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SUMMARY

Despite the recent availability of complete genome sequences of tumors from
thousands of patients, isolating disease-causing (driver) non-coding mutations
from the plethora of somatic variants remains challenging, and only a handful
of validated examples exist. By integrating whole-genome sequencing, genetic
data, and allele-specific gene expression from TCGA, we identified 320 somatic
non-coding mutations that affect gene expression in cis (FDR<0.25). These muta-
tions cluster into 47 cis-regulatory elements that modulate expression of their
subject genes through diverse molecular mechanisms. We further show that
these mutations have hallmark features of non-coding drivers; namely, that
they preferentially disrupt transcription factor binding motifs, are associated
with a selective advantage, increased oncogene expression and decreased tumor
suppressor expression.

INTRODUCTION

Identification of somatic mutations that contribute to tumorigenesis is an essential step to understanding

disease prognosis and developing therapies (Gerstung et al., 2015; Kulik et al., 1989; Verhaak et al., 2010).

Despite extensive exome and genome sequencing efforts, a substantial proportion of causal or driver mu-

tations (called drivers from here on) are thought to be unknown (Kandoth et al., 2013; Cancer Genome Atlas

Research Network, 2014, 2015; Nik-Zainal et al., 2016). On average, 22.2% of tumor samples within each

cancer type do not harbor coding mutations in any of 144 common driver genes (Schroeder et al., 2014).

Moreover, since multiple drivers are typically involved (Vogelstein et al., 2013), even tumors with well-char-

acterized mutations likely harbor additional causal alterations (Beerenwinkel et al., 2007; Merid et al., 2014;

Sjoblom et al., 2006; Vogelstein et al., 2013). Mutations in cis-regulatory elements (CREs) are postulated to

comprise a large fraction of the undiscovered drivers (Sjoblom et al., 2006). However, despite the availabil-

ity of hundreds of complete tumor genomes, only a few non-coding drivers have been experimentally vali-

dated (Table S1).

Distinguishing drivers from passengers outside coding regions requires overcoming several known chal-

lenges: the search space is orders of magnitude larger, functional impact cannot be predicted from amino

acid changes (especially gain-of-function alterations), mutation rates are higher (Poulos et al., 2015), and

positive selection pressure on relative growth is relaxed. These challenges have been partially overcome

by associating mutations with disruption or acquisition of transcription factor binding sites (Kalender

Atak et al., 2017; Mathelier et al., 2015; Melton et al., 2015; Svetlichnyy et al., 2015; Weinhold et al.,

2014), altered mRNA abundance (Fredriksson et al., 2014), clinical data (Smith et al., 2015; Weinhold

et al., 2014), and evolutionary conservation (Carter et al., 2009; Foo et al., 2015; Fu et al., 2014; Piraino

and Furney, 2017). Combinations of these features have also been weighed to prioritize putative drivers

and determine significant mutational hotspots (Fu et al., 2014; Kalender Atak et al., 2017; Piraino and Fur-

ney, 2017; Puente et al., 2015; Weinhold et al., 2014).

Since the tumorigenic role of a non-coding driver is likely exerted through a cis-change in gene expression

(Khurana et al., 2016), mapping genes whose expression is impacted by cis-acting regulatory effects has

significant promise. Allele-specific expression (ASE), where one allele of a gene is more highly expressed

than the other, is a powerful approach for detecting cis-regulatory effects, since trans-regulatory effects

impact both alleles equally (Fraser, 2011). By comparing ASE in tumors to matched normal ASE (‘‘diffASE’’),

it is further possible to distinguish somatic from germ-line effects. Ongen et al. applied this approach to

identify 71 putative driver genes in colorectal cancer (Ongen et al., 2014). Furthermore, after predicting
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functional non-coding variants by prioritizing those generating de novo transcription factor binding motifs,

Atak et al. showed that many of these somatic mutations were associated with ASE (Kalender Atak et al.,

2017). In practice, however, the sparse availability of matched tumor and normal gene expression and ge-

netic data poses a significant limitation. Just 7.7% of The Cancer Genome Atlas (TCGA) tumor samples

have matched normal RNA-Seq data (Figure S1A).

Here we show that the vast majority of differential ASE is acquired in tumors, enabling us to dispense with

the matched normal requirement and expand our survey 13-fold. We interrogated all whole-genome

sequenced non-coding somatic mutations across 1,165 TCGA patients and identified 47 putative drivers

as mutated CREs on the basis of robust association with ASE in tumors. The driver role of these mutations

is further supported by functional disruption of transcription factor binding sites and elevated variant allele

frequencies. This functional catalog of non-coding features significantly expands our knowledge of non-

coding tumor driver biology.

RESULTS

Survey of breast invasive carcinoma reveals that differential ASE is due to ASE in tumors

We initially focused on breast invasive carcinoma (BRCA) since it is the cancer type with the largest set of

matched tumor and normal RNA-seq data accompanied by whole-genome sequence (WGS) in TCGA (Fig-

ure S1A). Measuring ASE relies on counting RNA-Seq reads that map over heterozygous single-nucleotide

polymorphisms (SNPs) (Figure 1A) detected by genotyping arrays. To maximize our sensitivity, we first

imputed and phased SNPs using the 1000 Genome haplotypes (Howie et al., 2009) (Figure 1A), which on

average increases the number of informative SNPs by 20%. We have previously shown that this is more ac-

curate than relying on WGS, particularly where coverage is low (Figure S1B), and reduces false-positive

SNPs that have a disproportionately high impact on estimates of ASE since all reads are assigned to one

haplotype (Babak et al., 2015). Phasing also allowed us to combine allelic counts across SNPs within the

same gene, which contributes to the improved accuracy (Babak et al., 2015) (and see Transparent methods

and Figure S2 for details). We observed extensive diffASE in BRCA (Figure 1B).

Nearly all of the diffASE can be attributed to an increase of ASE in tumors relative to matched controls (Fig-

ure 1B). We reasoned that this trend may be due to higher clonality of tumors relative to matched normal

tissue which would be expected to be more complex. We first considered whether loss of heterozygosity

(LOH) may be a confounding factor. Since all BRCA tumors are female, a comparison of allelic expression

between autosomes to the X chromosome could illuminate the contribution of clonality. X chromosomes

are randomly inactivated across cells comprising normal tissue. Comparison with a clone derived from this

tissue (where all cells retain monoallelic expression from the same allele) would yield strong diffASE for any

expressed gene on chromosome X. If clonality was the dominant source of greater ASE in tumors, we would

expect enrichment of highly ranked X-linked genes when evaluated for diffASE. This enrichment would not

be expected if LOH was the dominant source. We indeed observed a high enrichment of X-linked genes

(66/100) among the top diffASE genes, suggesting that these tumors are highly clonal (Figure S2D).

When we performed the ASE analysis using only tumor expression (tumorASE), >98% of the diffASE events

were recapitulated in tumorASE and >90% of diffASE events attributable to increased allelic bias in tumors

(Figure 1C). Finally, neither CNVs nor methylation explained the majority of ASE events originating in tu-

mors (Figures 1D, 1E, and S3). CNVs showed the stronger correlation but only account for about 11% of

the ASE in tumors. These findings suggested that altered cis-regulatory mechanisms of gene expression

might explain the observed ASE in tumors, and that this signal is a valuable starting point for identifying

non-coding drivers.

Identification of mutations that explain ASE in tumors

The availability ofWGSdata for 113 BRCA RNA-seq tumor samples (Figure S1A, Table S2) allowed us to find

specific mutations that are associated, and which may explain, the observed ASE in tumors. We evaluated

commonmutation callers and implemented a robust filtering scheme to yield high confidence somatic var-

iants (Figures S4A–S4D; see Transparent methods for details). We then asked whether the presence or

absence of these variants near a gene is associated with ASE of that gene across BRCA tumor samples. Un-

fortunately, usingmutations 10 kb upstream of each transcription start site (TSS) as well as within each gene

body did not yield associations that survived multiple test correction, even in this heavily surveyed cancer

type. We chose the window because cis-regulatory variants are heavily enriched in the 10 kb window up-

stream of the TSS (Group et al., 2020). The high proportion of neutral mutations relative to genuine non-
2 iScience 24, 102144, March 19, 2021
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Figure 1. Allelic bias commonly arises in tumors independent of copy number variations (CNVs) and promoter methylation

(A) A schematic of the allele-specific expression (ASE) analysis strategy implemented on TCGA breast cancer samples. In brief, imputed genotyping data,

tumor RNA-seq and cases where tumor-normal matched RNA-seq are assessed for gene-level ASE by calculating the allelic imbalance ratios for imputed

and phased heterozygous single-nucleotide polymorphisms (SNPs). We report differential ASE (diffASE) between tumors and matched normals and ASE in

tumors (tumorASE) in cases when matched normals are unavailable.

