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Abstract: Glucosylceramide (GlcCer) is a major membrane lipid and the precursor of gangliosides.
GlcCer is mainly degraded by two enzymes, lysosomal acid β-glucosidase (GBA) and nonlysosomal
β-glucosidase (GBA2), which may have different isoforms because of alternative splicing. To
understand which GBA2 isoforms are active and how they affect glycosphingolipid levels in cells, we
expressed nine human GBA2 isoforms in COS-7 cells, confirmed their expression by qRT-PCR and
Western blotting, and assayed their activity to hydrolyze 4-methylumbelliferyl-β-D-glucopyranoside
(4MUG) in cell extracts. Human GBA2 isoform 1 showed high activity, while the other isoforms had
activity similar to the background. Comparison of sphingolipid levels by ultra-high resolution/accurate
mass spectrometry (UHRAMS) analysis showed that isoform 1 overexpression increased ceramide and
decreased hexosylceramide levels. Comparison of ratios of glucosylceramides to the corresponding
ceramides in the extracts indicated that GBA2 isoform 1 has broad specificity for the lipid component
of glucosylceramide, suggesting that only one GBA2 isoform 1 is active and affects sphingolipid
levels in the cell. Our study provides new insights into how increased breakdown of GlcCer affects
cellular lipid metabolic networks.
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1. Introduction

Sphingolipids help maintain the integrity of membrane structure and organization, and have
been implicated in metabolism, cell signaling, neurodevelopment, inflammation, cancer, and
several other physiological and pathological processes [1–6]. De novo synthesis of ceramide
occurs in the endoplasmic reticulum (ER), and ceramide then serves as a precursor for synthesis
of hexosylceramides, sphingomyelin, and sphingosine [1,7]. Hexosylceramides, also known as
cerebrosides, include glucosylceramide (GlcCer) and galactosylceramide (GalCer), which serve as
precursors for the synthesis of more complex glycosphingolipids.

A portion of the ceramide may be converted to GalCer by galactosylceramide synthase in the ER
in certain tissues (mainly brain myelin) [1]. The remaining ceramide is transported to the Golgi
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complex, where one of two enzymes catalyzes the synthesis of two complex sphingolipids, GlcCer and
sphingomyelin. Transfer of phosphorylcholine from phosphatidylcholine (PC) to Cer on the lumen
side of the Golgi membrane by sphingomyelin synthase (SMS) produces sphingomyelin, while on
the cytosolic side of the Golgi membrane, glucosylceramide synthase (GCS adds a glucosyl group from
UDP-glucose to ceramide to make glucosylceramide [6]. Furthermore, in the Golgi GlcCer can act as
the building block for lactosylceramide and other complex glycosphingolipids, such as gangliosides [6].

GlcCer and its more complex products are ultimately fated to undergo hydrolytic degradation
by lysosomal glucosylceramidease (acid β-glucosidase, GBA, E.C. 3.2.1.45) and glucosylceramidase
2 (nonlysosomal β-glucosidase, GBA2, E.C. 3.2.1.45) to release ceramide and glucose [7–10]. GBA
dysfunction causes the accumulation of GlcCer, and results from GBA mutations in Gaucher disease or
may be triggered as a secondary defect of the accumulation of other lipids, such as cholesterol and
GM1 and GM2 gangliosides [6,7,11–13]. Deficiency of GBA has been implicated in the etiology of
Parkinson’s disease [14]. In contrast, humans carrying mutations in the GBA2 gene are affected with
cerebellar ataxia with spasticity or spastic paraplegia (Spastic Gait locus #46, SPG46) [15,16].

GBA2 was first described as a nonlysosomal glucosylceramidase activity that was tightly associated
with membranes and exhibited a higher pH optimum and different inhibition profile than GBA [17]. It
was later cloned as human bile acid β-glucosidase [18], a 100 kDa protein that was unrelated to GBA
and originally not found to hydrolyze glucosylceramide [19]. However, investigation of knockout
mice showed that it affected glucosylceramide levels rather than bile acid glucoside levels [20,21]. It
was also observed that overexpression of GBA2 in COS-7 cells resulted in increased conversion of
fluorescent GlcCer to ceramide and sphingomyelin [22], as was previously observed for its native
activity [17]. In addition to hydrolysis of GlcCer and bile acid glucosides, GBA2 has been reported to
transglycosylate cholesterol using GlcCer and GalCer as donors [23,24]. In contrast to the lysosomal
GBA, GBA2 is a nonintegral membrane protein associated with the cytoplasmic side of the ER and/or
Golgi [25]. The metabolic interaction of GBA2 with GBA was demonstrated through the improved
aspect of GBA knockout mice and Neimann-Pick model mice, in which GBA deficiency is a secondary
effect, when GBA2 was also knocked out [26,27].

Alternative splicing generates different transcripts from the same gene and affects the expression
levels, stability, half-life, and localization of the RNA messengers [28,29]. It has the potential to generate
several protein isoforms with different biological properties, protein–protein interactions, subcellular
localization, signaling pathway, or catalytic ability. Although several putative splice isoforms exist for
human GBA2 in the National Center for Biotechnology Information (NCBI) database Gene ID 57,704
entry, only the predominant isoform 1 (NP_001317589.1) has been characterized so far.

In order to understand the biological significance of GBA2 isoforms on sphingolipid metabolism,
we have studied GBA2 isoforms by transient overexpression of isoforms predicted by RNA sequencing
in mammalian cells, followed by activity assay with artificial substrate (4MUG) and assessment of lipid
changes in the cells, including that of the natural substrate (GlcCer) using semi-quantitative ultra-high
resolution/accurate mass spectrometry. These findings provide further evidence of the effect of GBA2
on sphingolipid metabolism.

