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A B S T R A C T   

The prevalence of risky behavior such as substance use increases during adolescence; however, the neurobio-
logical precursors to adolescent substance use remain unclear. Predictive modeling may complement previous 
work observing associations with known risk factors or substance use outcomes by developing generalizable 
models that predict early susceptibility. The aims of the current study were to identify and characterize 
behavioral and brain models of vulnerability to future substance use. Principal components analysis (PCA) of 
behavioral risk factors were used together with connectome-based predictive modeling (CPM) during rest and 
task-based functional imaging to generate predictive models in a large cohort of nine- and ten-year-olds enrolled 
in the Adolescent Brain & Cognitive Development (ABCD) study (NDA release 2.0.1). Dimensionality reduction 
(n = 9,437) of behavioral measures associated with substance use identified two latent dimensions that 
explained the largest amount of variance: risk-seeking (PC1; e.g., curiosity to try substances) and familial factors 
(PC2; e.g., family history of substance use disorder). Using cross-validated regularized regression in a subset of 
data (Year 1 Fast Track data; n>1,500), functional connectivity during rest and task conditions (resting-state; 
monetary incentive delay task; stop signal task; emotional n-back task) significantly predicted individual dif-
ferences in risk-seeking (PC1) in held-out participants (partial correlations between predicted and observed 
scores controlling for motion and number of frames [rp]: 0.07-0.21). By contrast, functional connectivity was a 
weak predictor of familial risk factors associated with substance use (PC2) (rp: 0.03-0.06). These results 
demonstrate a novel approach to understanding substance use vulnerability, which—together with mechanistic 
perspectives—may inform strategies aimed at early identification of risk for addiction.   

1. Introduction 

Although adolescents are prone to a variety of risky behaviors, 
experimentation and use of substances are particularly common 
amongst youth—with nearly a quarter of 8th graders and half of 12th 
graders reporting experimentation with illicit substances (Johnston 
et al., 2018). The consequences of substance use range from accident 
and injury to the individual to economic strain, with the overall cost 
associated with alcohol, tobacco, and illicit substances in the US esti-
mated to exceed $740 billion annually (National Institute of Drug Abuse 
(NIDA, 2017). An extensive body of work has characterized the impact 
of substances on brain function in individuals that have already begun to 
use or are dependent on substances (Balodis and Potenza, 2015; Garavan 

et al., 2000; Houck et al., 2013; Janes et al., 2012; Ma et al., 2010, 2011; 
Tapert et al., 2004); however, less is known about the impact of po-
tential risk factors for substance use on the developing brain and how 
these precursors may motivate susceptible individuals to begin using 
substances early in life. 

Considerable variability in the propensity to engage in risky behav-
iors has been observed across adolescents in the real world (Johnston 
et al., 2018) and in the lab (Galvan et al., 2007). These individual dif-
ferences in behavior—such as substance use—may be explained in part 
by the impact of environmental and genetic risk factors on developing 
brain circuitry. For example, early experimentation with substances in 
youth has consistently been shown to correlate with later outcomes. 
Early sips of alcohol (before 6th grade) have been linked to earlier onset 
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of drinking a full glass of alcohol (Donovan and Molina, 2011), being 
drunk by 9th grade (Donovan and Molina, 2011; Jackson et al., 2015), 
alcohol misuse by ages 17–18 (Hawkins et al., 1997), and alcohol 
dependence later in life (Grant and Dawson, 1997; Prescott and Kendler, 
1999). Similarly, an individual’s age at first cigarette puff and first full 
cigarette has been associated with a higher likelihood of later identifi-
cation as a smoker (Azagba et al., 2015). Finally, early thoughts about 
intention and curiosity to use substances have been shown to relate to 
experimentation and later alcohol and tobacco use in youth (Andrews 
et al., 2003; Pierce et al., 1996; Trinidad et al., 2017), and adolescents 
that experiment with one substance early on tend to concurrently 
experiment or engage with others (e.g., marijuana and tobacco; (Okoli 
et al., 2008). 

In addition to curiosity and early experimentation, several familial 
factors have been shown to increase risk for later substance use in 
children. For example, family history of alcohol dependence is associ-
ated with problem drinking in college students (Labrie et al., 2010)— 
independent of age of first drink (Grant, 1998; Prescott and Kendler, 
1999)—with the heritability of alcoholism estimated to be between 
50–60% (McGue, 1999). Similarly, family history of drug use has been 
associated with drug use severity (Pickens et al., 2001), with an esti-
mated heritability of drug dependence ranging from 0.39 (for halluci-
nogens) to 0.72 (for cocaine) (Goldman et al., 2005), and children with 
parents who smoke at home are more likely to begin or desire to begin 
smoking early in life (Gilman et al., 2009; Jackson and Henriksen, 
1997). Despite these well-established behavioral associations, the extent 
to which vulnerability is represented in the developing brain prior to 
observable phenotypic differences in behavior remains unclear. 