(B) diffASE events in breast cancer tumors exceed the background. A diffASE event is called between a tumor and its matched normal when the allelic ratio

between them is p < 0.001 using a chi-squared test and the skew is greater in the tumor. Six hundred thirty two diffASE events were obtained when the

diffASE events calculated with the actual sample identities were compared to the background obtained with 10,000 permutations of randomized normal/

tumor identities (FDR<0.05 and greater ASE in the tumor than the matched normal, n = 92; for clarity, only 100 permutated data are displayed in the figure).

The FDR reflects the proportion of permutations where the most significant diffASE event was obtained with the actual tumor/normal data.

(C) > 90% of diffASE events originate in breast cancer tumors. The overlap of diffASE events with ASE events in tumors andmatched normal by individual (p <

0.001, binomial distribution, n = 92).

(D) In BRCA tumors, most ASE is not correlated with CNV. The Pearson correlation between linear regression of gene-level tumorASE and the absolute tumor

CNV signal is significant (R = 0.11, p = 1 x 10�82, n = 92) but does not explain the majority of ASE. This analysis includes every gene exhibiting ASE (binomial

test, p < 0.001) in an individual tumor and excludes all others. The CNV signal intensity is obtained fromCNVmicroarrays. Only 10% of the genes are depicted

for clarity.

(E) Gene-level diffASE is weakly correlated with the promoter (G2 kb from TSS) methylation (Pearson’s linear correlation R =�0.01, p = 2.4 x 10�6, n = 92). As

in Figure 1D, all genes exhibiting ASE (binomial test, p < 0.001) in an individual tumor were included. The methylation beta value is the ratio of methylated to

total probe intensity. Only 10% of the genes are depicted for clarity.

See also Figures S1–S3.
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coding drivers likely explains this result and necessitates an enrichment strategy for variants that are likely

to have a functional impact.

The vast majority of previously validated non-coding driver mutations occur in 30 UTRs, promoters, en-

hancers, and CTCF binding sites (Table S1). As these collectively encompass major sites of transcriptional

regulation, we focused on somatic variants within these features and refined them using several publicly

available annotation resources (see Transparent methods). To comprehensively map genomic regions

where transcription is regulated, we also included an aggregate map of TF binding sites (‘TF binding’)

and accessible chromatin (see Transparent methods, Table S3). For the enrichment analysis, we grouped

the somatic mutations in these CREs by regulatory feature and asked if they were 10 kb upstream of a TSS or

gene body of a gene exhibiting ASE. Since the active enhancers effecting target gene transcription vary by

cell type and frequently regulate non-adjacent genes, we used the regulatory relationships previously

defined for distinct cancer types by the association of chromatin accessibility and gene expression (can-

cer-specific) (Corces et al., 2018). Using active elements defined in cells matching the query tumor further

reduces the search space and improves sensitivity by focusing on the active subset of enhancers in the

query tumor (Perera et al., 2014). Putative drivers were identified by positive correlations between gene-

level ASE and somatic regulatory mutations within a cis-regulatory feature (see Transparent methods

and Figures 2A, S4A, and S5). This approach revealed candidate non-coding driver mutations regulating

genes including some that had been previously implicated in breast cancer by coding variants.

Using these features, we found ten genes that are enriched for somatic mutations in regulatory elements

that coincide with altered cis-regulation in breast cancer (FDR<0.25, n = 113). These include mutations in

the CTCF binding sites of DAAM1, variants in the promoters of UNC5B, and in TF binding sites near

EHMT1, FHIT, GSN, ITPR3, NCOA3, TIMP3, VPS13B, and ZDHHC14 (Figure 2B). The most significant asso-

ciation was between variants in TF binding sites adjacent to TIMP3 and its altered cis-regulation (Figure 2C).

TIMP3 is an inhibitor of matrix metalloproteinases whose upregulation suppresses tumor growth (Anand-

Apte et al., 1996). In the 3 tumors harboring enhancer mutations, dysregulation is evident from the ASE in

mutated tumors compared to the remainder (Figure 2C, FDR = 0.11, p = 1.4x10�8, Wilcoxon rank-sum test).

Somatic non-coding mutations associated with dysregulation of ITPR3 were the next most confident

finding; their distribution in relation to ITPR3 is shown in Figure 2D (FDR = 0.15, p = 1.4 x 10�6). ITPR3 me-

diates the release of intracellular calcium in response to IP3 (Yamamoto-Hino et al., 1994). It was recently

implicated as the target of the tumor suppressor BAP1 that triggers apoptosis following exposure to gen-

otoxic stress (Bononi et al., 2017). Gene set enrichment analysis revealed enriched interactions between the

established breast cancer pathway and the genes dysregulated by these putative non-coding driver muta-

tions (Figure S6, p = 0.044, KEGG ‘Breast Cancer’).
Somatic mutations in regulatory features are enriched for gene-level ASE in diverse tumors

To identify relevant non-coding somatic mutations in other cancer types, we applied our pipeline to 11

other cancer types that had a sufficient number of matched WGS, RNA-Seq, genotyping, and cancer-spe-

cific chromatin accessibility data (derived by ATAC-seq (Corces et al., 2018)) (Figure S1A). Overall we iden-

tified 320 mutations in 47 CREs associated with ASE of a nearby gene (Figures 2B and 3, Tables 1 and S4,

FDR<0.25). We will collectively refer to these 47 mutated CREs as the ‘‘putative drivers’’. The top ranked

putative driver by FDR was SEMA6D in stomach adenocarcinoma (STAD) (FDR = 0.01). SEMA6D promotes

survival and anchorage independent growth of malignant pleural mesothelioma (Catalano et al., 2009). The

second ranked putative driver by FDR was CBLB in acute myeloid leukemia (LAML) (FDR = 0.04). CBLB is an

E3 ubiquitin ligase previously implicated in myeloid malignancies that helps to attenuate proliferative sig-

nals transduced by activated receptor tyrosine kinases (Makishima et al., 2009). Variants in the CTCF bound

regions of CBLB were prevalent, occurring in 12.2% of tumors (n = 5/41). Other notable examples of puta-

tive drivers based on prevalence include the CTCF bound regions of FHIT in BRCA (11.5%; n = 13/113) and

the CTCF bound region of SEMA4D in lung squamous cell carcinoma (LUAD) (11.5%; n = 26/226). The

putative drivers were generally associated with consistently skewed ASE across tumors (Figure S8). The

transcript abundance of most genes exhibiting cis-dysregulation in association with somatic variants was

unaffected (Figure 3F). Moreover, the coding regions of genes exhibiting altered cis-regulation are free

of nonsense mutations, consistent with the ASE dysregulation occurring at the level of transcription rather

than being a secondary consequence of nonsense-mediated decay. The majority of genes impacted by our

putative drivers have been implicated previously in cancer and compelling cases for their driver mecha-

nistic roles are explored further below (see Discussion).
4 iScience 24, 102144, March 19, 2021
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Figure 2. Seven regulatory features harboring somatic mutations are enriched for ASE in breast cancer

(A) A schematic of somatic mutations in cis-regulatory elements causing allele-specific expression.

(B) The significance of gene-level associations between mutated regulatory features and ASE in relation to FDR in breast cancer. The association of gene-

level ASE was evaluated with aWilcoxon rank-sum test (n = 113). The FDR is calculated as depicted in Figure S5 and detailed in the Transparent methods. The

association was performed genome-wide.

(C) The ASE ratio of putative BRCA driver TIMP3 (p = 1.4 3 10�8, FDR = 0.11, Wilcoxon rank-sum test, n = 113). The boxplot is delimited by the first and the

third quartile, the whiskers encompass minimum and maximum data, while the diamonds and dots represent the medians and raw absolute gene-level ASE,

respectively.

(D) The ASE ratio of putative BRCA driver ITPR3 (p = 1.4 x 10�6, FDR = 0.15, Wilcoxon rank-sum test, n = 113). Boxplot features as in ‘C.’