2. Results

2.1. Sequence and Structure Analysis of GBA2 Isoform

Thirteen GBA2 isoforms are listed in the National Center for Biotechnology Information (NCBI)
Gene database Gene ID 57,704 entry. Experimentally determined cDNA sequences for only two of these,
isoform 1 and isoform X1, are found in the database, while the rest are supported by high throughput
mRNA sequencing data (RNASeq). We have evaluated the functionality of the nine of these GBA2
isoforms that cover most of the gene and do not contain other start codons before their putative start
codons by analyzing their effects on the putative structure, and by expression of the corresponding
cDNA in COS-7 cells.
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GBA2 isoform protein sequences are aligned in Figure 1. Isoform 1 is the well-characterized
standard form of GBA2 (NP_001317589.1), while isoform X1, for which a cDNA has been isolated
from substantia nigra (NCBI: AK295967.1), differs only by the insertion of six amino acid residues
in the N-terminal domain (NP_001317589.1:p.Q189_F190insPICPLK). Isoforms X2 and X4 share this
same insertion. Isoforms 2, X4, X6, and X8 have an alternative C-terminus (p.G842_S877delinsX27),
which is shorter than that found in isoform 1. Isoforms X2, X3, and X6 are missing 22 amino acid
residues (p.V634_L655del) that contribute to two helices and a loop around the active site in the model
of the human GBA2 structure (Figure 2, Figures S1 and S2) [30]. Isoforms X7 and X8 are missing 79
amino acid residues (p.F190_Q268del), which comprise 5 β-strands in the N-terminal domain. In order
to closely inspect parts that are missing or added in various isoforms, the other isoforms were aligned
to isoform 1, as shown in Figure S1. To clarify this further, the missing or added structures are shown
next to their specific position in the alternative isoform models in Figure S2. Since all of these isoform
differences could potentially lead to activity differences, we tested their activities in COS-7 cells.
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set of assays, although it also exhibits weak inhibition of GBA2 [34]. After 48 h of transfection, we 
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cells transfected with empty vector as a negative control, while cells with other isoforms were similar 
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transfected with isoform 1 was significantly lower than after 48 h (Figure 3D). Furthermore, GBA2 
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Figure 2. Structural model of human GBA2 highlighting the structures changed by deletions and
insertions in the splicing isoforms relative to isoform 1. All structural variations are labeled relative to
the human GBA2 isoform 1 reference sequence NCBI: NP_001317589.1. The homology models were
generated based on the structure of TxGH116 (PDB: 5BVU) [30] with SWISS-MODEL [31]. The cartoon
model of GBA2 isoform 1 (NCBI: NP_001317589.1) is shown in green with deletions shown in various
colors with the deleted structures shown in the corresponding color to the side with the list of isoforms
containing this variation. The insertion p.Q189_F190insPICPLK predicted structure (red) is positioned
based on the isoform X1 model. Individual homology models are shown in SI Figure S1.

2.2. GBA2 Isoform Expression and Activity of Human GBA2 Isoforms in Transfected COS-7 Cells

We chose COS-7 (Green monkey kidney) cells to evaluate the effects of the alternative
splicing-generated sequence variations on GBA2 activity its effect on sphingolipids, because COS-7
cells have been shown to be an effective system for expression of GBA2 [22,32]. They were also
reported to have undetectable levels of galactosylceramide [33], so that hexosylceramide levels should
primarily reflect glucosylceramide. Expression analysis by qRT-PCR confirmed that the mRNA levels
of all human GBA2 isoforms were not significantly different in the same incubation time, while they
were significantly decreased at 72 h compared to 48 h (Figure 3A). We then confirmed the expression
of each human GBA2 isoform by Western blotting using anti-GBA2 and anti-FLAG-tag antibodies
(Figure 3B,C), which showed that all human GBA2 isoforms were expressed at the protein level at
both 48 h and 72 h. In order to identify which human GBA2 isoforms were active, activity against
the fluorescent substrate 4-methylumbelliferyl β-D-glucoside (4MUG) was measured in lysates from
transfected COS-7 cells (at 48 and 72-h post-transfection). CBE was added as a GBA inhibitor to
one set of assays, although it also exhibits weak inhibition of GBA2 [34]. After 48 h of transfection,
we found that human GBA2 activity of cells transformed with isoform 1 was significantly higher
than cells transfected with empty vector as a negative control, while cells with other isoforms were
similar to the negative control. Seventy-two hours after transfection, the human GBA2 activity of cells
transfected with isoform 1 was significantly lower than after 48 h (Figure 3D). Furthermore, GBA2
activity decreased about 25% upon addition of CBE, confirming that most of the activity resulted from
GBA2 rather than endogenous GBA activity. Thus, all human GBA2 isoforms were expressed but only
isoform 1 clearly hydrolyzed the MUG substrate. These results suggest that none of the deletions or
insertions shown in the protein sequence alignment in Figure 1 and structural model (Figure 2, Figures
S1 and S2) can be accepted and still form an active 4MUG hydrolase.
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Figure 3. Expression of human GBA2 RNA, protein and activity in COS-7 cells transfected with human
GBA2 isoforms. (A) RNA expression levels of hGBA2 compared between 48 and 72 h conditions as well
as to empty vector control at 48 h; (B,C) Western blot analysis with different incubation times, 48 and
72 h, using anti-GBA2 and anti-FLAG-tag antibody; (D) activity determination of hGBA2 compared
between 48 and 72 h as well as between with and without inclusion of CBE. All experiments were done
with three independent biological replicates, and means and standard deviations are shown in A and D
with * indicating differences with p < 0.05, ** indicating p < 0.01, *** indicating p < 0.001 in a two-tailed
unpaired t-test and ANOVA with Tukey’s multiple comparison for different time points. Shapiro–Wilk
analysis showed no significant deviance from a normal distribution. For Western blots (B,C), the most
clear example from the three similar replicates of independent biological samples is shown.

