpL22 Ribosomal protein
L5 Csn6 CSN6 Signalosome
L6 CG7434 RpL22 Ribosomal protein
L7 Mis MIS body pigmentation

pTERM3lig01 CG4314 st eye pigment
precursor transport

pTERM3lig02 GS1 GS1 glutammina sintetasi
pTERM3lig03 CG1883 CG1883 Rps7-like
pTERM3lig05 CG7434 RpL22 Ribosomal protein
pTERM3lig06 CG7434 RpL22 Ribosomal protein
pTERM3lig07 Hrb27C Hrb27C RNA binding protein
pTERM3lig08 CG7434 RpL22 Ribosomal protein
pTERM3lig09 CG7434 RpL22 Ribosomal protein
pTERM3lig10 CG7434 RpL22 Ribosomal protein
pTERM3lig11 CG9253 CG9253 RNA helicase activity
pTERM3lig12 Mod(mdg4) Mod(mdg4) FLYWCH domain
pTERM3lig13 CG7434 RpL22 Ribosomal protein
pTERM3lig14 CG7434 RpL22 Ribosomal protein
pTERM3lig15 RpS16 RpS16 Ribosomal protein
pTERM3lig16 CG7434 RpL22 Ribosomal protein
pTERM3lig17 CG7434 RpL22 Ribosomal protein
pTERM3lig19 CG7434 RpL22 Ribosomal protein
pTERM3lig20 CG7434 RpL22 Ribosomal protein
pTERM3lig21 CG7434 RpL22 Ribosomal protein
pTERM3lig25 CG7434 RpL22 Ribosomal protein
pTERM3lig26 CG7434 RpL22 Ribosomal protein

pTERM3lig27 CG6007 GatA serine hydrolase
activity

pTERM3lig29 CG7434 RpL22 Ribosomal protein
pTERM3lig31 CG7434 RpL22 Ribosomal protein

pTERM3lig32 CG30389 CG30389 actin filament
binding activity

pTERM3lig33 CG7434 RpL22 Ribosomal protein
pTERM3lig34 CG7434 RpL22 Ribosomal protein
pTERM3lig35 CG9415 CG9415 trascription factor
pTERM3lig36 CG9277 CG9277 beta tubulina
pTERM3lig38 CG7434 RpL22 Ribosomal protein
pTERM3lig39 CG7434 RpL22 Ribosomal protein
pTERM3lig41 CG7434 RpL22 Ribosomal protein
pTERM3lig43 CG7434 RpL22 Ribosomal protein
pTERM3lig44 CG7434 RpL22 Ribosomal protein
pTERM3lig45 CG7434 RpL22 Ribosomal protein
pTERM3lig46 CG7434 RpL22 Ribosomal protein
pTERM3lig47 CG7434 RpL22 Ribosomal protein
pTERM3lig48 CG7434 RpL22 Ribosomal protein
pTERM3lig49 CG7434 RpL22 Ribosomal protein
pTERM3lig50 CG7434 RpL22 Ribosomal protein
pTERM3lig51 CG17326 luna Zinc finger C2H2-type
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Table 1. Cont.

Clone’s Name BLAST Results BLASTX Results Notes
pTERM3lig52 CG7434 RpL22 Ribosomal protein
pTERM3lig53 CG7434 RpL22 Ribosomal protein
pTERM3lig54 CG7434 RpL22 Ribosomal protein

Fifty-nine percent (35 out of 51) of the positive clones isolated in the One-Hybrid assay correspond to gene
CG7434 (in green) encoding the ribosomal protein RpL22. The remaining 16 clones correspond to non-coding mi-
tochondrial sequences (L1), structural or enzymatic proteins (L5, L7, pTERM3lig01, pTERM3lig02, pTERM3lig36,
pTERM3lig27), other ribosomal protein (pTERM3lig15), and some transcription factors and/or other DNA binding
proteins (L2, pTERM3lig12, pTERM3lig32, pTERM3lig35, pTERM3lig51). It is important to underline that, except
for the CG7434 gene, all clones screened with the One-Hybrid assay are represented only once.

3.3. Analysis of RpL22/TERM Interaction

RpL22 encodes for a ribosomal protein of the major subunit of the ribosome in
D. melanogaster. It encodes a 299 aa-long protein consisting of two domains: a riboso-
mal L22e C-terminal domain (L22e) which accounts for 1/3 of the protein and a N-terminal
H1/H5-like domain (H1/H5) which occupies the remaining 2/3 of the protein [24,25].