See also Figures S4–S6 as well as Table S4.
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Candidate drivers have elevated variant allele frequencies

By definition, driver mutations confer a selective advantage to the cells in which they occur. Variant allele

frequency (VAF) measures the fraction of alleles in a sample in which the variant is present. Hence, if a mu-

tation confers a selective advantage to the cell in which it occurs, its VAF would be higher, on average, than

passenger mutations that arose coincidentally. A corollary being that mutations with increased VAF

occurred early enough during tumor evolution for this selective advantage to manifest as increased VAF.

To ask whether the putative driver mutations conferred a selective advantage, we compared the normal-

ized VAF of all putative drivers to all non-coding mutations that were not enriched for ASE (p > 0.5). As

a positive control, we used known coding driver mutations (Schroeder et al., 2014). As expected, we found

that the VAF of known coding drivers (n = 116) was, on average, higher than background mutations in cod-

ing regions (Figure 4A, p value = 2.93 10�6, n = 2,971). Importantly, we found that the VAF of our candidate

drivers was also higher (Figures 4A and 4B), an effect that is independent of CNV based on the stable ratio

of adjacent heterozygous SNPs (Tables 1 and S4).

Candidate drivers disrupt transcription factor binding motifs

To further explore functional evidence supporting our non-coding driver mutations (Table 1), we asked

whether they may be impacting DNA binding of transcription factors. Two features, specifically, might

be expected to reflect this type of mechanism; TF binding sites and cancer-specific enhancers. We there-

fore limited our analysis to these features. Transcription factor binding affinities are typically represented

by a generalized position-weight matrix (PWM) that represents amotif and a probability of observing any of
iScience 24, 102144, March 19, 2021 5
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Figure 3. Thirty-nine regulatory features harboring somatic mutations are enriched for ASE across 11 additional cancer types

(A) The number of somatic mutations in each tumor as well as the median number for each type of cancer.

(B) The number of somatic mutations in regulatory features that were tested in the ASE-Mutation association in each tumor as well as the median number for

each type of cancer.
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Figure 3. Continued

(C) The significance of gene-level associations betweenmutated regulatory features and ASE in relation to FDR in 11 additional cancer types. The association

of gene-level ASE was evaluated with a Wilcoxon rank-sum test (see Figure S5 and Transparent methods for detail and Figure S7D for ‘n’ evaluated in each

cancer). The associations were performed genome-wide and independently on each cancer type.

(D) The percentage of tumors where each mutated regulatory element is found. The percentage of mutated regulatory elements is presented for the cancer

type where mutated regulatory elements were associated with ASE.

(E) The distribution of mutated regulatory features across tumors. The inset illustrates that the majority of samples do not harbor driver mutations.

(F) The abundance of most putative driver genes does not change.

See also Figures S7 and S8 as well as Table S4.
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the four bases at each position in that motif. These probabilities are typically constructed from observed

frequencies of genuine binding events and can be represented by bit-scores. A bit-score of 2 implies

that a particular base is always found at that position. We first scanned the genome for 392 transcription

factor motifs and overlapped them with mutations (not filtered on ASE). Each motif had between 2 and

2,000 mutations (Figure 5A) and the number of mutations directly correlated with the number of motifs

found in the genome (Figure 5B inset). As a preliminary analysis, we asked whether driver mutations (Table

1) are enriched in any putative transcription factor motifs. We observed a compelling enrichment of muta-

tions among nucleotides important for transcription factor binding (Figure 5B). The challenge with relying

on PWMs exclusively to identify transcription factor binding is that there is typically insufficient information

to distinguish genuine binding sites from the many possible motif sequence matches in the genome. Here,

we relied on the built-in component of our analysis to only consider mutations in functionally annotated

regions. To further enrich for genuine transcription factor binding sites, we took advantage of ATAC-

Seq data (Corces et al., 2018). Specifically, we considered motifs within open chromatin (i.e. in ATAC-

Seq peaks) that were within 5 kb of a TSS. As expected the difference between reference and mutated ba-

ses tended to disrupt overall binding affinity (i.e. shift in all LUAD-ATAC-TSS-filtered mutations is overall

negative; Figure 5C). Interestingly, driver mutations have an even stronger shift (Figure 5D). We did not

see a significant difference in any other features, as expected, and also note that the numbers of driver mu-

tations severely restricted our statistical power when exploring subsets of driver mutations outside of

LUAD. It is also possible that improving binding (i.e. a positive delta-bit) could cause ASE, but we are

not powered to explore this possibility.
The expression changes of putative driver genes are consistent with roles in tumorigenesis

Next, we considered how cis-regulatory drivers might contribute to tumorigenesis. The mechanism of non-

coding drivers might be ectopic target expression or altered target expression kinetics; however, since

altered target abundance is a common driver mechanism (Bailey et al., 2018), we leveraged DepMap to

ask whether the upregulated target genes associated with predicted drivers were oncogenic and vice-versa

(Figure 6A) (Meyers et al., 2017).

In an effort to reveal the contribution of genes targeted by predicted drivers to tumorigenesis, we asked how

their deletion affects cellular expansion (fitness). As expected, we found that deletion of coding oncogenes

decreased fitness and deletion of TSGs increased fitness (Figure 6B, 2-sided unpaired t test for unequal vari-

ance, p < 13 10�200 (oncogenes), p = 9.23 10�89 (TSGs)). Deletion of target genes associated with predicted

drivers mirrored the effects of known coding drivers: deletion of upregulated genes led to decreased fitness,

and fitness increased following deletion of genes downregulated in association with predicted drivers (Figures

6B–6D, 2-sided unpaired t test for unequal variance, p = 4.9 3 10�185 (oncogenes), p = 1.7 3 10�80 (TSGs)).

The deletion of target genes in cell lines harboring predicted driver mutations is consistent with tumor-

igenic roles. Evaluating the oncogenic and suppressive potential of predicted driver genes across all

CCLE lines provided a robust measurement of each gene’s fitness contribution; however it does not cap-

ture the role of target genes in lines where the target gene might be a driver. To identify CCLE lines

potentially driven by the predicted non-coding drivers, we screened CCLE lines for identical mutations.

In 3 of 4 cell lines harboring variants identical to predicted driver mutations, deletion of target genes had

the expected impact on fitness (e.g. Figures 6C and 6D). While most drivers are not associated with a clin-

ical outcome (Smith and Sheltzer, 2018), we also found predicted drivers associated with expression

changes relevant to patient survival. For example, predicted driver variants decreased SEMA4D expres-

sion, which is marginally associated with worse overall survival (Figure 6E, p = 0.06). Collectively, these

analyses are consistent with many predicted drivers promoting tumorigenesis by altering target