2.3. Analysis of Sphingolipid Levels in COS-7 Cells Overexpressing GBA2 Isoforms

The above results confirmed the GBA2 isoform 1 expressed in COS-7 cells can hydrolyze
the synthetic 4MUG substrate, while other isoforms showed little or no activity with this substrate.
However, this did not indicate whether human GBA2 isoform 1 or the other isoforms can act on
natural glucosylceramide substrates in the cells. Positive ionization mode ultra-high resolution
accurate mass spectrometry (UHRAMS) spectra were acquired from transfected COS-7 cells. The mass
spectra of the lipid extracts of COS-7 cells expressing GBA2 isoform 1 and cells with empty vector
control are compared in Figure S3, which shows that they are similar. However, when individual
mass peaks corresponding to three species of sphingolipid, including hexosylceramide, ceramide
and sphingomyelin with 34:1, 40:1, 42:1, and 42:2 ceramide carbon lengths and desaturation levels
were compared, significant differences are observed (Figures S4–S6). The levels of total sphingolipid
species identified at the 48-h and 72-h time points, including total sphingolipid (total of all Cer,
Hex1Cer, Hex2Cer, ganglioside (GM) and SM species), total ceramide, total hexosylceramide, and total
sphingomyelin, are shown in Figure S7. It should be noted that HexCer levels are relative rather than
absolute levels, since they were normalized to the ceramide internal standard, because of the lack of
HexCer internal standards in this study, but these can nonetheless indicate the relative differences
between the samples. Total ceramide was not significantly increased by GBA2 isoform 1 overexpression,
while total hexosylceramide decreased, albeit not by a significant amount, and total sphingolipid and
sphingomyelin underwent an insignificant increase in cells expressing GBA2 isoform 1 compared
to the control. However, this analysis included sphingolipids that were detected in some samples
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and not others. The heat map of the sphingolipid concentration Z-scores at 48-h post-transfection in
Figure 4A shows the ceramide (Cer), hexosyl ceramide (Hex1Cer) and sphingomyelin lipids that were
identified in all conditions. The identified ceramides (Cer) had total numbers of carbons of C32–42,
including the sphingoid base and long-chain fatty acid, while identified hexosyl ceramides (Hex1Cer)
had lipid components of C38–42, and identified sphingomyelins (SM) included species with C32–44.
Interestingly, the pattern of extracts of cells expressing GBA2 isoform 1 had a clearly unique pattern
and it was identified as the outgroup by clustering of the cell extracts based on their sphingolipid
compositions, which is what would be expected if it is the only isoform with significant activity on
the sphingolipids.
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Figure 4. Relative sphingolipid levels in cells expressing respective human GBA2 isoforms. (A) The heat
map illustrates Z-score differences from mean of sphingolipid in cells expressing the human GBA2
isoforms and control at 48 h after transfection, while the cluster maps illustrate the similarities of
the patterns. The z-scores are color-coded from blue (lower than average for that lipid species) to red
(higher than average for that lipid species), (B) ceramide (34:1, 36:1, 40:1, 40:2, 42:1, 42:2, and 42:3), (C)
hexosylceramide (34:1, 40:1, 42:1, and 42:2), and (D) sphingomyelin (36:2, 40:1, 40:2, 41:1, 41:2, 42:1,
42:2, 42:3, 44:2, and 44:3) expressed as bar graphs. Values are means of three independent biological
replicates with standard deviations shown as error bars, * p < 0.05 and ** p < 0.01 for differences
compared to empty vector control in a two-tailed unpaired t-test. Shapiro-Wilk analysis showed no
significant deviation from a normal distribution for those conditions showing significant differences.

In the extract from cells transformed with isoform 1, the mono-hexosylceramide species Hex1Cer
(34:1), Hex1Cer (40:1), Hex1Cer (42:1), and Hex1Cer (42:2) showed low abundances (low Z-scores),
while ceramides Cer 34:1, 40:1, 42:1, and 42:2 were found at high levels relative to the other conditions.
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The heat map also indicated that SM species 34:2, 36:2, 40:2, 42:1, 42:2, 42:3, 44:2, and 44:3 were higher
in isoform 1-expressing cell extracts than in those of other cells. However, other SM species, such as
d32:1, d36:1, and d38:1, were at similar or lower levels in isoform 1 expression cell extracts compared to
those of other cells. This suggests that GBA2 isoform 1 hydrolyzes GlcCer to release Cer and glucose,
resulting in lower hexosylceramide and higher free ceramide levels, while other isoforms did not
significantly affect these levels, as emphasized by combining all species of each lipid class in the bar
graphs in Figure 4B,C. In contrast, the levels of Hex1Cer (d38:2), and the di-hexosyl (i.e., lactosyl)
ceramide species Hex2Cer (34:1), Hex2Cer (42:1), and Hex2Cer (42:2) were similar to or slightly higher
than those in the control upon overexpression of GBA2 isoform 1. This suggests that depletion of
the glucosylceramide did not have a significant effect on dihexosyl ceramide levels. The differences
between SM levels in control cells and cells expressing isoform 1 were not significant, as shown in
Figure 4D. In contrast to isoform 1, the other isoforms did not induce significant changes in cellular
sphingolipid levels. These results confirmed that GBA2 isoform 1 is the only active isoform and
indicate that Hex1Cer isoforms 34:1, 40:1, 42:1, and 42:2 all appear to be human GBA2 substrates.

In contrast, the heat map of the sphingolipid concentration Z-scores at 72-h post-transfection
was not significantly different in all conditions, as shown in Figure S8. This result suggests that other
factors had more influence on the sphingolipid levels than expression of GBA2 as its activity decreased.

2.4. Analysis of Sphingolipid Ratios Related to the Direction of Sphingolipid Metabolic Flow

To generate a more sensitive parameter for the movement of ceramides from glucosylceramides
to other species upon overexpression of GBA2, the ratios of Cer to Hex1Cer and of SM to Hex1Cer
were calculated. Hex1Cer and Cer with the same ceramide masses that were detected included 34:1,
40:1, 42:1, and 42:2 species, while of these SM species were detected only for 40:1 42:1, and 42:2.
The expression of human GBA2 isoform 1 in COS-7 cells resulted in an increased ratio for the Cer to
Hex1Cer (34:1, 40:1, 42:1, and 42:2) compared to the ratio for the empty vector control (Figure 5A).
However, expression of the other isoforms did not significantly change these ratios at 48 h, as seen
in Figure 5A. The ratio of SM to Hex1Cer (40:1, 40:2, and 42:2) was also significantly higher in GBA2
isoform 1 transfected COS-7 cells, compared to other isoforms and to control (Figure 5B). This evidence
suggests that GBA2 activity contributes to the conversion of sphingolipid from GlcCer to Cer, and that
some of the released Cer may be subsequently converted to SM, as previously noted with exogenously
added fluorescent GlcCer [17,22].