Previous work has highlighted differences in brain circuits impli-
cated in reward motivation and cognitive control in individuals with 
addiction or at risk for addiction (Balodis and Potenza, 2015; Bjork et al., 
2004; Whelan et al., 2012; Yau et al., 2012). For example, neuroimaging 
studies have observed differences during a monetary reward task in 
adults with addiction (Balodis and Potenza, 2015) as well as in those 
genetically at-risk for addiction (Villafuerte et al., 2012; Yau et al., 
2012). Moreover, brain responses during impulse control tasks have 
been consistently associated with substance use in adolescence (Mah-
mood et al., 2013; Norman et al., 2011; Tapert et al., 2007; Wetherill 
et al., 2013; Whelan et al., 2012). The development of these circuits has 
been suggested to be hierarchical, such that brain circuitry governing 
reward motivation shows functional and structural changes prior to 
changes in cognitive control circuitry (Casey et al., 2019; Heller et al., 
2016). This differential development of reward- and control-related 
circuitry is considered to encourage exploratory behavior and allow 
adolescents to adapt to new environmental challenges (Casey, 2015), 
and also plays a role in heightened sensation seeking (Casey and Jones, 
2010; Steinberg, 2008). Thus, children and adolescents may be partic-
ularly susceptible to substance-related cues and risk factors promoting 
early initiation. 

Beyond heightened vulnerability attributed to normative neuro-
development, differences in a variety of risk factors (e.g., psychopa-
thology, behavioral tendencies) may impact the developing brain in 
such a way that further promotes substance use. A growing literature has 
begun to characterize vulnerability to substance use by examining 
regional brain differences between individuals considered to be at risk 
relative to those at a lower risk. Due to the high heritability of substance 
dependence, “risk” has commonly been defined by genetic risk or family 
history of substance use disorder. For example, adolescents with a family 
history of alcohol use disorder exhibit differences in striatal activity 
during tasks associated with response inhibition (Heitzeg et al., 2010) 
and monetary reward (Yau et al., 2012), as well as differential prefrontal 
activity during tasks associated with reward (Cservenka and Nagel, 
2012; Ivanov et al., 2012), working memory (Cservenka et al., 2012), 
and inhibition (Acheson et al., 2014). Other studies have identified 
neurobiological markers of vulnerability by examining prospective re-
lationships with known outcomes. Using longitudinal approaches, 

adolescent substance use initiation and severity has been predicted by 
heightened striatal activity during monetary reward tasks (Morales 
et al., 2018; Stice et al., 2013), reduced activation in regions associated 
with response inhibition (Norman et al., 2011), and reduced fronto-
parietal activity during a working memory task (Squeglia et al., 2012; 
Tervo-Clemmens et al., 2018). Recent work has sought to reconcile 
findings in the literature based on disparate ways of defining and 
investigating vulnerability for substance use. In a meta-analysis, Ter-
vo-Clemmens and colleagues (2020) observed reliable differences 
associated with substance use vulnerability in the striatum, and that this 
activation pattern was consistent between individuals that were iden-
tified based on family history of use and those that were retrospectively 
identified via future use, suggesting the involvement of common un-
derlying circuitry. 

Given the growing interest in identifying biomarkers of substance 
use vulnerability (Heitzeg et al., 2015; Squeglia and Cservenka, 2017), 
predictive models that precede initiation as well as knowledge of 
future outcomes will be an important gap to address. Although studies 
characterizing vulnerability in the brain provide important insight into 
the mechanisms underlying substance use, these primarily correla-
tional findings are limited in terms of their generalizability and 
out-of-sample prediction. There has been a recent push towards 
emphasizing predictive approaches as a way of understanding behav-
ior—in addition to more commonly practiced descriptive-based ap-
proaches (Gabrieli et al., 2015; Rosenberg et al., 2018; Varoquaux & 
Poldrack, 2019; Woo et al., 2017; Yarkoni and Westfall, 2017). Rather 
than explaining regional brain differences attributable to specific risk 
factors or task conditions, a predictive model of substance use would 
capture a more nuanced and generalizable representation of behav-
ioral and neurobiological vulnerability. Predictive models of vulnera-
bility, constrained by hypothesis-driven findings derived from 
mechanistic approaches, may have a greater potential to benefit early 
intervention and prevention strategies. 

Connectome-based predictive modeling (CPM) has proven to be 
fruitful in generating predictions about behavior both across individuals 
(Finn et al., 2015; Rosenberg et al., 2016a; Shen et al., 2017) and within 
individuals over time (Lichenstein et al., 2019; Rosenberg et al., 2020; 
Yip et al., 2019a), and has specifically been suggested to provide bio-
markers for predicting addiction (Yip et al., 2019b). Because of the 
circuit-based changes that occur during development, CPM may be 
especially informative for characterizing brain predictors of vulnera-
bility to future substance use in children. Functional connectivity at rest 
not only distinguishes an individual (i.e., represents a neural “finger-
print”) (Finn et al., 2015) but also reflects developmental changes in 
brain circuitry (Dosenbach et al., 2010; Nielsen et al., 2019) as well as 
genetic and environmental history (Ge et al., 2017; Miranda-Dominguez 
et al., 2018; Thompson et al., 2013), and has been highlighted as an 
effective measure of circuit-based imbalances in addiction (Fedota and 
Stein, 2015; Sutherland et al., 2012). Moreover, functional connectivity 
during cognitive challenges has been shown to improve behavioral 
predictions when compared to functional connectivity during rest 
(Greene et al., 2018; Rosenberg et al., 2016a; Yoo et al., 2018). This 
distinction may point towards the usefulness of in-scanner tasks for 
assessing circuitry associated with substance use, such as circuits 
involved in reward and inhibitory control processing (Balodis and 
Potenza, 2015; Bjork et al., 2004; Whelan et al., 2012; Yau et al., 2012) 
as well as general cognitive function (Squeglia et al., 2012). Thus, 
functional brain connectivity during rest and during task are strong 
candidate measures for predicting vulnerability to future use in the 
developing brain prior to onset of use. 