The latter domain is a highly basic domain and is characteristic of the H1, and H5
linker histones, and is responsible for their DNA-binding proprieties.

There is no evidence in the literature that RpL22 is able to directly interact with DNA.
However, the presence of the H1/H5-like domain, and the result of our Yeast One-Hybrid
assay suggest that Rpl22 is a DNA-binding protein.

Gel mobility shift assays were performed to confirm the ability of RpL22 to bind DNA,
and especially the direct interaction between RpL22 and TERM.

TERM3 was terminally radiolabeled and used as substrate. The purified recombinant
RpL22 protein was incubated with TERM3 and the DNA-protein complexes were resolved
by native PAGE.

The shifted signals indicated that RpL22, when incubated with TERM3, was able to
produce a slower migrating complex (Figure 3A).

Several EMSA competition experiments were performed to investigate the specificity
of this interaction. Purified RpL22 was incubated with a constant amount of radiolabeled
TERM3 and in presence of increasing amounts of unlabeled DNA competitors.

The TERM3-RpL22 interaction appears to be specific since using up to 500-fold molar
excess of unlabeled non-specific competitor (sonicated λ-DNA) did not affect the shift of the
TERM3-RpL22 complex (Figure 3A). Specific competition experiments performed with an
increasing amount of unlabeled TERM3 fragments showed that the TERM3-RpL22 complex
was easily destroyed by adding small quantities (5x) of specific competitor (Figure 3A).

The EMSA results confirmed our assumption that RpL22 may be able to interact
specifically with TERM3. To understand which domain was responsible for this interaction,
we separately cloned the two domains L22e and H1/H5 in the pET expression vector. The
two domains were purified and used in further EMSA experiments (Figure 3B). As shown
in the figure, only the H1/H5-like domain is able to bind TERM3, while the ribosomal
domain (C-term domain) does not interact with TERM3. This means that the ability of
RpL22 to bind TERM3 is conferred by its H1/H5-like domain.

It is interesting to note that the size of the shift, obtained using the entire protein,
is lower than that obtained using the H1/H5 domain alone. Apparently, this seems to
be inconsistent, as we would expect an opposite behavior, given the reduction in the
size of the protein. We believe that the lack of the L22 domain causes a change in the
charge density of the polypeptide, which becomes more positive and this slows the run of
Rpl22/H5 polypeptide.

3.4. RpL22 Sub-Cellular Localization

From what we have shown so far, it emerges that the RpL22 protein has a bivalent
nature with an additional non-ribosomal function. It is indeed composed of a Histone-like
portion (N-term) and a ribosomal portion (C-term). Consistent with the presence of the
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histone portion, RpL22 is able to interact with DNA both “in vivo” (Yeast One-Hybrid
assay) and “in vitro” (EMSA).
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Figure 3. Rpl22 binds the TERM3 in vitro. Each lane contains an identical amount of input labeled
TERM3 DNA (2 ng) incubated with recombinant purified Rpl22 protein. (A) TERM3-Rpl22 complex
formation has shown in the lane 2, whereas the remaining lanes are committed to specific and
not-specific competition experiments: specific competitor (unlabeled TERM3*) or a large excess
of non-specific competitor (shared λ-DNA) were used as shown in figure; (B) identification of
which domain of RpL22 is responsible for binding with TERM3: we used purified Rpl22 (1.8 µg),
RpL22/H5 (1.2 µg), and RpL22/L22 (0.6 µg). We used different amounts of the proteins to maintain
the same stoichiometric ratio. The experiment suggests that only the RpL22/H5 polypeptide is able
to bind TERM3.

To try to uncover in vivo in D. melanogaster the extra-ribosomal role of Rpl22, we
analyzed its cellular location.

Mageeney and colleagues showed that RpL22, in the testes, displays a punctate nuclear
pattern, probably in the nucleoli [35].

Given the nature of the tissue examined, together with the fact that the expression of
the RpL22 gene is not ubiquitous in all testicular cell subtypes, we wanted to verify the
protein sub-cellular localization in a more tractable experimental cellular system, such as
the D. melanogaster S2R+ cell line.