Since a GBA2 isoform could act on one or a subset of the glucosylceramide species, the change
in intracellular sphingolipid ratio was analyzed for each ceramide/hexosylceramide pair, including
Hex1Cer to Cer (34:1) in Figure 5C, Hex1Cer to Cer (40:1) in Figure 5D, Hex1Cer to Cer (42:1) in
Figure 5E, and Hex1Cer to Cer (42:2) in Figure 5F. The ratios of Cer to Hex1Cer were increased for cells
transfected with GBA2 isoform 1, but not with the other isoforms. At 72 h, the ratio of Cer to Hex1Cer
and SM to Hex1Cer were higher, but not significantly different from control because of high variation,
as shown in Figure S9. These results suggest that each pair represents a GBA2 isoform 1 substrate and
product, while the other isoforms show no obvious activity toward any of them.
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Figure 5. Effect of GBA2 isoforms on ceramide/hexosylceramide peak intensity ratios of specific ceramide
species. (A) Ceramide/hexosylceramide (34:1, 40:1, 42:1, and 42:2), (B) sphingolyelin/hexosylceramide
(40:1, 42:1, and 42:2) and ceramide/hexosylceramide ratios for 34:1, 40:1, 42:1, and 42:2 are shown
separately in (C–F), respectively. Data are expressed as mean of three independent biological
replicates ± SD, *** p < 0.01 significance for the difference from empty vector control in the unpaired
t-test. Shapiro–Wilk analysis showed no significant deviance from a normal distribution for
the samples with significant differences. (G) Map of sphingolipid metabolism showing hexosylceramide
hydrolysis to release ceramides and their subsequent conversion to other species, which is affected by
GBA2 overexpression.

2.5. Analysis of Total Lipid Composition

The total lipid distribution among the three lipid classes, including sphingolipids,
glycerophospholipids, and glycerolipids did not change significantly in cells overexpressing human
GBA2 isoform 1 compared to control, as shown in Figure 6 (48-h post-transfection) and Figure S10 (72-h
post-transfection). Consideration of the amounts of individual species of each lipid class in Figure 6B–D



Metabolites 2020, 10, 488 9 of 19

shows that sphingolipids and glycerolipids appeared to increase slightly, while the average amounts of
phosphoglycerolipids did not change significantly. These results suggest that overall lipid homeostasis
was not disturbed by human GBA2 overexpression.

Metabolites 2020, 10, x FOR PEER REVIEW 9 of 19 

 

40:1, 42:1, and 42:2 are shown separately in (C–F), respectively. Data are expressed as mean of three 
independent biological replicates ± SD, *** p < 0.01 significance for the difference from empty vector 
control in the unpaired t-test. Shapiro–Wilk analysis showed no significant deviance from a normal 
distribution for the samples with significant differences. (G) Map of sphingolipid metabolism 
showing hexosylceramide hydrolysis to release ceramides and their subsequent conversion to other 
species, which is affected by GBA2 overexpression. 

 
Figure 6. Relative levels of sphingolipids, glycerophospholipids, and glycerolipids in COS-7 cells 
transfected with empty vector and vector for human GBA2 isoform 1 for 48 h. (A) Relative amounts 
of three classes of lipid species. Levels of specific sphingolipid (B), glycerophospholipid (C), and 
glycerolipid (D) species and average values in control and cells expressing GBA2 isoform 1 are 
illustrated as parallel dot plots. Amounts were determined by mass spectrometry analysis of COS-7 
cell lipid extracts. Results are representative of three independent replicates. 

Figure 6. Relative levels of sphingolipids, glycerophospholipids, and glycerolipids in COS-7 cells
transfected with empty vector and vector for human GBA2 isoform 1 for 48 h. (A) Relative amounts
of three classes of lipid species. Levels of specific sphingolipid (B), glycerophospholipid (C), and
glycerolipid (D) species and average values in control and cells expressing GBA2 isoform 1 are
illustrated as parallel dot plots. Amounts were determined by mass spectrometry analysis of COS-7
cell lipid extracts. Results are representative of three independent replicates.

2.6. Analysis of Glycerophospholipids/Glycerolipids Involved in Sphingolipid Metabolism

In the previous analysis, Cer was increased in response to overexpression of GBA2
glucosylceramidase, and this appeared to cause an increase in some SM levels as well. Since SM
synthase transfers a phosphocholine group from phosphotidylcholine (PC) to Cer to produce SM and
diacylglycerol (DAG) [4,5,35,36], we analyzed the ratio of total DAG to PC, at 48-h post-transfection in
Figure 7A. DAG and PC species with fatty acyl components of 34:1, 40:2, 40:3, 40:5, and 40:6 (number of
carbons: double bonds) were detected in both control and GBA2-overexpressing cell extracts. The ratio
of DAG to PC was increased for the total of all of these species and for each species independently in
cells overexpressing GBA2 isoform 1 compared to control. However, this increase was only significant
for DAG to PC with the fatty acyl component 34:1, while no significant differences were observed at
72 h (Figure S11). In comparison, no significant differences were observed in the ratios for DAG to PE
and PI (Figures S12 and S13).
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Figure 7. Ratios of levels of diacylglycerol to phosphatidylcholine in COS-7 cells transfected with
control vector and GBA2 isoform 1 expression vector for 48 h. The ratios of total diacylglycerol (DAG)
to total phosphatidylcholine (PC) are shown in (A). Total DAG/PC for those lipid species found in both
lipid classes 34:1, 40:2, 40:3, 40:5, and d40:6) are shown in (B). The individual DAG/PC ratios for 34:1,
40:1, 42:1, and 42:2 are shown in (C–G), respectively. Data are expressed as mean of three independent
biological replicates ± SD, * indicates p < 0.05 in the unpaired t-test. The distributions of sample values
for all conditions did not deviate significantly from a normal distribution in a Shapiro–Wilk test. (H)
Sphingolipid metabolism showing conversion of ceramide to sphingomyelin, which is affected by
GBA2 overexpression, with emphasis on the conversion of PC to DAG during SM synthesis.
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3. Discussion

GBA2 deficiency is responsible for a heterologous group of ataxias, including hereditary
spastic paraplegia (HSP), autosomal recessive cerebellar ataxia (ARCA) with spasticity and
Marinesco-Sjogren-like syndrome [15,16,37]. The patients with GBA2 mutations have progressive
diseases that can present from early childhood to early adulthood and have a wide range of neurological
and non-neurological symptoms, including cataracts, hypotonia, brisk tendon reflexes, gait ataxia,
spasticity, and mental impairment, with thinning of the corpus callosum and atrophy of the cerebellum.
The molecular basis of how GBA2 deficiency leads to these syndromes and the basis for their
heterogeneity are not well understood.