abundance.
iScience 24, 102144, March 19, 2021 7



Table 1. Annotated catalog of the 47 putative driver hotspots

Cancer Regulatory feature Gene symbol P FDR Carriers ASE-CNV assoc. P

BRCA CTCF DAAM1 2.5 3 10�6 0.24 5 8.3 3 10�1

BRCA Promoter UNC5B 9.6 3 10�3 0.18 4 1.0#

BRCA TF binding site EHMT1 3.0 3 10�5 0.22 3 *4.6 3 10�2

BRCA TF binding site FHIT 6.6 3 10�6 0.16 13 5.0 3 10�1

BRCA TF binding site GSN 5.6 3 10�5 0.21 3 3.6 3 10�1

BRCA TF binding site ITPR3 1.3 3 10�6 0.15 5 7.2 3 10�1

BRCA TF binding site NCOA3 3.8 3 10�5 0.21 3 1.0

BRCA TF binding site TIMP3 1.3 3 10�8 0.11 3 4.7 3 10�1

BRCA TF binding site VPS13B 4.2 3 10�7 0.15 3 1.5 3 10�1

BRCA TF binding site ZDHHC14 5.5 3 10�6 0.18 6 4.8 3 10�1

HNSC Promoter WLS 6.1 3 10�3 0.06 3 *6.7 3 10�3

LAML CTCF CBLB 3.6 3 10-4 0.04 4 1.0#

LAML CTCF WAC 4.3 3 10�2 0.24 3 1.0#

LUAD 30 UTR ADAMTS2 1.7 3 10�8 0.23 4 3.6 3 10�1

LUAD Cancer-specific enhancer PIP5K1B 8.6 3 10�9 0.11 5 2.1 3 10�1

LUAD CTCF BLNK 1.6 3 10�6 0.16 6 4.7 3 10�1

LUAD CTCF C16orf75 2.4 3 10�6 0.15 5 1.0#

LUAD CTCF C9orf95 5.4 3 10�5 0.17 8 1.0#

LUAD CTCF CEP192 9.1 3 10�6 0.16 3 9.0 3 10�1

LUAD CTCF DSCR3 1.2 3 10�4 0.19 6 3.8 3 10�1

LUAD CTCF ENC1 1.3 3 10�5 0.17 6 3.2 3 10�1

LUAD CTCF ERI2 6.3 3 10�8 0.18 4 2.9 3 10�1

LUAD CTCF FAM120A 1.0 3 10�7 0.14 7 7.5 3 10�1

LUAD CTCF FAM120AOS 2.3 3 10�5 0.16 5 9.7 3 10�1

LUAD CTCF GATA3 1.0 3 10�4 0.18 5 9.5 3 10�1

LUAD CTCF HAUS8 3.1 3 10�5 0.15 2 2.3 3 10�1

LUAD CTCF KIF11 1.5 3 10�6 0.18 12 1.4 3 10�3

LUAD CTCF LPAR1 2.4 3 10�4 0.23 24 6.0 3 10�1

LUAD CTCF TMEM147 4.4 3 10�7 0.15 3 1.0#

LUAD CTCF PRR14 8.4 3 10�5 0.19 5 1.0#

LUAD CTCF RRP1B 2.5 3 10�5 0.15 3 1.0#

LUAD CTCF SEMA4D 3.4 3 10�6 0.15 26 1.4 3 10�2

LUAD CTCF SETD4 4.0 3 10�6 0.14 5 1.3 3 10�2

LUAD CTCF TSPAN14 2.1 3 10�5 0.17 4 7.1 3 10�1

LUAD CTCF TTC28 4.6 3 10�5 0.17 8 7.0 3 10�2

LUAD Accessible chromatin GGPS1 6.4 3 10�4 0.23 3 4.7 3 10�1

LUAD Accessible chromatin SND1 7.5 3 10�4 0.22 3 8.8 3 10�1

LUAD Promoter SF3A1 4.4 3 10�10 0.11 3 5.8 3 10�1

LUAD TF binding site C12orf5 1.9 3 10�10 0.14 3 1.0#

LUAD TF binding site CREBL2 3.5 3 10�8 0.14 4 7.7 3 10�1

LUAD TF binding site DNAJC5 9.7 3 10�9 0.17 3 8.9 3 10�3

LUAD TF binding site ITGAE 1.9 3 10�8 0.17 11 1.9 3 10�1

LUAD TF binding site TTC23 4.3 3 10�7 0.23 6 2.2 3 10�2

LUAD TF binding site VPS16 6.8 3 10�8 0.15 7 4.3 3 10�1

SKCM CTCF FRMD4A 3.3 3 10�2 0.15 3 *3.7 3 10�2

(Continued on next page)
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Table 1. Continued

Cancer Regulatory feature Gene symbol P FDR Carriers ASE-CNV assoc. P

STAD 30 UTR SEMA6D 2.1 3 10�4 0.01 3 3.9 3 10�1

STAD TF binding site TSHZ2 2.7 3 10�6 0.10 4 *1.5 3 10�2

Note: *Among the 7 genes where ASE is associated with CNV, tumors coincidently harboring driver mutations and CNV

occurred in SEMA4D, SETD4, DNAJC5, and TTC23 of LUAD and TSHZ2 of STAD. SEMA4D was only nominally significant

(p = 0.03) after exclusion of CNV carriers. TSHZ2 had one tumor carrying both driver mutation and CNV; however, the asso-

ciation between mutations and ASE remained significant after excluding the tumor for TSHZ2 (p = 2.2 3 10�5). SETD4,

DNAJC5, and TTC23 were not significant after excluding CNV carriers in the ASE-Mut association, with p values were

0.20, 0.48, and 0.76, respectively. #When a driver gene does not have multiple samples harboring CNV for the association

test between ASE and CNV, the association is assigned as p = 1.

CNV, copy number variation; P, ASE-mutation association p value; ASE-CNV Assoc P, ASE-CNV association p value; FDR,

false discover rate; Carriers, driver mutations carriers.
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DISCUSSION

The association between mutated CREs and gene expression altered in cis revealed 47 clusters of non-coding

mutations across 12 cancer types that exhibit the hallmarks of driver mutations. These 47 mutation hotspots

significantly expand the landscape of putative non-coding cancer drivers. Prior approaches did not reveal the

majority of our findings, although there is partial overlap with previous non-coding driver discoveries. For

example, we found enriched cis-regulatory mutations in the CTCF binding sites of DAAM1 in BRCA. DAAM1

is a member of the formin protein family activated by Disheveled binding (Liu et al., 2008). It regulates cytoskel-

etal dynamics through its control of linear actin assembly (Li et al., 2011). Regulatory mutations inDAAM1 were

recently implicated in invasiveness of melanoma (Zhang et al., 2018). Our findings also overlap previous reports

in that somatic mutations in other regulatory regions of the same genes in the same type of cancer have been

implicatedasdrivers. For example,mutations in the splice-acceptor site ofGATA3werepreviously implicated in

LUAD (Hornshoj et al., 2018). Herewe implicatedpromotermutations inGATA3 in LUAD. This overlap suggests

that the consequences of mutated regulatory features may overlap in these cases, and that combining the as-

sociation of distinct features that regulate the same gene may increase sensitivity.

Many of the genes impacted by the putative non-coding drivers discovered here (Tables 1 and S4) have been

previously implicated in cancer biology. The predicted non-coding drivers disproportionately impact estab-

lished coding drivers (hypergeometric, p = 0.006). The target genes impacted by non-coding drivers include

theCOSMICgenesCBLB, FHIT,GATA3, andSND1. Thegenes associatedwithmutatedCREs inBRCA illustrate

how driver roles clearly tie into the established functions of the dysregulated genes.NCOA3 is a transcriptional

co-activator that is alternatively knownasAmplified inBreast 1 (AIB-1) after its amplification and increasedabun-

dancewasdiscovered inbreast cancer (Anzick et al., 1997).NCOA3enhances estrogen-dependent transcription

(Anzick et al., 1997). In this analysis,NCOA3was neither amplified nor elevated in abundance in the tumors with

putative driver mutations, but our approach still implicated it in BRCA based on the association of somatic mu-

tations with its dysregulation (Table 1). EHMT1provides insight into the observation that the total abundance of

most genes dysregulated in association with non-coding mutations is unchanged. EHMT1 represses transcrip-

tion by methylating H3K9 residues in conjunction with EHMT2 (G9a in mice) (Tachibana et al., 2005). EHMT1/2

complexedwith E2F6, and polycomb proteins preferentially occupy promoters in G0 phase of the cell cycle and

is associated with cellular quiescence (Ogawa et al., 2002; Tachibana et al., 2005), suggesting that non-coding

mutationsassociatedwithEHMT1mightdisrupt its coordinationwith the cell cycle asopposed to its abundance.

Conversely, FHIT is one of the few putative drivers that is dysregulated and differentially expressed. Consistent

with the observed decrease in expression, FHIT is an established tumor suppressor gene (Waters et al., 2014).

Extensive cis-regulatory changes occur during tumorigenesis that are unrelated to copy number variation.

In contrast with previous reports in different tumor types, CNVs were not responsible for the majority of

altered cis-regulation in BRCA tumors (Mayba et al., 2014). Somatic regulatory variants are a major source

of altered cis-regulation in tumors. Somatic variants in non-coding regions that are enriched for altered cis-

regulation were found in 11.9% of the tumors analyzed. This high-prevalence is predicted by multi-hit

models as well as divergent phenotypes between tumors with common known drivers. While many of

the associations involve genes thought to be involved in tumorigenesis, the implication of specific muta-

tions and regulatory features is a mechanistic advance. Indeed, we are not aware of any of the specific

mutated regulatory features reported here previously being implicated as drivers of tumorigenesis.
iScience 24, 102144, March 19, 2021 9
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Figure 4. Variant allele frequency (VAF) of putative non-coding drivers suggests positive selection

VAF was calculated as the fraction of all sequencing reads covering variant with mutation and was normalized against all mutations within each patient to

account for differences in tumor heterogeneity.

(A) Coding Drivers (n = 116) represent all mutations within known driver genes that yield a functional amino acid change and Coding Bcg (n = 2,971)

represents identically selectedmutations in all other coding genes (Schroeder et al., 2014). Putative non-coding drivers represent all mutations from Table S4

(n = 320) and Non-coding Bcg represents all non-coding mutations not enriched for ASE (n = 122,603). Both Coding and Non-coding VAFs are positively

shifted relative to background (p = 2.9 3 10�6, p = 1.4 3 10�7, 2-tailed Student’s t-test, equal variance). The boxplots are delimited by the first and the third

quartile, red lines indicate medians, whiskers encompass minimum and maximum data and red points indicate outliers. Please see Transparent methods for

more details.