Here we use a large-scale open-access dataset, the Adolescent Brain 
and Cognitive Development (ABCD) study (Casey et al., 2018), to 
characterize brain and behavioral signatures of vulnerability for future 
substance use during childhood. As one of the primary objectives of the 
ABCD study is to understand the impact of substance use on the devel-
oping brain and neurocognitive outcomes (https://abcdstudy.org), this 
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study incorporates a comprehensive battery of substance-related ques-
tionnaires and surveys (Lisdahl et al., 2018). The current analysis uti-
lizes this resource to 1) quantify behavioral dimensions of vulnerability 
for future substance use based on this battery; and 2) identify brain 
signatures that predict individual differences among these dimensions 
during a range of cognitive conditions. Given previous literature 
exploring behavioral and neurobiological vulnerability to substance use, 
as well as previous work using connectome-based prediction, we hy-
pothesize that functional connectivity during rest and task will predict 
individual differences in latent dimensions of substance use vulnera-
bility. Using a combination of data-driven and hypothesis-driven ap-
proaches, we show that functional connectivity in the developing brain 
predicts vulnerability to substance use in children prior to initiation. 

2. Methods 

2.1. Participants 

Participants in the current study are enrolled in the ongoing 
Adolescent Brain Cognitive Development (ABCD) Study—a 10-year 
longitudinal study that aims to further our understanding of the 
environmental and genetic influences on brain development and their 
roles in substance use and other health outcomes (Garavan et al., 
2018). This large-scale study tracks 11,875 children between the ages 
of 9–11 recruited from 21 research sites across the United States. 
Although designed to approximate the diversity of the US population 
based on sex, race, ethnicity, and socioeconomic status (Compton 
et al., 2019), the population characteristics of the sample described in 
the current analyses are not guaranteed to match national estimates 
(Garavan et al., 2018). 

Parental informed consent and child assent were obtained from all 
participants and approved by centralized and institutional review 
boards at each data collection site. Study-wide exclusionary criteria 
included a diagnosis of schizophrenia, moderate to severe autism spec-
trum disorders, intellectual disabilities, or substance use disorders at the 
time of recruitment. Additionally, children with major and persistent 
neurological disorders, multiple sclerosis, sickle cell disease or certain 
seizure disorders such as Lennox-Gastaut syndrome, Dravet syndrome, 
and Landau Kleffner syndrome were excluded. 

The current study includes year-one (baseline) assessments from the 
curated 2.0.1 release of the ABCD study data set. Analyses utilize 
behavioral data collected on the full baseline cohort (n = 11,875) and all 
fMRI data available through ABCD’s Fast Track option as of April 2018 
(n = 5,772). Children with a mild autism spectrum diagnosis or any 
history of epilepsy were excluded from the current analysis. Low quality 
and/or high-motion fMRI data (described in Methods: preprocessing) 
were additionally excluded from neuroimaging analyses. To avoid 
confounds associated with family relatedness, behavioral and neuro-
imaging analyses were run with and without the inclusion of siblings. 

2.2. Study design 

2.2.1. Psychological and behavioral measures 
Parent- and child-reported psychological and behavioral assessments 

associated with substance use were compiled for inclusion in the present 
study. To constrain the current analysis to variables directly associated 
with substances, behavioral measures were selected by querying the full 
battery of ABCD baseline measures for items explicitly referring to 
substances (e.g., “alcohol”, “substances”; Table S1). Itemized scores 
were collapsed across substances where applicable in order to identify 
risk for general substance use rather than for specific substances. 

2.2.2. Resting state fMRI data collection 
ABCD images were acquired using Siemens Prisma, Philips, or GE 

750 3 T scanners with a 32-channel head coil. Detailed acquisition pa-
rameters have been previously described in the literature (Casey et al., 

2018). Scan sessions included a high-resolution T1-weighted scan, 
diffusion weighted images, T2-weighted spin echo images, resting-state 
fMRI, and task-based fMRI. Functional images were collected through 
60 slices in the axial plane using echo-planar imaging sequence with the 
following parameters: TR = 800 ms, TE = 30 ms, flip angle = 52◦, voxel 
size = 2.4 m㎥, multiband slice acceleration factor = 6. 

Participants completed up to four runs of 5-minute resting-state fMRI 
scans. ABCD sites with Siemens scanners used Framewise Integrated 
Real-time MRI Monitoring (FIRMM; (Dosenbach et al., 2017), which 
monitors head motion in real-time and allows for the discontinuation of 
resting-state data collection after three runs if 12.5 min of low-motion 
data had been collected. 

2.2.3. Monetary incentive delay task 
The monetary incentive delay task (MID) measures components of 

reward processing including anticipation and outcome of rewards and 
losses as well as the motivation to gain rewards and mitigate losses 
(Knutson et al., 2000). MID data were collected in two 50-trial fMRI runs 
each lasting approximately 5.5 min (403 volumes per run after dis-
carded acquisitions). In each trial, participants were presented with an 
incentive cue (1500− 4000 ms) indicating whether they could win $0.20 
or $5.00, lose $0.20 or $5.00, or if no money was at stake (Fig. 1B). This 
incentive cue was followed by a fixation delay and then a dynamically 
manipulated target lasting 150− 500 ms, customized to ensure partici-
pants achieved approximately 60% accuracy. In order to achieve the 
outcome, participants were required to respond during the target pre-
sentation. Feedback of reward or loss was provided for each trial. 