We considered the possibility that some splice isoforms might show differential tissue expression
and certain mutations might affect some of these more than others. Although previous papers only
considered GBA2 isoform 1 [8,15,20,22,32,34,35], twelve other isoforms are predicted from RNA
sequencing (RNA Seq) data in the NCBI database, with one resulting in a seemingly mild change in
the noncatalytic domain and others that might be accommodated by slight structural adjustments in
the catalytic domain (Figure 2, Figures S1 and S2). However, when we expressed the nine human
GBA2 isoforms with the most complete sequences, only isoform 1 had activity toward MUG and
caused a significant change in cellular sphingolipids. Surprisingly, isoform X1, which has an insertion
of six amino acid between residues 189 and 190 in a β-strand of the N-terminal non-catalytic domain
compared to isoform 1, showed no significant activity, indicating that the structural integrity of
the N-terminal domain is also critical to the activity.

It is unclear why the small insertion of six amino acids in the N-terminal domain of isoform
X1 disrupts the activity of GBA2 or whether this isoform has a function. Although a database entry
exists for an experimental cDNA for this isoform, as mentioned in the Results, that work has not been
published and the prevalence of that isoform is unknown. It is notable that the N- and C-terminal
domains in the GH116 family are strongly linked with a long α-helix shared between the two domains
and the loop from the N-terminus helps form the entrance to the TxGH116 β-glucosidase structure
and in the human GBA2 homology model [30]. Truncations of TxGH116 beyond the N-terminal
hydrophobic segment (possible signal sequence) did not allow the production of a functional C-terminal
catalytic domain. On the other hand, overexpression of the protein with bulky C-terminal tags, such
as green fluorescent protein (GFP), gives localization of the protein to the plasma membrane [22,38],
suggesting that the C-terminus might be important for ER/Golgi localization. Severe truncations
seen in some human mutations result in localization of the protein fragments to the mitochondria,
although nonsense mediated decay of the mRNA is likely to limit the effects of these aberrant proteins
on the patients [38]. The splicing isoforms are natural rather than mutation induced, but isoforms 2,
X4, X6, and X8 do have an alternative C-terminus that might affect localization. Mutation of GBA2
was also shown to effect the cytoskeleton, which could reflect noncatalytic roles of GBA2, in addition
to the catalytic role of GBA2 isoform 1 in mediating sphingolipid levels [39]. A variant in GBA
has been shown to cause alternative splicing leading to Gaucher disease [40], so the possibility of
GBA2 mutations leading to over production of inactive isoforms should be considered. Although
nonpathological variants of GBA2 have rarely been described [41], recently it was reported that GBA2
variants are predictive for response to chemotherapy in non-small-cell lung cancer [42]. Further studies
should be considered to see whether these variants affect activity or alternative splicing.

From the NCBI Gene page collected RNA Seq data, GBA2 (Gene ID: 57704) is most highly expressed
in small intestine, duodenum, kidney thyroid, colon, and brain. Although there is a database entry for
a cDNA from substantia nigra mRNA for isoform X1, that does not really indicate the expression level
of this isoform in that tissue. GBA2 has been noted to be under expressed in neurons in ataxia datasets,
although alternative splicing was not considered [43]. In the future, it would be interesting to analyze
the expression of specific isoforms in human tissues. The mRNA for the isoforms that we expressed do
not have stop codons positioned for nonsense-mediated decay, but this does not rule out that they
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might be processed to small regulatory RNA or otherwise serve to modify GBA2 isoform 1 mRNA
levels in certain human cells where they are expressed.

Although previous studies have expressed GBA2 in cells, including studying the effects of
mutations [36], most looked at the activity on the synthetic substrate MUG. In other cases, the effect
of deficiency of GBA2 on sphingolipid levels was explored in animals [20,26,27]. For instance,
glucosylceramides with various lipid components were found to build up in testis and dermal fibroblasts
of homozygous GBA2 knockout mice [26]. Clearly, loss of GBA2 activity affects the glucosylceramide
levels, which could also affect levels of more complex glycosphingolipids, although no significant
decrease in ceramide was observed. Boot et al. [22] showed that GBA2 overexpressed in COS-7 cells
could break down exogenously added synthetic fluorescent glucosylceramide substrate, and some of
the released ceramide could be metabolized to sphingomyelin, which recapitulated the observed effect
of native GBA2 in human cells on the same substrate [17]. Consistent with those results, overexpression
of GBA2 isoform 1 in COS-7 cells in this work resulted in decreased levels of Hex1Cer species,
corresponding to the hydrolysis of glucosylceramides. In contrast to that previous work in mice, we
detected a clear increase in ceramides, while no significant decrease in ceramides was seen in GBA2
deficiency in mouse testes or fibroblasts [26]. Similar increases in GlcCer were seen in the brains of
Niemann-Pick Type C model mice, when GBA2 was knocked out or inhibited [27]. Glucosylceramides
were also significantly higher in lymphoblastoid cells from a patient with a homozygous GBA2 mutation
compared to control lymphoblastoid cells [44]. So, in general, our observations in overexpression of
GBA2 on sphingolipids are opposite to those seen in animal and human cells with GBA2 deficiency, as
expected, except that we also detected a significant change in ceramide levels.