We produced a polyclonal antibody from the H1/H5-like domain to be used in im-
munofluorescence experiments on S2R+ cells. To allow a more precise sub-cellular localiza-
tion of the RpL22 protein, we performed both immunofluorescence and co-immunofluores-
cence experiments. We used anti-RpL22, anti-Rpl28, anti-H1, and anti-fibrillarin antibodies
(Figure 4). Immunofluorescence staining experiments using formaldehyde-fixed S2R+ cells
showed that RpL22 has the expected ribosomal distribution pattern, namely a cytoplasmic
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and nucleolar localization (Panel A). Notably, the nucleolar localization of RpL22 roughly
corresponds to DAPI staining loss in the nucleus. The pattern of RpL22 corresponds to
the pattern of other ribosomal proteins (such as RpL28) (Panel B). We also performed
co-immunofluorescence staining experiments using anti-RpL22 and anti-H1 antibodies.
As expected, the two proteins have very different and almost specular localization, while
RpL22 is localized in the cytoplasm and the nucleolus, H1 is positioned only in the nu-
cleus with a staining free region that corresponds to the volume occupied by RpL22 in the
nucleolus (Panel B).
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Figure 4. RpL22 localization in Drosophila cell line S2R+ and in the brain cells. (A) Rpl22 localizes
both in cytoplasm and nucleolus in S2R+ cell. (B) To highlight the “ribosomal” behavior of RpL22,
co-immunofluorescence experiments were performed both with the anti-H1 antibody and anti-RpL28
antibody, finally, as further confirmation of the nucleolar localization, RpL22 co-localizes with the
nucleolar marker of fibrillarin. (C) The same localization pattern occurs (cytoplasm and nucleolus)
also in neurons.
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To confirm the cellular and subcellular localization of RpL22 also in tissues other than
cultured cells and germline tissues, we performed immunofluorescence experiments also
on Drosophila brain tissue, confirming the same cytoplasmic and nucleolar localization of
RpL22 already highlighted in S2R+ cells (panel C).

4. Discussion

The relationship between retrotransposons and the host genome has a double na-
ture. On the one hand, RTs are a source of genetic variability that has been exploited
during the evolution to develop both metabolic and physiological innovations such as
the placental syncytins [36], or they are involved in genomic stress response and adapta-
tion, mainly through rewiring of transcriptional networks [16,37,38]. On the other hand,
retrotransposons constitute a hazard both to the structural integrity of the genome and
its functionality. To balance these two opposite conditions, the eukaryotic genome has
evolved mechanisms to control transposition and exploit RT genes and their regulatory
regions to develop new gene functions (gain of function). Eukaryotic cells have developed
a series of transcriptional repression mechanisms to tame retrotransposons, basically based
on small RNAs. gypsy is controlled by a Drosophila locus called flamenco, which maintains
the retrovirus in a repressed state. The flamenco locus acts as a source of piRNAs in the
ovary, while in somatic tissues it acts as a source of endo-siRNAs [39–41].

Alternative mechanisms for controlling RTs activity have also been proposed, for
example the transposon homing [42]. It has been hypothesized that the interaction between
a motif present in the 5′-UTR of ZAM and the HP1 protein allows cells to direct the insertion
of ZAM in a biased manner into the genome. This would force the new transposed copies of
ZAM to converge in the heterochromatic regions of the genome where they would remain
inactive [19].

However, the host-RT co-evolution has sometimes resulted in the development of
potent regulatory sequences within the non-coding regions of RTs, due to their physical
interaction with host factors. This phenomenon has been used by the host to create
additional variability associated with the transcriptional rewiring of gene networks.

The 5′-UTR regions of some RTs are of particular interest from this standpoint. The
5′-UTR of RTs like gypsy, ZAM, Tirant, and Idefix have a polymorphic repeated organization.
In some cases, the repeated structure has been associated with enhancer (ZAM), silencer
(gypsy), or insulator (gypsy, ZAM and Idefix) functions. These functions are fulfilled through
the physical interaction of one or more host proteins with the 5′-UTR of the RT, as reported
for gypsy [43,44] and ZAM [20]. We have therefore tested the hypothesis that RTs harboring
a structured 5′-UTR could be bounded by host proteins that could either regulate their
transposition or confer them new functions.