2.2.4. Stop signal task 
The Stop Signal Task measures impulsivity and impulse control 

(Logan, 1994). SST data were collected in two 180-trial fMRI runs each 
lasting approximately 6-minutes (437 volumes after discarded acquisi-
tions). In each trial, participants were presented with a go signal, rep-
resented by a left or right arrow, which they responded to by indicating 
the direction in which the arrow was pointing with a left or right button 
press. A stop signal, indicated by an upright arrow, followed 16.67% of 
the go signals such that participants were required to inhibit their 
already-initiated response. The timing between go and stop signals was 
dynamically manipulated for each subject to ensure approximately 50% 
accuracy. 

2.2.5. Emotional n-back task 
The emotional n-back Task (Cohen et al., 2016a, b) measures 

working memory by manipulating cognitive load and emotional pro-
cesses by using emotive faces in addition to places as stimuli (Barch 
et al., 2013; Casey et al., 2018). Emotional n-back data were collected in 
two 80-trial fMRI runs each lasting approximately 5-minutes (403 vol-
umes after discarded acquisitions). Each run consisted of eight task 
blocks (four 0-back; four 2-back) and four fixation blocks (15 s each). 
For the 0-back condition, participants were instructed to respond 
“match” when the current picture was the same as the target picture 
shown at the start of the block, “no match” if not. For the 2-back con-
dition, participants were instructed to respond “match” when the cur-
rent picture was the same as the one shown two pictures back, “no 
match” if not. In each task block, participants were first presented with 
an instruction cue (2500 ms) to indicate which task condition would 
follow—0-back (“Target=” and a picture of the target stimulus) or 
2-back (“2-back”). To signal a switch between task conditions, a colored 
fixation cross (500 ms) preceded each block’s instruction cue. The in-
struction cue was followed by the interstimulus interval fixation 
(500 ms) and then a stimulus trial (2500 ms)—a picture of a face 
(happy, fearful, or neutral expressions) or a place immediately followed 
by a fixation cross. Each task block consisted of ten trials, 2 of which 
were targets, 2–3 were non-target lures (repeated incorrect stimuli), and 
the remainder were non-lures (non-repeated stimuli). 
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2.3. Behavioral analyses 

Data from 287 participants with epilepsy or autism diagnoses were 
excluded from the 11,431 participants with complete substance use 
data, resulting in 11,144 participants. Of these, 9,437 remained after the 
exclusion of siblings (Table 1; Fig. S2). 

Associations among raw measures related to substance use were first 
examined using Pearson correlation and visualized using multidimen-
sional scaling (MDS). To better understand the variability in the data, 
principal components analysis (PCA) was used to reduce the dimen-
sionality of the data (Fig. 1A). Because of the skewness and non- 
normality of the behavioral data (i.e., fewer participants endorsing 
questions related to substance use as severity increases), summarized 
data across all substance-related measures were transformed and stan-
dardized using the Yeo-Johnson normalizing transformation in scikit 
learn (Pedregosa et al., 2011), which uses maximum likelihood esti-
mates to stabilize variance and minimize the skewness of the data (Yeo 
and Johnson, 2000). The dimensionality of the normalized data was 
reduced using singular value decomposition via scikit learn’s PCA 
function. The number of components was determined using Bayesian 
model selection (Minka, 2001), yielding 14 principal components. The 
reliability of component loadings was assessed by computing 95% 
confidence intervals across 10,000 bootstraps. Loadings whose confi-
dence intervals did not cross zero were considered reliable. Normalized 
substance use data were projected onto the resulting space to produce 
component scores for each participant. 

2.4. Neuroimaging 

2.4.1. Preprocessing 
Raw dicom images for 5,772 participants were downloaded via 

ABCD Fast Track (April 2018) and preprocessed using BioImage Suite 
(Joshi et al., 2011) using an approach described in detail elsewhere 
(Greene et al., 2018; Horien et al., 2019). T1-weighted anatomical 
images were skull stripped using optiBET (Lutkenhoff et al., 2014)—a 
modified version of FSL’s brain extraction tool (Smith, 2002), and 
non-linearly registered to MNI stereotaxic space using B-spline free 
form deformation. Resulting images were visually inspected to verify 
the quality of previous preprocessing steps and to ensure that the images 
were artifact-free. Participants that did not pass visual inspection 
(n = 48) were excluded from further analysis, as well as scanning runs 
with more than 0.15-mm mean frame-to-frame displacement, 2-mm 
maximum displacement, or more than 3-degrees of rotation. Func-
tional images were realigned to correct for motion, registered to MNI 
space, and anatomically parcellated using a 268-node whole-brain atlas 
(Shen et al., 2013). Covariates of no interest were regressed from the 
data, including linear, quadratic, and cubic drifts, 24-motion parame-
ters (Satterthwaite et al., 2013), mean cerebral-spinal fluid signal, mean 
white matter signal, and overall global signal. Data were temporally 
smoothed with a Gaussian filter, σ = 1.95 (approximate cut-off fre-
quency of 0.12 Hz). Pearson correlation coefficients between time 
courses for every pair of nodes were computed and Fisher z-trans-
formed, resulting in a 268 × 268 functional connectivity matrix for 

Fig. 1. Analysis schematic. A) Behavioral measures associated with substance use were normalized and reduced using principal components analysis. B) Functional 
connectivity matrices were generated for each task and rest using a 268-node brain atlas (Shen et al., 2013). C) A 10-fold cross-validation procedure was used to train 
and test a ridge regression model to predict individual differences in PCA scores. 