Upon comparing the general levels of hexosylceramides in Figure 4, the decrease seen upon
overexpression of GBA2 isoform 1 was not significant, partly because of the presence of species that
were detected in some samples and not others. By comparing only species of lipids found as both
ceramides and hexosylceramides in all samples in Figure 4B,C, we were able to see a significant
change. The Figure 4A heat map showed that Hex1Cer (42:1), (42:2), (34:1), and (40:1) increased
significantly compared to control, while Hex1Cer (38:2) was similar in cells with overexpressed
GBA2 isoform 1 and control. This suggests that Hex1Cer (d38:2) may have a higher fraction of
hexosylceramides that could not be hydrolyzed, while the other four Hex1Cer masses represented
higher fractions of glucosylceramides that could be hydrolyzed by GBA2. Despite the obvious SM
increase seen upon overexpression of GBA2 isoform 1 in the Figure 4A heat map, the change was not to
a significant level. To develop a more sensitive parameter, we evaluated the relative ratio of ceramide
to hexosylceramide for lipid species found in both classes in Figure 5, and found that the difference
upon GBA2 isoform 1 expression was much more highly significant. The ratio of sphingomyelins to
hexosylceramides of the same species showed a similar level of significance (Figure 5A), suggesting
that some hexosylceramide hydrolyzed by the overexpressed GBA2 is likely to be converted to
sphingomyelin, consistent with previous observation of conversion of fluorescent glucosyl ceramide
conversion to ceramide then SM [17,22].

Since sphingomyelin synthase transfers phosphocholine from PC to ceramide to make SM and
release DAG, we also investigated the ratios of DAG to PC with the same fatty acid masses. As seen
in Figure 7, the ratios all increased for those species detected in both PC and DAG, although only
in the case of the 34:1 species (likely corresponding to one oleic acid (18:1) and one palmitic acid
(16:0)) was the increase statistically significant. The overall lipid proportions were not disrupted
(Figure 6), and no significant differences in levels of total glycerophospholipids, phosphatidylcholine,
phosphatidyl ethanolamine, phosphatidlylinositol and glycerolipids were observed compared to other
isoforms and empty vector, as shown in Figure S14. The results suggest that overall lipid homeostasis
was not generally disrupted by the GBA2 overexpression, but the levels of certain DAG species may
have increased, along with Cer and SM, since PC levels are high and unlikely to be significantly affected
by their use for SM synthesis. Given the role of DAG in protein kinase C activation and signaling [27],
this could be another aspect of GBA2 deficiency or excess GBA2 activity.
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A case of overexpression of GBA2 has been reported in the spinal cord of a superoxide dismutase
mutant mouse model for amyotrophic lateral sclerosis (ALS), a fatal disease resulting in loss of motor
neuron function [45]. Treatment with the GBA2 inhibitor ambroxol hydrochloride delayed loss of
muscle strength and death in this model, and could also promote neuromuscular junction formation in
tissue culture. GBA2 activity is increased by high substrate concentrations when lysosomal GBA is
deficient in Gaucher and Niemann–Pick models, some symptoms of which are decreased when GBA2
is knocked out or inhibited [26,27]. These symptoms were suggested to be caused by the release of
sphingosine in the cytoplasm, but our data suggest that changes in ceramide, glucosylceramide, and
DAG levels should also be considered. In contrast to these cases where knocking down GBA2 activity
is desired, mutations that knock out GBA function lead to hereditary spastic paraplegia, autosomal
recessive ataxia with spasticity and Marinesco-Sjogren-Like Syndrome [15,16,37,39]. Therefore, it is
clear that the amount of GBA2 activity needs to be carefully controlled to allow proper maintenance of
the central nervous system, as well as peripheral tissues.

4. Materials and Methods

4.1. Reagents

Dulbecco’s modified eagle medium, penicillin/streptomycin (Pen Strep), trypsin/EDTA, and
fetal bovine serum were obtained from Thermo Fisher Scientific (Waltham, MA, USA). The coding
sequences for nine isoforms of human GBA2: major transcript isoform 1 (NM_020944.3),
isoform 2 (NM_001330660.1), isoform X1 (XM_006716809.3), isoform X2 (XM_005251526.4), isoform
X3 (XM_017014937.1), isoform X4 (XM_017014938.1), isoform X6 (XM_017014940.1), isoform,
X7 (XM_017014941.1), and isoformX8 (XM_017014942.2) were synthesized and inserted into
the pcDNA3.1+/c-(k)-dyk expression vector for mammalian cells by GenScript Corporation
(Piscataway, NJ, USA). The human GBA2 peptide CRRNVIPHDIGDPDD was synthesized
and an anti-peptide antibody to it was also generated at Genscript Corp. Anti-β-actin
and anti-Flag-tag antibodies were from Cell Signaling Technology (Danvers, MA, USA).
Conduritol-β-epoxide and 4-methylumbelliferyl-β-D-glucuronide were from Sigma-Aldrich
(St. Louis, MO, USA). Deuterated internal standard lipids phosphatidylcholine (PC
15:0/18:1-d7), phosphatidylethanolamine (PE 15:0/18:1-d7), phosphatidylserine (PS 15:0/18:1-d7),
phosphatidylglycerol (PG 15:0/18:1-d7), phosphatidylinositol (PI 15:0/18:1-d7), phosphatidic acid
(PA 15:0/18:1-d7), lysophosphatidylcholine (LPC 18:1-d7) lysophosphatidylethanolamine (LPE
18:1-d7), cholesterol ester (18:1-d7), monoacylglycerol (MG 18:1-d7), diacylglycerol (DG 15:0/18:1-d7),
triacylglycerol (TG 15:0/18:1-d7/15:0), SM (d18:1/18:1-d9), and Cer (d18:1-d7/15:0) were from Avanti
Polar Lipids (Alabaster, AL, USA). Ammonium formate was from Alfa Aesar (Ward Hill, MA,
USA). Propanol, methanol, and water were from J.T. Baker (Phillipsburg, NJ, USA) and chloroform
was from EMD chemicals (Billerica, MA, USA). All solvents used were of high-performance liquid
chromatography grade, and all lipid extraction and storage solvents contained 0.01% butylated
hydroxytoluene (BHT) from Sigma-Aldrich.