(B) Same as (A) with putative non-coding drivers divided by feature. The number of putative non-coding driver and background mutations, as well as the p

value (2-tailed Student’s t-test, equal variance) comparing the VAF between putative driver and background mutations for each feature are: promoters (n =

10, n = 1,747, p = 0.19), cancer-specific enhancers (n = 5, n = 2,329, p = 0.22), CTCF binding sites (n = 208, n = 26,128, p = 5.033 10�11), TF binding sites (n =

88, n = 50,202, p = 1.12 3 10�7), accessible chromatin (n = 6, n = 583, p = 0.50), 30 UTRs (n = 8, n = 1,661, p = 0.86).
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Although TCGA and other emerging cancer data now include >1000 available genomes, illuminating the

complete set of non-coding drivers will require a substantially broader collection. Even with the approach

employed here of focusing on functional somatic variants with underlying evidence of gene expression

regulation, we found ourselves limited by statistical power, especially in cancer types with fewer than

100 genomes. Deeper genome sequencing with longer reads will also improve driver detection sensitivity

by enabling phasing of mutations with the direction of ASE. This would allow more evidence to be used to

prioritize genuine drivers (e.g. disruption of an activating transcription factor binding site should reduce

expression of that allele). This was generally not possible with the current available data since accurate

phasing of somatic variants more than a few hundred base pairs away from the gene would require

long-read technology or much deeper coverage. Improved matching of the regulatory features to each

cell type will also improve sensitivity. When possible, cellular context was prioritized throughout these an-

alyses to account for context-specific aspects of gene-regulation. For example, enhancers werematched to

the cancer type being analyzed (Corces et al., 2018), and each cancer was separately analyzed in parallel,

however, enhancer to gene maps are still incomplete and will no doubt improve with more chromatin

accessibility readouts expand. In any case, we believe our approach here, made freely available as a dock-

erized pipeline (see Transparent methods) will be a powerful tool for taking advantage of these emerging

resources and building on our discoveries.

Limitations of the study

The greatest limitation currently hindering our ability to apply our approach to broadly map cis-acting reg-

ulatory mutations across cancer is the limited availability of matched WGS and RNA-Seq data. Most RNA-
10 iScience 24, 102144, March 19, 2021
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Figure 5. Driver mutations disrupt transcription factor binding motifs

(A) Number of overlapping mutation/motifs across 392 genome-mapped position-weight matrices (PWMs). TF binding site mutations outnumber cancer-

specific enhancer driver mutations (inset).

(B) Putative driver mutations are overrepresented in several genome-mapped motif sets and disrupt important binding residues within the motifs of several

transcription factors. The enrichment of mutations disrupting transcription factor bindingmotifs relative to backgroundmutations was evaluated using a chi-

squared test.

(C) The frequency at which mutations enhance or disrupt transcription factor binding motifs, evaluated as changes in PWM bits. Most mutations lead to a

lower-affinity PWM.

(D) LUAD driver mutations (TF binding site and cancer-specific enhancers merged) within high-likelihood functionally bound motifs (ATAC-Seq support,

within 5 kb of TSS; n = 18) result in a stronger shift thanmatched background (equivalent selection criteria except no association with ASE; n = 4,179). p values

are two-tailed and computed using a Wilcoxon rank-sum test. The boxplots are delimited by the first and the third quartile, red lines indicate medians, and

whiskers encompass minimum and maximum data.
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Seq samples in TCGA do not have WGS data at all, and many WGS have relatively low-coverage data that

makes identifying somatic mutations in regulatory regions difficult. Statistical power is simply not there to

detect meaningful associations with just dozens (sometimes hundreds) of samples havingWGS within each

cancer type. A second, related limitation, is the current difficulty in phasing somatic variants captured only

by WGS, into haplotypes against which ASE is ascertained. This adds complexity to characterizing the pu-

tative causal mechanism of ASE associated with a specificmutation. Long reads are a potential solution, but

even increasing the coverage of paired-end short reads via WGS could dramatically improve phasing from

overlapping reads.

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Brian DeVeale (brian.deveale@ucsf.edu).
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Figure 6. Transcript abundance of regulatory variant targets align with roles in tumorigenesis

(A) The expression change associated with putative driver mutations. The fold-change of target genes compares expression in tumors harboring putative

drivers relative to the remaining tumors of the same type. Upregulated and downregulated target genes were inferred to be oncogenic and tumor

suppressors respectively.

(B) The fitness impact of deleting predicted driver genes. Deletion of 40 coding oncogenes decreases fitness, while deletion of 91 coding. tumor suppressor

genes (TSGs) increases fitness across 808 cell lines. Deletion of target genes associated with predicted non-coding drivers had equivalent fitness effects as

coding drivers: deletion of putative oncogenes reduced fitness (n = 26) and increased fitness of putative TSGs (n = 20, 2-sided unpaired t test for unequal

variance, p values are as shown). The boxplots are delimited by the first and the third quartile, red lines indicate medians, whiskers encompass minimum and

maximum data and red points indicate outliers.

(C and D) The fitness impact of deleting putative TSGs ADAMTS2 and SEMA4D. The boxplot features are the same as panel ’B’.

(E) Kaplan-Meier plot of LUAD patients (n = 515) with low expression of SEMA4D (n = 75) compared to the remaining patients. Low expression of SEMA4D is

marginally associated with worse overall survival (p = 0.06; log rank test; ‘+’ indicate censored data).
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Materials availability

All of the data analyzed in this study was generated and made accessible by TCGA.

Data and code availability

We have made all of the code scripted and used in this analysis freely publicly available. Details are

described in the Transparent methods section. Our Driver-ASE package is available via GitHub (https://

github.com/MichealRollins-Green/Driver-ASE) and as a Docker image (https://hub.docker.com/r/

mikegreen24/driver-ase). All raw gene-level ASE and somatic mutations called in this analysis can be ac-

cessed via Mendeley Data: https://data.mendeley.com/datasets/4kx5sfx9vz/2.

Driver-ASE uses data or software provided by the following websites:

UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTables), Genomic Data Commons (https://

gdc.cancer.gov/), Genomic Data Commons (https://portal.gdc.cancer.gov/legacy-archive/search/f), The

Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov), PLINK (www.cog-genomics.org/plink),

NIH Roadmap Epigenomics Mapping Consortium (www.roadmapepigenomics.org), SAMtools (www.

htslib.org), overlapSelect (http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/overlapSelect), Var-

scan2 (http://massgenomics.org/varscan), impute2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.

html), and shapeit (https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html).
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102144.
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Supplementary figures and legends

Figure S1. TCGA sample summary for ASE analysis. Related to Figure 1. (A) A summary of

relevant TCGA samples available for analysis. (B) Whole genome sequence (WGS) coverage for

tumor and matched normal across 20 cancer types (estimated based on bam size of WGS).





Figure S2. diffASE and tumorASE events exceed background in BRCA tumors with

matched RNA-seq samples (n=92). Related to Figure 1. (A) The number of genes where

diffASE can be calculated per sample at various read thresholds. (B) The concordance in gene-

level ASE when TCGA aligned and WASP-filtered reads are input to our pipeline (van de Geijn

et al., 2015). The Pearson correlation is shown for four representative BRCA RNA-Seq samples

and evaluated on genes with ≥30 reads. (C) The distribution of the ratio of reference:alternative

aligned reads per sample. (D) X-linked diffASE events are enriched relative to autosomal events.

The number of X-linked diffASE events exceeds the number of autosomal events in real, but not

permuted data (P=3.3x10-21, ANOVA). (E) A comparison of the number of genes where diffASE

and tumorASE (n=92 tumor/normal RNA-seq) can be calculated per BRCA sample at a threshold

of 30 reads. (F) X-linked tumorASE events for the 92 tumor RNA-seq samples are enriched

relative to autosomal events. The number of X-linked and autosomal tumorASE events

(P=3.5x10-37, ANOVA). (G) tumorASE events in BRCA (n=92 RNA-seq) exceed the number

expected by chance due to the distribution of the data. tumorASE events are those where the

allelic ratio is P<1x10-3 using a binomial test. 241 tumorASE events with FDR<0.05 were

obtained when the tumorASE events calculated with the actual sample identities were compared

to the background obtained with 10,000 permutations of randomized tumor identities. The FDR

reflects the proportion of permutations where the most significant tumorASE event was obtained

with the actual tumor data. (H) Gene-level ASE is imbalanced among those harboring mutations

in CTCF or TF binding sites, promoters, 3’ UTR, accessible chromatin, and cancer-specific

enhancers (2.8x10-27, ANOVA, n=113 samples where tumor RNA-seq and matched

tumor/normal WGS data were available). Only 16 of these samples overlap with those used to

compute diffASE in Fig. 1.