Table 1 
Participant selection. Full baseline data from ABCD Release 2.0.1 were used for behavioral analyses. Year 1 fast track data (available as of April 2018) were used for 
fMRI analyses. Data were downloaded approximately halfway through baseline data collection. The total number of subjects meeting inclusion criteria for each 
analysis varied across conditions. All analyses were performed with and without the inclusion of siblings to account for family relatedness.   

Data source # of runs Data completion Data quality Healthy controls Final participants  
ABCD release  Subjects with complete 

data 
Visual and FreeSurfer 
QC 

Excluding epilepsy, 
ASD 

Excluding 
siblings 

Substance use beh. data. 2.0.1 – 11,431 – 11,144 9,437 
Resting state. 

Year 1 fast track [4/ 
2018] 

1-4 5,400 3,258 3,193 2,875 
Monetary incentive 

delay. 1-2 4,886 1,938 1,902 1,758 

Stop signal task. 1-2 4,808 1,597 1,567 1,469 
Emotional N-back. 1-2 4,752 1,695 1,667 1,549  
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each run and each participant (Fig. 1B). After additionally excluding 
those with low quality anatomical images by FreeSurfer (ABCD NDA 
name: fsqc_qc), data for 3,193 participants remained in the resting-state 
condition; 1,902 participants for the MID task; 1,567 participants for 
the SST; and 1,667 participants for the emotional n-back task (Table 1; 
Fig. S3). 

2.4.2. Connectome-based predictive modeling 
Rest- and task-based functional connectivity matrices from partici-

pants meeting inclusion criteria were used to generate predictive models 
of substance risk-seeking (PC1) and familial risk for substance use (PC2) 
(Fig. 1C). For a given scan condition, connectivity matrices were vec-
torized and entered into a linear regression model with L2 regularization 

(i.e., ridge regression) used to predict component scores in the held-out 
data using 10-fold cross-validation. Component loadings were recom-
puted in a subset of participants independent from those contributing to 
a given neuroimaging analysis, such that resulting PCs were consistent 
with those observed in the behavioral analysis (r > 0.9) but statistically 
independent from the neuroimaging sample. Resulting loadings were 
subsequently used to transform substance use data in participants used 
for connectome-based model generation. To avoid biasing the test set, 
edge strengths were z-scored across subjects within the training set (i.e., 
90% of participants) and the corresponding transformation was subse-
quently applied to the test set (i.e., 10% of participants) on each fold. 

Regression models were developed and internally validated for 
hyperparameter (alpha) tuning using a separate 10-fold cross-validation 

Fig. 2. Substance use measures. A) Correlation matrix of transformed behavioral measures related to substances. B) MDS plot visualizing distances among substance 
use measures. C) Scree plot depicting variance explained by individual components. D) PCA loadings for each behavioral measure (left). PCA loadings that 
demonstrated consistency across 10,000 bootstrapped samples (right). 
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Fig. 3. Predictive model performance. A) Cross validated predictions of substance-related risk components from functional connectivity. Model performance is 
defined as the partial correlation between predicted and observed values accounting for covariates. Error bars represent 95% confidence intervals. B) Pairwise 
distances (1 – Spearman correlation) between coefficients for all task- and rest-based models for PC1. 

Fig. 4. Anatomical specificity of predictive models. Most informative connections (top 0.1%) in connectome-based models predicting PC1 (risk-seeking associated 
with substance use). Nodes are arranged in correspondence with networks functionally defined in an independent dataset. Edges represent model coefficient values. 
(DMN = Default mode network; MF = Medial frontal; CO = Cingulo-opercular network; FP = Frontoparietal network; CBL = Cerebellum). 
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scheme within the training sample. Resulting models were tested by 
generating predicted scores for the held-out participants and perfor-
mance was assessed by computing the partial correlation between pre-
dicted and observed scores. More specifically, partial correlation was 
used to account for head motion (mean frame-to-frame displacement; 
mean rotation; maximum displacement) and quantity of data (number of 
frames). Given the large sample size and likelihood of inflated para-
metric p-values, 10,000 bootstrapped samples were used to generate 
95% confidence intervals around estimates to interpret model 
performance. 

To consider the possibility that models generated from rest and task 
data complement each other in a way that cumulatively improves pre-
diction, data-driven models were created using a combination of all 
tasks and rest. Vectorized functional connectivity matrices were 
concatenated for participants meeting inclusion criteria for all four scan 
conditions (resting-state, MID, SST, and n-back; n = 741) and subse-
quently used to predict component scores as previously described. Mo-
tion parameters (mean and maximum frame-to-frame displacement, 
maximum rotation) were averaged across all scan conditions to control 
for motion in the combined model. To account for the possibility that 
differences in model performance in the combined model could be due 
to a greater quantity of data used per subject, feature selection was 
performed in a separate model to select the number of features equal to a 
single task- or rest-based functional connectivity matrix. This feature 
selection step was performed by computing univariate correlations be-
tween edge strengths and component scores within the training set and 
selecting the top 35,778 edges for model construction. 

2.4.3. Data visualization 
The most informative connections for each model (top 0.1%) were 

arranged according to independently-defined functional networks 
(described in greater detail in (Finn et al., 2015) and visualized using 
MNE-Python’s viz package (Gramfort, 2013). 