4.2. Cell Culture and Transfection

COS-7 cells (African green monkey kidney) were seeded into 75 cm2 cell culture flasks with
Dulbecco’s Modified Eagle Medium (DMEM) containing 10% Pen-Strep and 10% fetal bovine serum.
Cell lines were grown in a 5% CO2 incubator at 37 ◦C. One million COS-7 cells were seeded
into a 6 cm2 plate with DMEM medium, and then the COS-7 cells were cultured to 80–90%
confluency overnight. The medium was removed and the plate washed once with sterile 1X
phosphate-buffered saline (PBS), then 2 mL of Opti-MEM (reduced serum medium, Thermo Fischer
Scientific) was added into the plate. COS-7 cells were transfected with the cDNA-encoding human
GBA2 isoforms in the pcDNA3.1+/C-(k)-dyk mammalian expression vector with lipofectamine 2000
reagent (Thermo Fischer Scientific, Waltham, MA, USA), according to manufacturer’s instructions.
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After 6 h, the Opti-MEM was removed, and replaced by DMEM complete medium with 1% Pen Strep.
COS-7 cells were incubated for 48 h or 72 h, then the cells were washed with PBS, scraped in PBS, and
stored at −80 ◦C until use.

4.3. RNA Extraction and Quantitative RT-PCR

COS-7 cells were collected at 48 h and 72 h after transfection. RNA was extracted in Trizol
reagent (Thermo Fischer Scientific, Waltham, MA, USA), according to manufacturer’s instructions.
The first stand cDNA was generated by SuperScript™ III Reverse Transcriptase cDNA synthesis Kit
(Thermo Fischer Scientific), and the synthesized cDNA synthesis reaction was stored at −20 ◦C until
use. RT-PCR was performed using SYBR green/Rox qPCR master mix (Thermo Fischer Scientific)
on the LightCycler® 480 II Instrument (Roche Molecular Systems, Inc., Pleasanton, CA, USA).
The primers for qPCR were GBA2-Forward: 5′-CCACTACAGGCGGTATACAA-3′ and GBA2-reverse:
5′-GATCTGTCATCCAATACCGG-3′, and β-actin-Forward: 5′-GATCAGCAAGCAGGAGT
ATGACG-3′ and β-actin-reverse: 5′-AAGGGTGTAACGCAACTAAGTCATAG-3′.

4.4. Protein Collection and Western Blotting Analysis

The medium was removed and cells washed two times with ice-cold 1X PBS, then the COS-7
cells were collected in 1 mL of ice-cold 1X PBS by scraping, and the cell suspension was transferred
to a 1.5-mL tube on ice. Then, the cell suspension in 1X PBS was sonicated on ice. The extracted
cells were diluted 1:20 in 1X PBS and the protein concentration was measured with a PierceTM BCA
Protein Assay kit from Thermo Fischer Scientific (#23225). Proteins were separated by SDS-PAGE
using the Criterion system (BioRad, Hercules, CA, USA) and transferred to nitrocellulose membrane
by wet Western blotting transfer in 50 mM Tris-base, 40 mM glycine, and 20% methanol. Blots were
blocked by 5% skimmed milk in 0.05% PBST for 1 h, and washed with 0.05% PBST, then incubated with
anti-GBA2 antibody (1:100), anti-FLAG antibody (1:1000), or anti-β-actin antibody (1:2000) as primary
antibody overnight. After washing three times with PBST, goat anti-rabbit/HRP (Genscript) and rabbit
anti-mouse/HRP (DAKO)-conjugated secondary were incubated with the blots to detect GBA2 (rabbit
polyclonal antibodies) and Flag-tag primarily (rabbit monoclonal antibodies) and β-actin (mouse
monoclonal antibodies) antibodies, respectively. After washing three times with PBST, the blots were
developed with Luminata Forte Western HRP Substrate, according to the manufacturer’s instructions
(Merck, Kenilworth, NJ, USA).

4.5. Measurement of GBA2 Enzyme Activity on MUG

GBA2 enzyme activity was assayed as described elsewhere [29,36,38]. Samples were pre-incubated
with or without 10 µM CBE, followed by incubated with the 4-methylumbelliferyl-β-D-glucoside
(4MUG) substrate, 3.5 mM final concentration (Sigma-Aldrich, St. Louis, MI, USA) at pH 5.8 and 37 ◦C
for 30 min.The reactions were terminated by adding 200 µL 1 M of glycine, pH 10.6, then the fluorescent
signal was measured in a fluorescence microplate reader with excitation at 355 nm and emission at
460 nm.

4.6. Lipid Extraction and Lipid Measurement

Cell pellets and extraction blank were freeze dried overnight and stored in −80 ◦C until use.
The samples were subjected to monophasic methanol/chloroform/water lipid extraction, as previously
described [25,46]. The supernatants were transferred to 2.0 mL glass vials, and stored at −80 ◦C until
further use. Ten microliters of lipid extracts were evaporated, then washed with 10 mM NH4HCO3,
followed by reconstitution in 40 µL of isopropanol: methanol: chloroform (4:2:1, v:v:v), containing
20 mM ammonium formate. The solutions were then placed into the wells of an Eppendorf twin-tec
96-well PCR plate (Eppendorf, Hamburg, Germany), and the plate was sealed with sealing tape.
Samples were then aspirated via direct infusion nanoESI into an ultra-high resolution/accurate mass
Thermo Scientific model Orbitrap FusionTM LumosTM TribridTM mass spectrometer with an Advion
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Triversa Nanomate nESI source (Advion, Ithaca, NY, USA), operating with a spray voltage of 1.2 kV in
positive mode and 1.4 kV in negative mode, and a gas pressure of 0.3 psi, as described [47–49]. For
the mass spectrometer, the ion transfer capillary temperature was set to 150 ◦C, the radio frequency
(RF)-value to 10%, and the AGC target to 2 × 105. Spectra were acquired at a mass resolving power
at 500,000 (at 200 m/z). Peaks corresponding to the target analytes and internal standards (ISs) were
identified by automated peak finding and then assigned at the “sum composition” level of annotation
using a developmental version of Lipid Search 5.0α software (Mitsui Knowledge Industry (MKI),
Tokyo, Japan, and Thermo Fisher Scientific) by searching against an accurate mass-based, user-defined
database. The search parameters were parent (noise) Threshold:150:Parent (mass) tolerance: 1.5 ppm,
Correlation threshold (%): 0.3, Isotope threshold (%): 0.1, Max isotope number: 1 (i.e., including
the M+1 peak). Peak detection was set to profile and merge mode to average. The internal standards
were used to calibrate the mass spectra prior to database searching. Semi-quantitative analysis of
identified endogenous lipids was performed by comparison of their peak areas to the peak areas
of the relevant internal standards. The SM internal standard was used for sphingomyelin species
and the Cer internal standard was used for ceramide and hexosylceramide species, and by further
normalizing to total protein (µg). Note that at the level of annotation achieved using this acquisition
and analysis method, glucosylceramide (GlcCer) and galactosylceramide (GalCer) lipids may not be
not differentiated from each other, so are collectively assigned here as hexosylceramides. However,
since COS-7 cells were reported to contain undetectable levels of GalCer [33], the HexCer levels likely
correspond to GlcCer.