Figure S3. Most CpG islands are located within 2 kb of TSS. Related to Figure 1. The

distribution of 52,383 CpG islands from the UCSC browser (hg19) plotted relative to TSS.



Figure S4. Optimized parameters deplete somatic mutation calls of rare germline SNPs.

Related to Figure 2. (A) A schematic of the analysis workflow used to associate allelic

imbalance with mutations in regulatory regions. Our analyses identified 47 drivers at a false

discovery rate (FDR)<0.25 (see Table S4 for detailed output). 12 tumors were analyzed: breast

cancer (BRCA), Bladder Urothelial Carcinoma (BLCA), Cervical Squamous

Cell Carcinoma (CESC), Colon Adenocarcinoma (COAD), Head and Neck Squamous



Cell Carcinoma (HNSC), Acute Myeloid Leukemia (LAML), Low Grade Glioma (LGG), Lung

Adenocarcinoma (LUAD), Ovarian cancer (OV), Prostate Adenocarcinoma (PRAD), Skin

Cutaneous Melanoma (SKCM), Stomach Adenocarcinoma (STAD). (B, C) The effect of filtering

parameters on the fraction of false-positive mutations (SNPs) called by Varscan2 was determined

using BRCA WGS samples (n=48 matched tumor/normal BRCA WGS samples). (B) The

proportion of false positive mutations called by Varscan2 (i.e. those that are actually SNPs)

increases when normal AAF increases (normal AAF at a threshold of 2% was significantly

different when compared to normal AAF thresholds ranging from 4% to 10%, n=48 BRCA WGS

samples, Duncan's new multiple range test). (C) The proportion of SNPs among mutations called

by Varscan2 decreases when the delta alternative allele frequency (delta AAF) between tumor

and matched normal WGS increases (≥10 versus ≥50, P=0.024, n=48 BRCA samples, Duncan's

new multiple range test). (D) The base quality score of mutations and dbSNPs called with the

optimized filters in a representative BRCA samples (TCGA-CI-A2C9). (E) The total number of

somatic mutations, including substitutions, insertions, and deletions for all 12 cancer types (left

panel). The insertions and deletions grouped by the length of insertion and deletion (right panel).

All of these somatic mutations were obtained by applying the optimized WGS filters listed in (A).



Figure S5. Schematic of the FDR calculation used to evaluate ASE-Mutation associations.

Related to Figure 2.



Figure S6. Network of putative and known breast cancer drivers. Related to Figure 2. The

KEGG breast cancer pathway (hsa05224) was enriched in GSEA analysis of our predicted breast

cancer drivers (P=0.044). To visualize the result, we integrated it with the putative non-coding

drivers revealed by association of somatic mutations with ASE in this study. The networks were

integrated using GeneMANIA (Warde-Farley et al., 2010) and visualized using Cytoscape 3.7

(Shannon et al., 2003).



Figure S7. Characterizing six regulatory features and tumor ASE events, as well as

mutations residing in these regulatory features, for 12 cancer types. Related to Figure 3. (A)



The heatmap displays the pairwise overlap among the six regulatory features analyzed: CTCF, TF

binding sites (ChIP-seq), promoters, 3’ UTR, accessible chromatin, and cancer-specific enhancers.

Reading to the right of the diagonal indicates how much of the feature listed in each row is

overlapped by the feature listed in each column. Conversely, to the left of the diagonal indicates

how much of the feature listed in each column is overlapped by the feature listed in each row. For

example, 20-70% of each enhancer track is overlapped by the CTCF and TF binding sites, but

these enhancers occupy <10% of the CTCF and TF binding sites. The bar plots for each feature

on the right side of the heatmap demonstrates the % of the human reference genome that the

feature occupies. (B) The average number of tumorASE (binomial P<10-3) events per tumor

among 1,165 tumor RNA-seq samples plotted by the 12 types of cancers. (C) The average

number of somatic mutations residing in the four regulatory features among 1,165 tumor/normal

WGS divided into the 12 cancer types. (D) The number of somatic mutations in each regulatory

feature distinguished by different colors for each of the 12 cancer types. In each boxplot, the

horizontal line represents the median. The boxes are delimited by the first and the third quartile.

(E) The distribution of putative driver significance plotted by the type of regulatory feature that is

mutated.



Figure S8. Non-coding variants have consistent impact on cis-regulation of PIP5K1B and

SEMA6D. Related to Figure 3. (A) Left panel: The distribution of putative LUAD driver

mutations in cancer-specific enhancers of PIP5K1B across 10 cancer types available of cancer-



specific enhancer features (n=1,086 tumors). Cancer-specific enhancers were not available for

OV and LAML. Each row represents a sample and each column represents 1 bp. Right panel: The

PIP5K1B ASE ratio in LUAD (P=8.6×10-9, FDR=0.11, Wilcoxon rank sum test, n=225). (B) As

in ‘A’ but depicting the distribution of putative STAD driver mutations in the 3’UTR of SEMA6D

across 12 cancer types (n=1,165 tumors). Right panel: The SEMA6D ASE ratio (P=2.1×10-4,

FDR=0.01, Wilcoxon rank sum test, n=112). The boxplot is delimited by the first and the third

quartile, while the diamonds and dots represent the medians and raw absolute gene-level ASE,

respectively.



Transparent Methods

Genotyping and imputation Genome-wide Affymetrix 6.0 genotype array datasets from

normal blood samples were downloaded as Birdseed files from GDC Legacy Archive

(https://portal.gdc.cancer.gov/legacy-archive/search/f) for all 5,875 patients from 12 cancer types.

Among these patients, only the 1,165 where tumor RNA-seq and matched tumor/normal WGS

data were available were included in the downstream association between gene-level ASE and

mutation occurrence (see Fig. S1A). These datasets were annotated with Affymetrix annotation

files and converted into base-level genotypes. To minimize allelic mapping bias we excluded

SNPs with more than 2 polymorphisms or those where 2 SNPs conflicted at the same site on the

same strand in phased 1000 Genomes Project Phase1 v3 data. Affymetrix 6.0 arrays genotype

nearly 1 million SNPs. Typically ~25% of these sites are heterozygous and only a small fraction

falls within expressed regions (mean=12,468). To increase the number of SNPs available to

resolve ASE, we imputed and phased genotypes as previously described (Kulik et al., 1989). In

brief, genotyping data were transformed into PLINK binary format and subjected to pre-phasing

with Shape-IT software (v2.r790) (Gerstung et al., 2015) using the 1000 Genomes Project Phase1

v3 data as the reference, then imputed and phased using Impute2 software (v2.3.2) (Verhaak et al.,

2010). We imputed with default parameters and used phased 1000 Genomes Project Phase1 v3

data as the reference panel. For each individual, heterozygous SNPs with genotype probability ≥

0.95 were retained, as well as the allelic status within phased haplotypes. This provided an

average of 25% more heterozygous SNPs per individual.

RNA-seq Matched tumor/normal RNA-Seq BAM files were downloaded from GDC Legacy

Archives for all 1,165 patients across these 12 cancer types. SAMtools (Network, 2015) mpileup

was used to calculate the reads at each heterozygous SNP site in all the RNA-seq BAM files. All

these RNA-seq BAMs were aligned by TCGA (Nik-Zainal et al., 2016) using Mapsplice

(Network, 2014) against the GRCh37-lite human reference genome. Default SAMtools mpileup

settings were used to count reads at heterozygous SNPs except for read depths exceeding 8,000,

in order to reduce the bias of bases showing excessive depth and to conserve computational

resources.