3. Results 

3.1. Behavioral results 

Pairwise correlations visualized across all substance use measures 
demonstrated a range of associations (Fig. 2A). Multidimensional 
scaling of pairwise Euclidean distances amongst substance use data 
depicted a distinction between risk-seeking and familial factors 
(Fig. 2B). Principal components analysis revealed two orthogonal di-
mensions that were highly reliable across 10,000 bootstrapped samples 
(Fig. 2D). The first component (PC1) loaded primarily onto questions 
associated with early sips of alcohol (e.g., obtained without parental 
permission) as well as curiosity and intention to experiment with sub-
stances. The second component (PC2) loaded onto questions associated 
with family substance use, including a family history of substance use 
disorder and whether someone smokes in the child’s home. These two 
components accounted for 23% and 14% of the total variance, respec-
tively (Fig. 2C). Because of their high reliability, in addition to ac-
counting for the most variance (37% cumulative), these first two 
components were of primary interest in subsequent analyses. 

3.2. Connectome-based prediction 

Functional connectivity during tasks and rest was used to generate 
models predicting variability in PC1 (risk-seeking associated with sub-
stance us) and PC2 (familial risk factors). Individual differences in scores 
for the substance use risk-seeking component (PC1) were significantly 
predicted from connectivity during rest (partial correlation [rp] = 0.1, 
95% bootstrap CI: [0.06, 0.13]) as well as during all three tasks (MID: 
rp = 0.09, 95% CI [0.05, 0.14]; SST: rp = 0.08, 95% CI [0.03, 0.13]; N- 
Back: rp = 0.15, 95% CI [0.1, 0.2]) (Fig. 3). Scores for familial risk 
factors associated with substance use were significantly predicted by 

functional connectivity during the emotional n-back task (rp = 0.06, 
95% bootstrap CI: [0.005, 0.11]), but not during rest, MID or SST. 
Findings were consistent when siblings were included in the analysis 
(Fig. S3). Model performance was not associated with the number of 
participants included in a given scan condition (p = 0.86) suggesting 
that quantity of data did not bias performance of these models. 

Combining all tasks improved model performance for predicting PC1 
(rp = 0.21, 95% bootstrap CI: [0.14, 0.28]) but not PC2 (rp = 0.06, 95% 
bootstrap CI: [–0.01, 0.13]) (Fig. 3). These results were consistent if the 
number of features selected matched that of a single scan condition (e.g., 
a single task, 35,778 edges), with a marginal improvement in predicting 
PC2 (PC1: rp = 0.19, 95% bootstrap CI: [0.12, 0.26]; PC2: rp = 0.07, 
95% bootstrap CI: [0.004, 0.14]. 

Mean frame-to-frame displacement across all tasks and rest was not 
correlated with PC1 (r = –0.01; p 0.45) or PC2 scores (r = 0.0005; 
p = 0.97), suggesting that head motion was not associated with 
behavioral phenotypes. Likewise, there was no relationship with 
maximum rotation and behavioral scores (PC1: r = 0.01, p = 0.5; PC2: r 
= –0.003, p = 0.85). 

Although predictive models did not significantly differ in terms of 
performance, model coefficients demonstrated substantial differences 
across conditions and components. A quantitative measure of model 
distinctiveness (1 – Spearman correlation) demonstrated dissimilarity 
between rest and task conditions, with models derived from the MID 
task demonstrating the greatest dissimilarity with rest for both PC1 
(1–ρ = 0.88; 95% CI: [0.87, 0.89]) (Fig. 3B). Model coefficients were 
reliable across folds within task and rest conditions (mean [s.d.] 
correlation = 0.84 [0.014]). Visualizing the most informative connec-
tions (top 0.1%) of each predictive model further illustrates the 
distinctiveness across models (Fig. 4). 

4. Discussion 

Through the use of data-driven predictive models developed in a 
large cohort of children, the current study found an association between 
risk factors for substance use vulnerability and functional connectivity 
in the developing brain. Dimensionality reduction of a large battery of 
substance-related behavioral measures in 9,437 nine- and ten-year-olds 
revealed two latent dimensions of risk. The first loaded heavily onto risk- 
seeking (e.g., curiosity to try substances) and the second loaded on fa-
milial risk factors (e.g., family history of substance use). Regularized 
regression models trained on functional connectivity data significantly 
predicted these dimensions in a subset of participants (Year 1 Fast 
Track). Specifically, functional connectivity during a range of cognitive 
conditions, including rest and task, significantly predicted individual 
differences in PC1 (risk-seeking associated with substances). Predictive 
models were supported by highly distributed patterns of connections 
that varied across scan conditions. Consistent with evidence showing 
that a combination of task- and rest-based connectomes offer comple-
mentary information yielding greater prediction accuracy (Gao et al., 
2019), predictive performance increased when all scan conditions were 
included in the model, independent of the number of features used. By 
contrast, functional connectivity was a weaker predictor of PC2 (familial 
risk factors). Connectivity during a general cognitive task (n-back) 
weakly—but significantly—predicted this latent dimension, whereas 
connectivity during tasks associated with reward motivation and 
cognitive control showed no predictive relationship with PC2. 