4.7. Sequence and Structure Analysis

Nine GBA2 isoforms listed in the National Center for Biotechnology Information (NCBI) Gene
database entry Locus 57704, including isoform 1, isoform 2, isoformX1, isoformX2, isoformX3,
isoformX4, isoformX6, isoformX7, and isoformX8, were aligned in MEGA10. Homology modeling was
done in the SWISS-MODEL server (https://swissmodel.expasy.org) [31] with the TxGH116β-glucosidase
structure as template (30), and models were visualized in PyMOL (Schrödinger LLC, Portland, OR,
USA).

4.8. Data and Statistical Analysis

Results are expressed as the mean ± SD of three independent biological replicates. The output data
was visualized via GraphPad Prism 8.0.2 (GraphPad Software, San Diego, CA) and R Core Team (2019;
R: A language and environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/) order script, setwd(‘’) to create the file directory,
Lipid <- read.csv(‘file nmae.CSV’, row.name = 1) to import the. CSV file to R, library(“pheatmap”)
to download the library algorithm from the database, pheatmap(Lipid, cutree_rows = 4) to generate
the heat map with clustering analysis to group similarities in the heat map. All values were expressed
as Z-score (the position of a raw score in terms of its distance from the mean, z = (x − µ)/σ, where x is
the mean value for samples of the same isoform, µ is the mean of the values of all isoforms and σ is
the standard deviation between the means of all isoforms). For statistical analysis, the distributions of
sample values were evaluated for deviance from a normal distribution by the Shapiro-Wilk test [50].
The differences in the means of RNA expression, activity determination, abundance of lipid classes
and individual lipid species were compared between empty vector control and cells expressing GBA2
isoforms by a two-tailed unpaired t-test via GraphPad Prism 8.0.2 software. In the case of expression
and activity data, a two-way Analysis of variance (ANOVA) with Tukey’s multiple comparison was
made between 48 and 72 h. The mean differences were considered significant at p < 0.05 [47].

5. Conclusions

Our work has demonstrated that among the possible isoforms predicted from RNA sequencing in
human tissues, only GBA2 is likely to affect the cellular lipid levels directly, although we cannot rule

https://swissmodel.expasy.org
https://www.R-project.org/
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out noncatalytic and regulatory roles for other isoforms or their RNA molecules. GlcCer and Cer levels
are affected most clearly by GBA2 overexpression, but subtle effects on SM and DAG/PC levels were
also seen. Given the effects of these lipids on membrane properties and signaling, GBA2 expression
levels may have a significant impact on the cell. The negative effects of loss of GBA2 function in HSP,
ARCA, and Marinesco-Sjögren-like syndrome, but positive effects of GBA2 inhibition in Gaucher,
Niemann-Pick and ALS models, suggests that GBA2 is part of an important fine-tuning mechanism
in lipid metabolism that is particularly critical in neuronal cells. Further work is needed to elucidate
the full cellular effects of GBA2 and their pathogenic and therapeutic implications.
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mode high resolution/accurate mass spectra with peak intensity of lipid extracts from COS-7 cells transfected
with GBA2 isoform 1 (A) and empty vector control (B). Figure S4: Mass peak intensity comparison of Hex1Cer
with different lipid carbon lengths and saturation between lipid extracts of cells expressing GBA2 isoform 1 and
empty vector control. Figure S5: Mass peak intensity comparison of Cer with different carbon chain lengths and
saturation between lipid extracts of cells expressing GBA2 isoform 1 and empty vector control. Figure S6 Mass
peak intensity comparison of SM with different ceramide carbon compositions between GBA2 isoform 1 and
empty vector control. Figure S7: Profiles of total sphingolipid, total ceramides, total hexosylceramide and total
sphingomyelin in COS-7 cells transfected with the nine human GBA2 isoforms 48 (A) to (D) and 72 (E) to (H) hours
post-transfection. Figure S8: Relative sphingolipid levels in cells expressing respective human GBA2 isoforms
at 72-h post-transfection. Figure S9: Effect of GBA2 isoforms on ceramide/hexosylceramide ratios of specific
sphingolipid species at 72-h post-transfection. Figure S10: Relative levels of sphingolipids, glycerophospholipids
and glycerolipids in COS-7 cells transfected with empty vector and vector for human GBA2 isoform 1 for 72 h.
Figure S11: Ratios of diacylglycerol to phosphatidylcholine in COS-7 cells transfected with control vector and GBA2
isoform 1 expression vector after 72 h. Figure S12: Relative levels of diacylglycerol to phosphatidylethanolamine
in COS-7 cells transfected with control vector and GBA2 isoform 1 expression vector for 48 h. Figure S13:
Ratios of relative levels of total diacylglycerol to phosphatidylinositol and phosphatidylethanolamine in COS-7
cells transfected with control vector or GBA2 isoform 1 expression vector for 48 h. Figure S14: Comparison of
sphingolipid, glycerophospholipid and glycerolipid in COS-7 control cells and cells transfected with the human
GBA2 9 isoforms 48 h.
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phosphatidylinositol. PS: phosphatidylserine. SL: sphingolipid. SM: sphingomyelin. SMase: sphingomyelinase.
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