Gene-level ASE To generate gene-level ASE ratios, heterozygous SNPs in each individual were

mapped to a custom human transcript track generated by aggregating Ensembl (v80), UCSC and

NCBI transcripts. Gene-level ASE was calculated by summing allelic counts from all

heterozygous SNPs within the same haplotype by gene (Kandoth et al., 2013). Notably, the

increased number of expressed heterozygous SNPs provided by imputation increased the



proportion of genes assayable (≥30 reads) for gene-level ASE from 50% to ~90%. To determine

the impact that aligning heterozygous alleles to the reference genome had on evaluation of ASE,

we assessed how alignment filtered by WASP influenced gene-level ASE (Schroeder et al., 2014).

RNA-seq BAM files were aligned to hg19 using Mapsplicer and then reads at heterozygous

exonic SNPs were counted using Samtools mpileup. Then we filtered reads with alignment bias

using WASP and compared gene-level ASE between pre- and post-filter inputs among genes with

≥ 30 reads (Fig S2B).

Differential ASE To distinguish somatic from physiological ASE (random monoallelic silencing,

imprinting etc.) we performed differential (diff)ASE analysis. diffASE is the difference in gene-

level allelic bias between the normal and the tumor expression profiles (e.g. 50:50 versus 60:40,

Chi-squared P=0.1). An event was either tumor- or normal-specific, depending on which sample

deviated further from 50:50 allelic expression. diffASE events where the ratio between two

alleles is more skewed in the tumor than in the normal are of primary interest. The FDR of

diffASE events (tumor - normal) was calculated as the fraction of samples where diffASE events

were not skewed in matched normal samples at a threshold P≤0.001. The FDR for the number of

diffASE events arising in tumors was generated with 10,000 permutations of sample labels of

tumor and normal samples, where each gene is evaluated relative to the permuted background of

the same gene (sum(real diffASE events > permuted diffASE events)/10,000). For tumor samples

where matched normal RNA-seq was not available, ‘tumorASE’ was assessed relative to the

binomial distribution (P≤0.001). The FDR of tumorASE events was assessed with 10,000

permutations of the 92 samples (sum(tumorASE events, P≤0.001 > permuted ASE events,

P≤0.001)/10,000. To compare the outcome of diffASE and tumorASE, we filtered for genes ≥30

reads in at least half of both the tumor and normal samples. The overlap between diffASE (Chi-

squared P<0.001) and tumorASE (binomial distribution, P<0.001), is far greater than with

normalASE (binomial distribution, P<0.001), indicating that >90% of diffASE originates in

tumors (Fig. 1C). Thus we included gene-level ASE from tumor RNA-seq without a matched

normal sample to dramatically increase the sample size (Fig. S1A).

Mutation calling To identify somatic mutations, we used Varscan2 (Vogelstein et al., 2013) in

conjunction with custom filters. WGS data of 12 cancer types were downloaded from GDC

Legacy Archive as 1,165 matched tumor/normal BAM files that were pre-aligned to the GRCh37

reference build (hg19) by TCGA using BWA (extensive sample information is available in Table

S3 and Fig. S1A,B). We required that WGS samples had matched tumor/normal files, as well as

corresponding genotype array, copy-number, and tumor RNA-seq data for inclusion. Additionally,



only WGS tumor/normal pairs aligned to the GRCh37 reference build (hg19) were included in

our analysis. For SKCM, we used metastatic tumor samples (sample type 6 in the TCGA

database), and primary tumor samples for the remaining cancer types (sample type 1). The

sequence read counts at each site were obtained from WGS BAM files aligned to the GRCh37-

lite human reference genome with the SAMtools (Vogelstein et al., 2013) mpileup. The base

quality alignment (BAQ) computation of SAMtools was turned off with the parameter ‘-B’ as it is

too stringent for variant calling, and read map quality > 0 was set with ‘-q 1’. Single nucleotide

substitutions, insertions and deletions were simultaneously called using Varscan2 somatic caller

with the default base quality setting of >15 (Merid et al., 2014). Data were processed using a

1,052-core Linux cluster at the High-Performance Computing Virtual Laboratory (HPCVL)

(Kingston, Ontario).

The parameters for identifying somatic mutations were focused on single-nucleotide substitutions,

as well as small insertions and deletions as opposed to structural variations. Somatic mutations

were generated by Varscan2 with default settings recommended by (Beerenwinkel et al., 2007),

including minimum mutation frequency ≥0.2 and somatic p-value ≤0.05. Somatic mutations

generated by Varscan2 were initially filtered with two criteria: (1) a minimum read depth of 10

for both the tumor and matched normal, and (2) alleles with a mutation frequency exceeding 0.2

in tumor but less than 0.1 in matched normal (Fig. S4A). However, since the mutations called

with this approach included rare germline SNPs, we implemented custom filters to deplete them.

The custom filters were chosen based on optimization on 48 randomly selected BRCA

tumor/normal WGS. Pearson correlation analysis was performed among 48 BRCA WGS samples

to determine which Varscan2 parameters contributed to dbSNP150s being called mutations.

These included the number of normal reads, tumor reads, alternative allele frequency (AAF) in

tumors (Tumor AAF), AAF in normal (Normal AAF), and Delta AAF (i.e., Tumor AAF –

Normal AAF). The extent of germline SNPs contaminating Varscan-called somatic mutations

was assessed as a proportion and Pearson correlation R2 relative to dbSNP150s from UCSC and

mapped by genomic coordinates to both dbSNP alleles. This assessment was run among 48

randomly selected BRCA tumor/normal WGS. Using these metrics of contamination, each

parameter (Tumor AAF, Normal AAF and Delta AAF was assessed through a range of values.

This analysis revealed that two parameters, Normal AAF (R2=0.37, P<1×10-4) and Delta AAF

(R2=-0.13, P<1×10-4), were primarily responsible for the high proportion of dbSNP150s in

Varscan2.

This optimization supported the use of an AAF ≤ 2% in matched normal samples since the

fraction of dbSNP150s increased when the AAF was higher (Fig. S4B). It also supported a



requirement that the AAF exceed 20% in tumors. Finally, we required that the difference between

the AAF in tumors and matched normal samples exceed 30% based on the optimization (Fig.

S4C). Notably, the base quality of mutations and dbSNPs called with these filters were equivalent,

supporting the veracity of the mutation calls (Fig. S4D). These filters yielded single-nucleotide

substitutions, as well as small insertions and deletions (Fig. S4E).

To identify variants in the CCLE lines identical to those we predicted as non-coding drivers, we

aligned reads using the default settings of bowtie2 and then called mutations using the default

settings of Strelka2 (Kim et al., 2018).

Effect of copy number variations on gene-level ASE To evaluate the effect of CNV on gene-

level ASE, raw Affymetrix CNV data were downloaded from GDC Legacy Archive for 1,091

BRCA tumors. CNV data were then annotated with ‘GenomeWideSNP_6.cn.na35.annot.csv.zip’

downloaded from Affymetrix home page and mapped to Ensembl genes. Gene-level CNV signals

were calculated by averaging the signals of all CNVs mapped to the gene. Finally, the absolute

CNV signal, |log2(CNV signal)-1|, for each gene was correlated with its corresponding value of

gene-level allelic imbalance (reads ≥30) to determine the influence of CNV on ASE in tumors.

We applied this process to 92 tumors analyzed in the diffASE analysis, calling significant

associations between gene-level ASE and the absolute CNV signal when P<0.05.

To remove the confounding effect of CNVs among associations between gene-level ASE and

regulatory mutations, we assessed the correlation of each gene associated in our analysis with

CNV signal. We also determined the association between gene-level ASE and CNV exclusively

among putative driver mutation carriers to differentiate the effect of these mutations from that of

CNV on gene-level ASE. We applied this filter for BRCA and other 11 cancer types, and found

that none of candidate driver genes displayed significant association (P<0.05) with CNV when

only the samples containing candidate driver mutations were considered.

To ask whether the CNV contributed to the association between mutated regulatory features and

ASE of individual genes, we asked if CNV and ASE were correlated for each putative driver

(Table 1 and Table S2). ASE and CNV did not correlate across tumors for the majority of

putative drivers (40 of 47). For the 7 genes where there was an association, we asked if it was

dependent on CNV. The CNVs impacting FRMD4A, EHMT1 and WLS did not occur in the same

tumors as the somatic variants. Some CNV coincided with somatic variants in the tumors where

association of SETD4, DNAJC5, TTC23, SEMA4D and TSHZ2 (STAD) were found. Hence the

association between mutations and ASE is independent of CNV in the majority (40/47) putative

drivers.



Effect of methylation on gene-level ASE To determine the effect of methylation on gene-level

ASE, we downloaded methylation beta values for 1,091 BRCA tumors from GDC Legacy

Archive. These methylation data were converted into bed format and mapped to Ensembl genes.