These findings complement a growing body of literature aimed at 
identifying predictive measures of vulnerability to future substance use 
(Heitzeg et al., 2015; Squeglia and Cservenka, 2017; Tervo-Clemmens 
et al., 2020). One way in which brain-based predictions have been 
generated is through longitudinal and prospective approaches. For 
example, brain responses during an inhibitory control task have been 
found to differentiate adolescents that became heavy alcohol users from 
those that did not after 18 months (Mahmood et al., 2013), three years 
(Wetherill et al., 2013), and after four years (Heitzeg et al., 2014; 
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Norman et al., 2011). Other prospective studies have related baseline 
brain responses to alcohol cues to frequency (Courtney et al., 2018) and 
severity (Dager et al., 2014) of alcohol misuse among college-aged 
students over the course of several months. Although these studies 
have provided insight into neural markers that predict future behavior, 
they may not capture variability that is specific to substance use 
vulnerability in at-risk populations. In comparison to prospective pre-
dictions of substance use behavior, other work has sought to identify 
biomarkers of vulnerability by examining associations with known risk 
factors for substance use. For example, previous work has observed 
differences in reward-related responses in drug-naive children with a 
family history of substance abuse (Ivanov et al., 2012) as well as in 
children with a family history of alcohol use disorder (Heitzeg et al., 
2010; Yau et al., 2012). 

The current study utilizes a unique and complementary approach to 
predicting substance use vulnerability. Whereas identifying common 
neural pathways or distinct behavioral risk factors will give rise to a 
greater understanding of neurobiological and psychological mecha-
nisms underlying vulnerability, predictive models may afford greater 
generalizability (Yarkoni and Westfall, 2017). Further, mechanistic ap-
proaches require greater consideration of how to operationalize a given 
phenotype—such as vulnerability, which may lead to a more reduc-
tionist viewpoint that overlooks the broader complexity of that pheno-
type (Varoquaux and Poldrack, 2019). Predictive models have the 
potential to capture more highly distributed features contributing to a 
particular outcome (e.g., beyond canonical networks), and when con-
strained by hypothesis-driven approaches, may inform mechanistic 
perspectives of these features. Thus, both explanation-based and 
predictive-based approaches will be instrumental in establishing bio-
markers of vulnerability, which may ultimately inform early detection of 
risk for addiction. Despite the utility of predictive modeling, the current 
study presents a first step towards uncovering the broader potential of 
this approach in understanding substance use vulnerability. As a result, 
there are a number of avenues for future work and limitations that 
warrant further discussion. 

Although the current analysis restricted inclusion of behavioral 
variables to those directly related to substances, future work should 
address the role of co-occurring psychiatric and behavioral factors (e.g., 
impulsivity, sensation-seeking) associated with substance use. For 
example, a substantial body of evidence has linked externalizing psy-
chopathology with early initiation and experimentation with substances 
(Colder et al., 2013; Iacono et al., 2008; King et al., 2004; White et al., 
2001), with a 47% median prevalence of comorbidity across fifteen 
community samples of adolescents (Armstrong and Costello, 2002). In-
dividuals with substance dependence and adolescents with externalizing 
disorders both demonstrate increased striatal activity during receipt of 
reward (Bjork et al., 2009; Luijten et al., 2017) as well as decreased 
cortical activity associated with inhibitory control (Luijten et al., 2014; 
Rubia et al., 2010; Smith et al., 2006). Moreover, reward-related activity 
has been shown to positively correlate with externalizing behaviors as 
well as drinking behavior in children genetically at risk for alcohol 
dependence (Yau et al., 2012), and similarly, control-related activity in 
children has been shown to prospectively predict externalizing behavior 
as well as later substance use (Heitzeg et al., 2014). These findings may 
imply a moderating role of externalizing psychopathology in substance 
use vulnerability (Bjork et al., 2017; Heitzeg et al., 2015). Consistent 
with this account, a recent meta-analysis found greater reliability of 
striatal activity associated with substance use vulnerability in adoles-
cents when co-occurring externalizing disorders were present (Tervo--
Clemmens et al., 2020). 

Externalizing behaviors and risk for addiction (Krueger et al., 2007) 
have been suggested to have a common neurogenetic liability, wherein 
heritable features associated with behavioral disinhibition are 
expressed in brain circuitry motivating substance use (Iacono et al., 
2008). Studies performed in adolescent twin pairs support this theory by 
demonstrating moderate heritability of externalizing disorders 

(Cosgrove et al., 2011) as well as a highly heritable dimension of 
behavioral disinhibition that explained approximately half of the vari-
ability in substance use (Young et al., 2000). Together these findings 
suggest that vulnerability to substance use and externalizing psycho-
pathology are heritable and are represented by a common neurogenetic 
liability underlying comorbidity. 

Consistent with this work, the latent behavioral dimensions of 
vulnerability identified in the current study were significantly correlated 
with externalizing symptoms. In particular, the familial factors dimen-
sion (PC2) explained approximately 5% of the variance in externalizing 
scores (r = 0.22), whereas the risk-seeking dimension (PC1) explained 
only 0.6% (r = 0.08) (Fig. S4). The stronger relationship between 
externalizing and familial risk factors is consistent with literature 
describing a shared heritable component between externalizing psy-
chopathology and substance use vulnerability. By contrast, the weak 
relationship between externalizing scores and the risk-seeking dimen-
sion suggests that variability associated with externalizing psychopa-
thology is not heavily contributing to or biasing the predictive models 
derived from PC1. Future work should further explore the relationship 
between externalizing and other behavioral risk factors with neurobio-
logical vulnerability to substance use. 