In this work, we first identified a shared motif (TERM) in the repeat-containing
5′-UTRs of some RTs using a comparative analysis approach, and subsequently found
the RpL22 protein as the main interacting protein of the TER motif, using the Yeast One-
Hybrid assay. We have finally confirmed the Rpl22/TERM interaction in vitro and mapped
the DNA binding domain to the NH-terminal portion of the protein. Although our IF
experiments are not informative of the Rpl22/DNA interaction in vivo, this connection
cannot be excluded, as discussed below.

So, what is the biological relevance of our findings? RpL22 is a ribosomal protein
mainly localized in the cytoplasm. Nevertheless, other studies have highlighted its role in
establishing a state of generalized transcriptional repression [45], as already demonstrated
for histone H1 [45]. The results of our experiments show that not only RpL22 can interact
directly with DNA, but also that this interaction is sequence-specific (TERM motif). The
fact that RpL22 possesses a histone H1/H5-like domain capable of binding DNA leads us
to hypothesize that the RpL22 protein could act, through the binding to the TERM motif, as
a transcriptional repressor, especially on ZAM, accord, and Tirant where several copies of
TERM are clustered (Figure 2A,D).
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Although we have found that the Histone-like region is responsible for the binding of
RpL22 to TERM both in vivo (Yeast One-Hybrid assay) and in vitro (EMSA), unlike Ni and
colleagues [45], we were not able to pinpoint a chromosomal localization of RpL22 by IF
and ICC experiments except for the nucleolus region (Figure 4). This may be due to the cell
type (S2R+), or tissue (Drosophila brain) used in our study.

The behavior of RpL22 may depend on the cell type. Some post-translational modifica-
tions of RpL22 (SUMOylation and phosphorylation) are known [46], and they may be able
to modify the localization and/or function of RpL22 in a tissue- and/or developmental
stage-dependent manner. It could also be hypothesized that, in S2R+, neuron, and salivary
gland cells [47], the putative chromatin-associated function of Rpl22 could be dispensable,
while it could be essential in other tissues not investigated in this study. Imaginal discs are
tissues experiencing profound changes in the transcriptional program and Rpl22 is one
of the very few ribosomal genes active during metamorphosis (Figure 5) [48]. Therefore,
Rpl22 might exert its role in controlling TEs, during the metamorphosis.
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Figure 5. Comparison of the expression profile of RpL22 (in blue) with the other ribosomal proteins
during the development of Drosophila melanogaster. Microarray data of ribosomal D. melanogaster
gene expression during development was downloaded from the FLYMINE database [49] (available
at: https://www.flymine.org/flymine; last accessed 15 December 2021). These data were used to
construct the graph. Y axis: fold change. Reference sample is a pooled mRNA representing all stages
of the life cycle as reported in Arbeitman et al. [48].

In a parallel study [47], we have also demonstrated that the Doc5 transposon, which
is located exquisitely in the heterochromatin of D. melanogaster, is also a binding site for
Rpl22. Being a LINE-like transposon, Doc5 has not been included in this study. At least
six TERM-like motifs can be found in the Doc5 sequence (Figure S1), which suggests that
Rpl22 exhibits sequence specificity. Moreover, the study by Berloco et al. [47] confirms the
connection between Rpl22 and transposable elements.

Additional studies, aimed at the identification of the Rpl22/DNA interaction in vivo
are required to support our current hypotheses. However, studies aimed at revealing
Rpl22 as a chromatin component require antibody optimization and the development of a
transgenic line that expresses efficiently the Rpl22 protein. The only transgenic line allowing
the overexpression of Rpl22 available to date [50] does not allow for an efficient testing of
our hypothesis. Furthermore, it is possible that the Rpl22 binding to chromosomes could be
only highlighted in vivo under particular physiological conditions (such as development,
tissue, or stress specific conditions), making it difficult to uncover the role of Rpl22 in
chromatin dynamics.

In conclusion, our results show that the D. melanogaster Rpl22 protein specifically
interacts in vitro with DNA sequences related to TEs. While our findings open up the
possibility for RpL22 to participate in controlling TEs of D. melanogaster, such interactions

https://www.flymine.org/flymine
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need an experimental validation in vivo using specific approaches such as Chip-seq or
similar methods.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13020305/s1, Figure S1: Doc5 transposon fragment harbors at least
6 TERM-like elements
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