The average methylation beta value was determined for each gene including a 2 kb region

upstream and downstream of each gene to encompass the promoter. ASE imbalance values were

then correlated with the absolute methylation signal, |average methylation beta value - 0.5|, on a

gene-by-gene basis to determine the influence of methylation on gene-level ASE. This analysis

was applied to all genes for 92 tumor RNA-seq samples involved in the diffASE analysis.

Significant correlations between gene-level ASE and the absolute methylation beta value were

called at P<0.05.

Selection of cis-regulatory features We surveyed major cis-regulatory features for cis-

regulatory variants. These included TF binding sites (Encode ChIP-seq peaks clustered V3, 2013),

CTCF binding sites and DNase hypersensitive regions (both from GM12878 cells), and 3’ UTRs

that were all obtained from the UCSC database. The track of TF binding sites was downloaded

from UCSC Genome Browser and derived by collapsing multiple ChIP-seq maps of TF binding

(Table S4). We also interrogated promoters (Roadmap Project) and cancer-specific enhancers

(Sjoblom et al., 2006). These were defined based on the presence of peaks: promoters were

defined as H3K4me3+ regions (signal in ≥10/127 tissues/cell types from the NIH Roadmap

Epigenomics Mapping Consortium), while cancer-specific enhancers were defined by association

between accessible chromatin and gene-expression changes in specific cancers (Sjoblom et al.,

2006).

Association of mutations and gene-level ASE Only samples with corresponding WGS,

genotyping array and tumor RNA-seq data were included in the ASE-mutation association

analysis. To test association between mutations and gene-level ASE across various regulatory

features, these data were imported separately for each cancer type into MATLAB 2014a (The

MathWorks Inc., Natick, MA, 2014) and analyzed as schematized in Figure S4A and S5.

First, the somatic mutations were mapped based on proximity to promoters and enhancers as well

as other features, including TF and CTCF binding sites. Using these annotations, promoters

comprise 1.6% of the genome, enhancers 1.4% (ranging from 0.8% in LGG to 2.7% in BRCA),

TF binding sites 13.2% and CTCF binding 6.0% of the genome. Somatic mutations were binned

as present (=1) or absent (=0) among the regulatory features. The overlap among these regulatory

features ranges from 0.04% to 85% (Fig. S7A). For example, CTCF and TF binding sites occupy

20-70% of the enhancer feature, while the enhancers occupy <10% of the CTCF binding sites.



Second, somatic mutations, including single-nucleotide alterations, insertions and deletions were

mapped to nearby genes. The genomic coordinates of each gene were defined as beginning 10 kb

upstream of the TSS and gene body of each gene. These settings were applied to test mutation

association within each regulatory region (see Fig. S7B-D for a summary of the number of

mutations mapped to the different regulatory features). Third, each gene (i) containing somatic

mutations and also with summed heterozygous SNP allelic counts ≥30 reads was analyzed for

gene-level allelic imbalance (P) by using the read counts of the two haplotypes (Ha, Hb) of each

gene (i), in each sample (n), with the following formula, Pi=|log2(Ha/Hb)|, with Pi>10 assigned as

10. The gene-level ASE varies considerably between different cancer types (Fig. S7B, binomial

distribution, P<0.001). To increase sample size in the association test, we included all gene-level

ASE, regardless of their binomial p-values.

Finally, the significance of association between a gene’s allelic imbalance and mutations in each

annotated region was determined in MATLAB using a Wilcoxon rank sum test. To obtain robust

results we only ran the association when both mutation carriers (n≥3) and non-carriers (n≥3) had

gene-level imbalance values derived from summing ≥30 reads from all heterozygous sites. ASE

events positively or negatively correlated with mutations were retained in the analysis to focus on

allelic imbalance resulting from dysregulation.

We permutated the samples to determine the false discovery rate (FDR) for the association

between gene-level ASE and the occurrence of somatic mutations in each genomic feature

(Poulos et al., 2015; Weinhold et al., 2014). For mutations residing in specific genomic regions,

all pairs of gene-level ASE and mutations were randomized 1,000 times to generate association p-

values that reflect the distribution of mutations in each CRE with ASE of each gene in each

cancer. The FDR for each gene was then calculated as depicted in Fig. S5. Regulatory features

that could be associated with multiple genes were included in all possible associations. When

independent mutations were found within the same feature of the same sample, they were

collapsed to a single mutation for the association. Finally, if multiple regulatory features were

enriched for ASE of the same gene, only the most significant association with the smallest FDR

was retained. Hence the reported associations (FDR<0.25) are cases where the mutations in a

particular CRE coincide with ASE of a nearby gene more frequently than expected by the

distribution of mutations and ASE for a CRE/gene pair in a particular cancer.

VAF VAF was calculated independently for each mutation that we identified in WGS data as the

fraction of all sequencing reads covering the variant that were mutated. VAF was z-scaled within

each patient using all mutations detected in that patient in order to normalize out the effect of

tumor heterogeneity. There were 105,826 mutations that met filters and 833 individuals. Putative



non-coding driver (FDR<0.25) and background sets (FDR>0.5) were selected on basis of

association with ASE. Significance was assessed using a Student’s t-test (2-tailed, equal variance).

Effect on transcription factor binding sites The human genome was scanned for transcription

factor binding sites using HOMER (scanMotifGenomeWide.pl using default settings for 392

motifs in the HOMER package) (Melton et al., 2015). Motif-enrichment (Fig. 5B) was assessed

using a chi-square test, comparing mutated/non-mutated motif counts between drivers (gene ASE

FDR<0.25) and background (gene ASE FDR>0.9). All LUAD somatic mutations (Table 1) were

overlapped with each motif and the difference in bit-scores (i.e. "delta-bit" using the PWM;

maximum is 2) between the reference and mutated bases was calculated. Delta-bit scores

associated with genes under ASE vs. no-ASE were compared. Only single nucleotide

substitutions within 5 kb of a TSS and within open chromatin detected in at least one LUAD

ATAC-Seq sample (using peak calls within (Mathelier et al., 2015)). A mutation could be

considered more than once if two or more transcription factor binding motifs were present.

Driver impact on fitness. CRISPR pooled screening data and Cancer Cell Line Encyclopedia

(CCLE) gene expression data was downloaded from DepMap portal. Expression data and pooled

CRISPR fitness data was available for 16,863 genes across 808 cell lines. Fitness effects were

only considered for expressed genes (log2(FPKM)>2; 43% of fitness data corresponds to genes

that are not expressed and was not considered here). No other filtering was applied. Fitness

effects for 91 known TSGs and 40 known oncogenes were compared with our predicted drivers

(Schroeder et al., 2014). We used screen the WGS of CCLE cell lines for mutations identical to

our predicted drivers (Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in

Cancer, 2015).

Driver-ASE We have implemented our analysis methods for gene-level ASE and somatic

mutation calling into a Perl package named Driver-ASE, which is available at GitHub

(https://github.com/MichealRollins-Green/Driver-ASE). All MATLAB scripts to test association

between mutations and gene-level ASE are also included in Driver-ASE. All of the dependencies

required to run Driver-ASE are contained in a Docker (http://www.docker.com) image found here:

https://hub.docker.com/r/mikegreen24/driver-ase. Docker is required to run Driver-ASE and the

instructions Docker installation can be found here: https://docs.docker.com/engine/installation.

Instructions to set up a Docker image are in the description section of the Docker page.

Data availability Driver-ASE uses data or software provided by the following websites: UCSC

Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTables), Cancer Genomics Hub

https://github.com/MichealRollins-Green/Driver-ASE
http://www.docker.com
https://hub.docker.com/r/mikegreen24/driver-ase
https://docs.docker.com/engine/installation
https://genome.ucsc.edu/cgi-bin/hgTables


(https://cghub.ucsc.edu), Genomic Data Commons (https://gdc.cancer.gov), The Cancer Genome

Atlas (TCGA) (http://cancergenome.nih.gov), PLINK (www.cog-genomics.org/plink), NIH

Roadmap Epigenomics Mapping Consortium (www.roadmapepigenomics.org), SAMtools

(www.htslib.org), overlapSelect (http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v287),

Varscan2 (http://massgenomics.org/varscan), impute2

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) and shapeit

(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html).

All raw gene-level ASE and somatic mutations called by Varscan2 can be freely accessed via
Mendeley Data (https://data.mendeley.com/datasets/4kx5sfx9vz/1).
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