The current study provides insight into the potential for generating 
data-driven models that prospectively predict behavioral outcomes prior 
to knowledge about those outcomes. An open question is whether the 
models of vulnerability generated here differentially predict early 
initiation and future substance use during adolescence and young 
adulthood, and further, how these models may capture differences in 
behavior across development. Twin studies have demonstrated a dy-
namic pattern of behavioral disinhibition across development, such that 
the heritability of substance use decreased from 58% at age 12–20% by 
age 17 (Young et al., 2009). This finding suggests the possibility that 
heritable factors play a greater role in the initiation of early substance 
use, whereas environmental factors may play a greater role in continu-
ation and severity of use. Indeed, other studies in twins report early 
alcohol consumption to be a risk factor for later dependence, indepen-
dent of genetic or shared family environmental factors (Grant et al., 
2006). Thus, one possibility may be that the second risk dimension 
found here (PC2; familial factors) will predict experimentation or early 
initiation of substance use, and that the first dimension (PC1; 
risk-seeking) and corresponding connectome-based models will predict 
continuation or severity of use. As the ABCD Study continues to collect 
longitudinal data, these questions and hypotheses—including disen-
tangling the differential contributions of psychopathology, substance 
use, and heritability across development (Bjork et al., 2017)—can be 
further tested and explored. 

Another interesting avenue for future research concerns the extent to 
which different scan conditions may predict later outcomes. The current 
study found no meaningful differences among task conditions and rest, 
such that all conditions similarly predicted the risk-seeking dimension 
(PC1) and failed to predict (or weakly predicted) familial factors asso-
ciated with substance use (PC2). Given prior work identifying correlates 
between substance use and different brain regions involved in reward, 
cognitive control, and working memory, it will be important to test the 
possibility that certain tasks or rest conditions may better predict future 
behavior. With that said, comparisons of task conditions and rest will 
require additional consideration of covariates that may contribute 
technical differences across scan conditions. For example, the reliability 
of individual measures of functional connectivity increases as a function 
of data quantity (Gordon et al., 2017). Another consideration will be to 
examine how potential task-driven effects differ from the underlying 
connectivity and to what extent these effects bias model performance. 
The current analysis did not remove task-induced fluctuations from the 
task-based data given work demonstrating that these fluctuations may 
enhance individual differences and improve prediction (Finn et al., 
2017; Greene et al., 2018; Rosenberg et al., 2016a; Yoo et al., 2018); 
however, it will be interesting to examine how potential task-driven 
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effects differ from the underlying connectivity and to what extent these 
effects bias model performance in future work. 

The current study is well-powered to detect the effects observed here; 
however, the modest size of these effects is an important limitation to 
consider. The bias to publish papers with large effect sizes in small 
sample sizes has been well-documented (Ioannidis, 1998; Sterne et al., 
2000), including one study that observed a highly significant negative 
correlation between sample size and effect size in more than 1,000 
psychological studies (Kühberger et al., 2014). In concert with evidence 
demonstrating that larger sample sizes tend to yield smaller effect sizes 
(Smith and Nichols, 2018)—including within the ABCD Study (Marek 
et al., 2020)—and conversely, that statistically significant effects in 
underpowered studies are likely to be inflated (Button et al., 2013; 
Ioannidis, 2008; Marek et al., 2020; Yarkoni, 2009), it is unsurprising 
that the effect sizes observed in the current study are small (partial 
correlation [rp] ≈ 0.1). However, a small effect in a large sample size 
potentially allows for higher replicability (Marek et al., 2020; Scheinost 
et al., 2019), which is further demonstrated here via cross-validation 
procedures and testing on novel participants. Finally, it is worth 
noting that the effects reported here are observed within children that 
have yet to begin using substances, and therefore effect sizes of this scale 
are not unexpected. In addition to leveraging models at baseline to 
generate prospective predictions, future work should aim to address 
developmental changes in the performance of predictive models (i.e., 
effect sizes) in order to assess the strength and emergence of these as-
sociations over time. 

Another potential limitation of the current study concerns specific 
methodological considerations. For example, the current analysis used 
PCA to reduce the dimensionality of the behavioral data, which required 
transformation to reduce the skewness of the data. Future work will be 
needed to assess the robustness of this data reduction step relative to 
other techniques such as polychoric correlation, which may be better 
suited for variables of mixed types (i.e., ordinal, numerical) (Holga-
do-Tello et al., 2010). Moreover, the number of participants lost to 
motion were substantial—in part due to rigorous motion thresholds 
often applied to adult data (Horien et al., 2018; Kumar et al., 2019; 
Rosenberg et al., 2016a, b), which is similarly observed by others using 
rigorous quality control procedures within ABCD (Marek et al., 2020; 
Sripada et al., 2019) and in connectivity-based studies in adults and 
adolescents (Greene et al., 2018; Horien et al., 2019). Analytic tools such 
as censoring (Power et al., 2014) may prevent data loss due to motion, 
which may subsequently allow for greater variability in the distribution 
of behavioral variables of potential interest that may be related to mo-
tion (e.g., impulsivity). Finally, greater consideration should be given to 
the role of demographic covariates in the current models. The current 
analysis controlled for motion and amount of data; however, age, sex, 
race, and data collection site were not included in these models. 
Although this analysis may suggest that the models identified here are 
generalizable across demographic factors (i.e., through random sam-
pling across folds), future work is needed to explicitly test to what extent 
these variables impact model performance. 

In contrast to studies that have focused on specific risk factors and/ 
or risk for specific substances, the current study followed a data-driven 
approach that allowed for the identification of latent dimensions of 
substance-general vulnerability. In doing so, we captured and pre-
dicted two dimensions that represent distinct patterns of information 
in both the brain and behavior. These findings extend prior work on the 
role of developing reward- and control-related circuitry in motivating 
adolescent risk seeking and substance use initiation, and provide 
insight into the potential heritability of familial risk factors for sub-
stance use. Ultimately, predictive models of substance use vulnera-
bility may inform early identification and addiction prevention 
strategies in at-risk children. 
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